N	1 – 1	1454
---	-------	------

Reg. No.:....

Name :

Fifth Semester B.Sc. Degree Examination, December 2021 First Degree Programme Under CBCSS

(Pages: 4)

Mathematics

Core Course

MM 1544 — VECTOR ANALYSIS

(2014, 2016 & 2017 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - A

All the first ten questions are compulsory. Each carries 1 mark.

- 1. Find the gradient of $f(x, y) = x^2 + y$ at (1, 1).
- 2. If r = xi + yj + zk, show that $\nabla ||r|| = \frac{r}{||r||}$.
- 3. Define the divergence of a vector point functions and find the divergence of $F = e^{x}(\cos yi + \sin yj)$.
- 4. Define line integral of a continuous vector field along a smooth curve.
- 5. Define the potential function for a vector field.
- 6. Is the field $F = 2xy^3i + (1 + 3x^2y^2)j$ is conservative. Justify?
- 7. If C is the curve represented by the equation x = 1 + 2t, y = t, $-1 \le t \le 1$, evaluate $\int_{C} \frac{x}{1+y^2} ds$.

- 8. Find the parametric representation of the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le \pi$.
- 9. State fundamental theorem on line integrals.
- 10. State Stoke's theorem.

SECTION - B

Answer any eight questions from this section. Each question carries 2 marks.

- 11. Find the directional derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of v = 3i 4j.
- 12. Prove that for any smooth scalar point function $\phi = \phi(x, y, z)$, $curl(\nabla \phi) = 0$.
- 13. Evaluate the line integral $\int_C (x-y) ds$, where C is the helix given by x=2t, $y=3t^3$, $(0 \le t \le 1)$.
- 14. Find the work done by the force $F(x,y) = x^3yi + (x-y)j$ on a particle which moves along the curve $y = x^2$ from (-2, 4) to (1,1).
- 15. Find the area of the surface that extends upwards from the parabola $y = x^2$, $(0 \le x \le 2)$ in the *xy*-plane to the plane z = 3x.
- 16. Evaluate the line integral $\int_C (x^2ydx + xdy)$ using greens theorem, where C is the triangular path with vertices (0, 0), (1, 0) and (1, 2).
- 17. Using line integral to find the area enclosed by the astroid $x = a\cos^3 \phi$, $y = a\sin^3 \phi$, $0 \le \phi \le 2\pi$.
- 18. Calculate the outward flux of the vector field $F(x, y) = xi + y^2 j$ across the square bounded by the lines $x = \pm 1$ and $y = \pm 1$.

2 **M – 1454**

- 19. Evaluate $\int_C 4xy \, dx + 2xy \, dy$ where C is the rectangle bounded by the lines x = -2x = 4, y = 1 and y = 2.
- 20. Find the mass of the wire that lies along the curve $r(t) = (t^2 1)i + 2tk$, $0 \le t \le 1$, if the density $\delta = \frac{3}{2}t$.
- 21. For what values of b and c will $F = (y^2 + 2czx)i + y(bx + cz)j + (y^2 + cx^2)k$ be a gradient field.
- 22. Find the outward flux of the vector field $F(x, y, z) = 2xi + 3yj + z^2k$ across the unit cube bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 1 and z = 1.

SECTION - C

Answer **any six** questions from among the questions **23** to **31**. These questions carry **4** marks each.

- 23. Let $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$. Find the maximum and minimum value of a directional derivative at (1, 1), and find those unit vectors in the direction in which the maximum and minimum values occurs.
- 24. Show that the inverse square filed $F(x, y, z) = \frac{C}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} (xi + yj + zk)$ is conservative.
- 25. Show that the integral $\int_{(1,2)}^{(4,0)} 4dy + 4xdy$ is independent of path and find its value.
- 26. If ϕ is a scalar point function so that $grad(\phi(x, y, z)) = yzi + zxj + xyk$, find ϕ if $\phi(1, 1, 1) = 1$.
- 27. Show that $F = (z\cos x + \sin y)i + (x\cos y + \sin z)j + (y\cos z + \sin x)k$ is conservative and find its potential function.
- 28. Using Greens theorem find the work done by the force field $F = -y^2i + xyj$ along the curve which is the boundary of the square cut from the first quadrant by the lines x = 1 and y = 1.

3 **M – 1454**

- 29. Integrate $G(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.
- 30. Verify Gauss divergence theorem for $F = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$, over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
- 31. Find the flux of $F = x^2i + 3y^2j$ across S, where S is the portion of the plane x + y + z = 1 in the first octant.

SECTION - D

Answer **any two** questions from among the questions **32** to **35**. These questions carry **15** marks **each**.

- 32. (a) Prove that $div(\phi F) = \phi(divF) + \nabla \phi F$ or any differentiable vector function F and for any differentiable scalar point function ϕ .
 - (b) Let r = xi + yj + zk and r = |r|. Then prove that if f is a differentiable function of r, then div(r f(r)) = r f'(r) + 3f(r).
- 33. (a) State stokes theorem and verify it for the field F = [y, z, x] for the paraboloid S given by $z = 1 (x^2 + y^2)$, $z \ge 0$.
 - (b) Evaluate the surface integral $\iint_{\sigma} xzdS$ where σ is the part of the plane x+y+z=1 that lies in the first octant.
- 34. Find the flux of $F = yzi + xj z^2k$ through the parabolic cylinder $y = x^2$, $0 \le x \le 1$, $0 \le z \le 4$ in the direction of out normal vector.
- 35. Verify divergence theorem for the vector field F = xi + yj + zk over the sphere $x^2 + y^2 + z^2 = a^2$.
