M - 1459

(Pages	:	4)
--------	---	----

Reg. No.:

Name:

Fifth Semester B.Sc. Degree Examination, December 2021.

First Degree Programme under CBCSS

Mathematics

Core Course VIII

MM 1544 - DIFFERENTIAL EQUATIONS

(2018 & 2019 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - I

Answer all questions:

- 1. Write the standard equation of linear differential equation.
- 2. Write the Lipschitz condition.
- 3. Solve dy + y dx = 0.
- 4. For what values of the constant m will $y = e^{mx}$ be the solution of y'' 3y' 10y = 0.
- 5. Check whether $y^2dy + x^2dx$ exact or not.
- 6. Find the complementary function of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^x \sin x$.
- 7. Define Wronskian
- 8. Write the standard form of Legendre's linear equation

- 9. Write the characteristic equation of $2\frac{d^2y}{dx^2} \frac{dy}{dx} 3y = 0$.
- 10. Define basis of solutions of a homogeneous second order differential equation

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions

- 11. Find the order and degree of the ODE $\frac{d^3y}{dx^3} + 2\left(\frac{dy}{dx}\right)^{\frac{1}{2}} = 0$
- 12. Define partial differential equation. Give one example of it
- 13. Solve $\frac{dy}{dx} = xy + x$.
- 14. State the uniqueness theorem of first order differential equation.
- 15. Verify that $y = \frac{2}{x}$ is a solution of the differential equation xy' = -y, for all $x \neq 0$.
- 16. Show that a seperable equation is also exact.
- 17. Check the exactness of $y' = 1 + y^2$.
- 18. Find the integrating factor of y dx x dy = 0.
- 19. Find the general solution of $\frac{d^2y}{dx^2} + 4y = 0$.
- 20. Find a differential equation whose solution is cos 3x.
- 21. Find the complementary function of $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 3e^x$.
- 22. Write the basis of solution of the equation $\frac{d^2y}{dx^2} + y = 0$
- 23. Write the standard form of Euler- Cauchy equation. Give one example of it.

24. Solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2 = 0$$

- 25. Find a general solution of $x^2y' 20y = 0$.
- 26. Find the Wronskian of e^x and e^{-x} .

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions

27. Solve
$$(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0$$

28. Solve
$$(x+4)(y^2+1)dx + y(x^2+3x+2)dy = 0$$

- 29. Find the Orthogonal Trajectories of the family $cx^2 + y^2 = 1$
- 30. Solve the initial value problem $y' + y \tan x = \sin 2x$, y(0) = 1

31. Solve
$$x \frac{dy}{dx} + y = xy^{\frac{3}{2}}, y(1) = 4$$
.

32. Solve
$$(x^2 - 3y^2)dx + 2xy dy = 0$$

33. By reducing the order, solve $(x^2 + 1)y'' - 2xy' + 2y = 0$, given x is one solution

34. Solve
$$\frac{d^2y}{dx^2} + y = \sin x$$
.

35. Find the general solution of the equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 6e^x$$

36. Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - 16y = 0$$
.

- 37. Solve the logistic equation $y' = Ay By^2$.
- 38. Solve $y''+y=\cos ec x$ using the method of variation of parameters.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions

39. (a) Solve
$$\left(\frac{3-y}{x^2}\right) dx + \left(\frac{y^2 - 2x}{xy^2}\right) dy = 0$$
, $y(-1) = 2$ by exactness.

(b) Find an integrating factor and solve

$$(5xy + 4y^2 + 1)dx + (x^2 + 2xy)dy = 0$$

- 40. (a) Solve the initial value problem $(ye^x + 2e^x + y^2)dx + (e^x + 2xy)dy = 0$, y(0) = 6
 - (b) Find a basis of solutions of the differential equation $(x^2 x)y'' xy' + y = 0$.
- 41. (a) Check the exactness and solve $(2xy^2 + y)dx + (2y^3 x)dy = 0$.
 - (b) Solve the initial value problem $(y + \sqrt{x^2 + y^2})dx xdy = 0$, y(1) = 0.
- 42. (a) Solve $x^2y''-2xy+2y=0$, y(1)=1, y'(1)=1.
 - (b) Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2x^2 + e^x + 2xe^x + 4e^{3x}$.
- 43. (a) Solve $(D^2 + 2D + \frac{3}{4}I)y = 3e^x + \frac{9}{2}x$.
 - (b) Solve y''' 3y'' + 2y' = 0.
- 44. (a) Solve the initial value problem

$$y''-2y'-3y=2e^x-10\sin x$$
, $y(0)=2$, $y'(0)=4$

(b) Solve $(D^2 + 3D + 2I)y = 5x^2$.

 $(2 \times 15 = 30 \text{ Marks})$