Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1541 : REAL ANALYSIS I

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks : 80

SECTION I

Answer **all** the questions.

- 1. Define absolute value function |x|.
- 2. Define *least upper bound* for a set $A \subseteq R$.
- 3. Find $\inf(A)$ if $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$
- 4. Find $\lim_{n\to\infty} \left(\frac{3n+2}{2n-2}\right)$.
- 5. Define the limit of a real sequence.
- 6. Write the harmonic series. Is it convergent?
- 7. Define Cauchy sequence.
- 8. Let $\in =\frac{1}{2}$ and a = 3, then find the \in neighborhood, $V_{\in}(a)$ of a.
- 9. Define closed set in \mathbb{R} . Write an example for closed set.
- 10. Define perfect set in \mathbb{R} .

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

P - 2484

SECTION II

Answer any eight questions

- 11. Show that, two real numbers *a* and *b* are equal if and only if for every real number $\epsilon > 0$ it follows that $|a b| < \epsilon$.
- 12. Prove that $\sqrt{3}$ is irrational.
- 13. Using triangle inequality prove the inequality $||a| |b|| \le |a b|$.
- 14. Let $A \subseteq R$ be bounded above, and let $c \in R$. Define the set c+A by $c+A = \{c+a : a \in A\}$. Show that $\sup(c+A) = c + \sup A$.
- 15. Show that $\lim\left(\frac{n+1}{n}\right) = 1$.
- 16. Show that every convergent sequence is bounded.
- 17. Let $\lim a_n = a$, and $\lim b_n = b$, then prove that $\lim (a_n + b_n) = a + b$.
- 18. Show that if $(b_n) \rightarrow b$, then the sequence of absolute values $|b_n|$ converges to |b|.
- 19. Write the examples for
 - (a) Sequences (x_n) and (y_n) , which both diverge, but whose sum $(x_n + y_n)$ converges;
 - (b) A convergent sequence (b_n) with $b_n \neq 0$ for all *n* such that $(1/b_n)$ diverges.
- 20. Prove that the sequence defined by $x_1 = 3$ and $x_{n+1} = \frac{1}{4 x_n}$ converges.
- 21. Show that, sub sequences of a convergent sequence converge to the same limit as the original sequence.
- 22. Show that, every convergent sequence is a Cauchy sequence.
- 23. Let $a \in A$. Prove that a is an isolated point of A if and only if there exists an $\in -$ neighborhood $V_{\in}(a)$ such that $V_{\in}(a) \cap A = \{a\}$.
- 24. Show that if *K* is compact, then sup*K* and inf*K* both exist and are elements of K.
- 25. Prove that cantor set is a Compact set.
- 26. Let *E* is nowhere-dense in \mathbb{R} , then show that the complement of \overline{E} is dense in \mathbb{R} . (8 × 2 = 16 Marks)

SECTION III

Answer any six questions

- 27. Assume $s \in R$ is an upper bound for a set $A \subseteq R$. Then, show that $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \epsilon A$ satisfying $s \epsilon < 0$.
- 28. State and prove Nested Interval Property.
- 29. Show that the set of rational numbers, \mathbb{Q} is countable.
- 30. Given any set *A*, prove that there does not exist a function $f : A \rightarrow P(A)$ that is onto.
- 31. Assume $\lim a_n = a$ and $\lim b_n = b$, = b, then show that
 - (a) If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.
 - (b) If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 32. Show that; if $x_n \le y_n \le z_n \forall n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = I$, then $\lim y_n = I$.
- 33. If a sequence is monotone and bounded, then show that it is convergent.
- 34. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- 35. Prove that, a point *x* is a limit point of a set *A* if and only if $x = \lim a_n$ for some sequence (a_n) contained in *A* satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.
- 36. For any $A \subseteq \mathbb{R}$, Show that the closure \overline{A} is a closed set and is the smallest closed set containing *A*.
- 37. If $K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq ...$ is a nested sequence of nonempty compact sets, then show that, the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty.
- 38. Prove that the set of real numbers \mathbb{R} cannot be written as the countable union of nowhere-dense sets.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION IV

Answer any two questions

39. Prove that

- (a) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.
- (b) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying $\frac{1}{n} < y$.
- (c) For every two real numbers *a* and *b* with $a < b, \exists$ a rational number *r*, satisfying a < r < b.
- 40. (a) Show that, there exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.
 - (b) Find *suprema* and *infima* of the following sets.

(i)
$$\{n \in \mathbb{N} : n^2 < 10\}$$

(ii)
$$\{\frac{n}{m}: m, n \in \mathbb{N} \text{ with } m+n \leq 10\}$$

- 41. (a) State and prove Bolzano-Weierstrass theorem.
 - (b) Prove or disprove: Every Bounded sequence of real number are convergent.
- 42. Show that
 - (a) Cauchy sequences are bounded.
 - (b) A sequence converges if and only if it is a Cauchy sequence.
- 43. (a) State and prove Cauchy Criterion for Series.
 - (b) Using Alternating Series Test, test the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2n}$.
- 44. (a) Show that
 - (i) The union of an arbitrary collection of open sets is open.
 - (ii) The intersection of a finite collection of open sets is open.

(b) Let
$$B = \left\{ \frac{(-1)^n n}{n+1}, n \in \mathbb{N} \right\}$$

- (i) Find the limit points of *B*.
- (ii) Does B contain any isolated points?
- (iii) Find closure of B, \overline{B} .

 $(2 \times 15 = 30 \text{ Marks})$