Reg. No. :

Name :

First Semester B.Sc. Degree Examination, June 2022

First Degree Programme Under CBCSS

Mathematics

Complementary Course I for Physics

MM 1131.1 – MATHEMATICS I – CALCULUS WITH APPLICATIONS IN PHYSICS I

(2018 - 2019 Admission)

Time : 3 Hours

Max. Marks : 80

PART – I

Answer **all** questions. **Each** question carries **1** mark.

- 1. Find the derivative of $(3 + x^2)^3$ with respect to x.
- 2. State Rolle's Theorem.
- 3. If y = f(x) and x = g(t) then, $\frac{dy}{dt} =$ -------.
- 4. The equation of an Ellipse in polar coordinates with semi-axes a and b is
- $5. \qquad \int \frac{a}{a^2 + x^2} dx = -----$
- 6. Sum the integers between 1 and 1000 inclusive.

N - 3986

- 7. Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$ converges or not.
- 8. If $\sum u_n = S$ and $\sum v_n = T$ then $\sum (u_n + v_n) = -----$.
- 9. Two particles have velocities $v_1 = i + 3j + 6k$ and $v_2 = i 2k$ respectively. Find the velocity of the second relative to first particle.
- 10. Find |a| if a = 5i 4j 7k.

 $(10 \times 1 = 10 \text{ Marks})$

PART – II

Answer **any eight** questions. **Each** question carries **2** marks.

- 11. Find the derivative of $y = a^x$.
- 12. Use implicit differentiation to find $\frac{dy}{dx}$ if $x^3 3xy + y^3 = 2$.
- 13. Find the derivative of $f(x) = \frac{\sin x}{x}$.
- 14. Evaluate the integral $\int \ln x \, dx$.
- 15. Find the mean value of $f(x) = x^2$ between x = 2 and x = 4.
- 16. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 2.
- 17. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n!+1}$ converges.
- 18. Sum the series $S = 2 + \frac{5}{2} + \frac{8}{2^2} + \frac{11}{2^3} + \dots$
- 19. Write the Maclaurin series for (a) $\sin x$ and (b) e^x .
- 20. Find the direction of the line of intersection of the two planes

x + 3y - z = 5 and 2x - 2y + 4z = 3.

- 21. Show that if $a = b + \lambda c$, then $a \times c = b \times c$.
- 22. Is the vector product anti commutative? Justify.

 $(8 \times 2 = 16 \text{ Marks})$

PART – III

Answer **any six** questions. **Each** question carries **4** marks.

23. Find the natures of the stationary points of the function $f(x) = 2x^3 - 3x^2 - 36x + 2$.

24. Find
$$\frac{dy}{dx}$$
 if $x = \frac{t-2}{t+2}$ and $y = \frac{2t}{t+1}$.

25. Find the volume of cone enclosed by the surface formed by rotating about the X-axis and the line y = 2x between x = 0 and x = h.

26. Evaluate the integral
$$\int \frac{1}{x^2 + 4x + 7} dx$$
.

- 27. Evaluate the sum $\sum_{n=1}^{N} \frac{1}{n(n+2)}$.
- 28. Determine the range of value of *x* for which the power series $p(x) = 1 + 2x + 4x^2 + 8x^3 + ...,$ converges.
- 29. Find the angle between a = i + 2j + 3k and b = 2i + 3j + 4k.
- 30. Find the area of the parallelogram with side a = i + 2j + 3k and b = 4i + 5j + 6k.
- 31. Find the minimum distance from the point *p* with (1,2,1) to the line $r = a + \lambda b$, where a = i + j + k and b = 2i j + 3k.

$(6 \times 4 = 24 \text{ Marks})$

PART – IV

Answer **any two** questions. **Each** question carries **15** marks.

- 32. (a) Show that the Radius of curvature of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is $(3axy)^{\frac{1}{3}}$. 8
 - (b) Show that the curve $x^3 + y^3 12x 8y 16 = 0$ touches the X-axis. **7**

N – 3986

- 33. (a) Evaluate the integral $I = \int e^{ax} \cos bx \, dx$.
 - (b) Using integration by parts find a relation between I_n and I_{n-1} where

$$I_n = \int_0^1 (1 - x^3)^n dx$$
; Hence evaluate $I_2 = \int_0^1 (1 - x^3)^2 dx$. 8

- 34. (a) Sum the series $S = 1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots$
 - (b) Expand $f(x) = \cos x$ as a Taylor series about $x = \frac{\pi}{3}$. 8
- 35. (a) The vertices of triangle ABC have position *vectors a, b, c* from the origin *O*. find the position vector of centroid *G* of the triangle. **10**
 - (b) Find the volume of the parallelepiped with sides a = 2i + 3j + k, b = i + j + 4k, c = -3i + 2j + 2k. 5

(2 × 15 = 30 Marks)

7

7