Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2021

First Degree Programme under CBCSS

Mathematics

Core Course VII

MM 1543 – ABSTRACT ALGEBRA – GROUP THEORY

(2018 & 2019 Admission)

Time : 3 Hours

Max. Marks : 80

SECTION - I

(All questions are compulsory. These questions carry 1 mark each)

- 1. Define an associative binary operation.
- 2. Let *a* and *b* belong to a group *G*. Find an *x* in *G* such that $x abx^{-1} = ba$.
- 3. Define the centre of a group.
- 4. Find μ^{100} if $\mu = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{bmatrix}$.
- 5. Find the order of the permutation (23)(156).
- 6. Find Aut(z).
- 7. Define normal subgroup.

M - 1458

- 8. What is the order of the factor group $\frac{z60}{<15>}$.
- 9. Find the Kernel of the mapping $\varphi : \mathbb{R}^* \to \mathbb{R}^*$ defined by $\varphi(x) = |x|$.
- 10. Find the left cosets of H{0, *In*, *Iz*,....} in Z where *n* is a positive integer.

SECTION - II

(Answer any eight questions. These questions carry 2 marks each.)

- 11. Prove that the left and right cancellation laws hold in a group.
- 12. Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all *a* and *b* in G.
- 13. Prove that for each a in a group G, the centralizer of a is a subgroup of G.
- 14. Find all generators of z_{10} and z_{12} .
- 15. Prove that every cyclic group is abelian.
- 16. Express $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{bmatrix}$ as a product of cycles.
- 17. Prove that for n > 1, A_n has order $\frac{n!}{2}$.
- 18. Let $\varphi: G \to \overline{G}$ is an isomorphism. The prove that G is abelian if and only if \overline{G} is abelian.
- 19. Show that z has infinitely many subgroups isomorphic to z.
- 20. Let *H* be a subgroup of *G*. Then prove that aH = bH if and only if $a^{-1}b \in H$.
- 21. Let *G* be a group and $a \in G$. Show that $a^{|G|} = e$.
- 22. Let |a| = 30. How many left cosets of $\langle a^4 \rangle$ in $\langle a \rangle$ are there? List them.
- 23. Prove that the centre Z(G) of a group G is normal.
- 24. Prove that a factor group of an abelian group is abelian.

- 25. Prove that a normal subgroup *N* is the Kernel of the mapping $g \rightarrow gN$ from *G* to G/N.
- 26. Prove that the mapping $\varphi : GL(Z_1R) \mapsto R^*$ defined by $\varphi(A) = \det A$ is a homomorphism.

(Answer any **six** questions. These questions carry **4** marks each.)

- 27. Show that if *G* is a finite group with even number of elements, then there is an $a \neq e$ in *G* such that $a^2 = e$.
- 28. Prove that the set of all 2×2 matrices with entries from *R* and determinant as '1' is a group under matrix multiplication.
- 29. Prove that in a group, an element and its inverse have the same order.
- 30. For every integer n > 2, prove that the group $u(n^2 1)$ is not cyclic.
- 31. Show that every permutation on a finite set can be written as a cycle or as a product of cycles.
- 32. Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$. Write α, β and $\alpha\beta$ as product of disjoint cycles.
- 33. Prove that for every positive integer *n*, $Aut(Z_n)$ is isomorphic to u(n).
- 34. State and prove Fermat's little theorem.
- 35. Let *H* be a normal subgroup of a group *G* and *K* be any subgroup of *G*. Then $HK = \{hk | h \in H, k \in K\}$ is a subgroup of *G*.
- 36. Let *G* be a group and Z(G) be the centre of *G*. Prove that if $G/Z_{(G)}$ is cyclic, then *G* is abelian.
- 37. Let $\varphi: G \to \overline{G}$ be a group homomorphism and let $g \in G$. Prove that if $\varphi(g) = g'$, then $\varphi^{-1}(g') = \{x \in G | \varphi(x) = g'\} = g \operatorname{Ker} \varphi$.
- 38. Find all abelian groups of order 360, upto isomorphism.

SECTION – IV

(Answer any **two** questions. These questions carry **15** marks each)

- 39. (a) Let * be defined on Q^+ by $a * b = \frac{ab}{4}$. Prove that (Q,*) is an abelian group.
 - (b) Prove that if a and b are elements of a group G, then the linear equations ax = b and ya = b have unique solutions x and y in G.
- 40. (a) Show that a nonempty subset *H* of a group *G* is a subgroup of *G* if and only if $ab^{-1} \in H$, for all $a, b \in H$.
 - (b) Let a be an element of order *n* in a group and let *k* be a positive integer. Prove that $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $|a^k| = n/gcd(n,k)$.
- 41. (a) Prove that the collection of all permutations of a finite set is group under permutation multiplication.
 - (b) If the pair of cycles $\alpha = (a_1, a_2, ..., a_m)$ and $\beta = (b_1, b_2, ..., b_n)$ have no entries in common, then $\alpha\beta = \beta\alpha$.
- 42. Suppose that $\varphi: G \to \overline{G}$ is a group isomorphism. Prove that
 - (a) For every integer *n* and for every *a* in $G, \varphi(a^n) = [\varphi(a)]^n$.
 - (b) $G = \langle a \rangle$ if and only if $\overline{G} = \langle \varphi(a) \rangle$.
 - (c) φ carries the identity of *G* into the identify of \overline{G} .
- 43. (a) State and prove Lagrange's theorem.
 - (b) Is the converse of Lagrange's theorem true? Justify.
- 44. Let $\varphi: G \to \overline{G}$ be a group homomorphism and let *H* be a subgroup of G. Prove that
 - (a) If H is normal in G, then $\varphi(H)$ is normal in G.
 - (b) If |H| = n, then $|\varphi(H)|$ divides n.
 - (c) If \overline{K} is a subgroup of \overline{G} , then $\varphi^{-1}(\overline{K}) = \{K \in G | \varphi(K) \in \overline{K}\}$ is a subgroup of G.