(Pages:4)

Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2021

First Degree Programme under CBCSS

Mathematics

Core Course V

MM 1541 : REAL ANALYSIS - I

(2014, 2016 & 2017 Admission)

Time : 3 Hours

SECTION – I

All the **first 10** questions are compulsory. They carry **1** mark each.

- 1. Find all real numbers x that satisfy the inequality $\frac{1}{x} < x$.
- 2. Let *E* consist of all numbers 1/n, where n= 1,2, 3....find inf *E*.
- 3. State the Supremum property of *R*.
- 4. Find the cluster points of the set $E = \{1/n : n \in N\}$.
- 5. What is a Fibonacci sequence
- 6. Define limit of a sequence.
- 7. Give an example of a sequence which is bounded but not convergent.
- 8. What is the 'sum' of an infinite series?

M – 1451

Max. Marks : 80

- 9. What is $\lim_{x\to 0} \frac{x^2}{|x|}$?
- 10. Show that the sequence 1, 1/2, 1, 1/3, 1, 1/4... diverges

SECTION - II

Answer any eight questions (11-22). Each questions carries 2 marks.

- 11. State the order complete property of *R*.
- 12. State the Dedekind's theorem.
- 13. State and prove the Archimedean property of *R*.
- 14. State and prove Bernoulli's inequality.
- 15. Give examples to show that the supremum and infimum of a set may or may not belong to the set.
- 16. Show by an example that every bounded real sequence may not be convergent.
- 17. Check whether the sequence $\{n + (-1)^n\}$ is monotonic or not.
- 18. Show that a convergent sequence of real numbers is bounded.
- 19. Show that $\lim_{n\to\infty}\frac{\cos n}{n}=0$,
- 20. Find $\lim_{x \to 0} \frac{1 \cos x}{x}$.
- 21. Show that $\sum_{1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$ is divergent.
- 22. Show that if $\sum x_n$ convergence, then $\lim_{x\to 0} x_n = 0$.

SECTION – III

Answer **any six** questions (23-31). Each questions carries **4** marks.

- 23. Prove that between any two real numbers there is a rational one.
- 24. Suppose that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences such that $a_n \le b_n \le c_n$ for all $n \ge 10$ and that $\{a_n\}$ and $\{c_n\}$ both converge to 12. Then show that $\{b_n\}$ also converges to 12.
- 25. Show that $\sum_{1}^{\infty} \sin \frac{1}{n}$ is divergent.
- 26. Show that the sequence $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1} \dots\right\}$.
- 27. If $\{a_n\}$ converges to *I*, show that every subsequence of $\{a_n\}$ converges to *I*.
- 28. Show that $\sum_{n=1}^{\infty} \frac{n}{n^p}$ converges if p > 1.
- 29. Discuss the convergence of the series whose n^{th} term is (10n+1)/(n(n+1)(n+2)).
- 30. Test the series whose general term is given by $U_n = \left(1 \frac{1}{n}\right)n^2$ is convergent.
- 31. Give an example of a series which is convergent but not absolutely.

SECTION – IV

Answer **any two** questions (32-35). Each questions carries **15** marks.

- 32. (a) State and prove nested interval property of real numbers.
 - (b) Show that there exists no rational number whose square is 2.

- 33. Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers such that $\lim x_n = x$ and $\lim y_n = y$ and *c* is a real number. Show that
 - (a) $\lim (x_n + y_n) = \lim x_n + \lim y_n = x + y$
 - (b) $\lim (x_n y_n) = \lim x_n \lim y_n = x y$
 - (c) $\lim (x_n y_n) = \lim x_n \cdot \lim y_n = xy$ and
 - (d) $\lim (c x_n) = c \lim x_n = c_x$
- 34. (a) State and prove Bolzano Weierstrass theorem.
 - (b) Define a contractive sequence and show that every contractive sequence is Cauchy.
- 35. (a) A sequence is convergent if and only if it is a Cauchy sequence.
 - (b) Establish the sequential criterion for a limit of a function.