(Pages: 4)

S - 1630

Reg. No.:

Name :

Fifth Semester B.Sc. Degree Examination, December 2023 First Degree Programme under CBCSS

Mathematics

Core Course V

MM 1541: REAL ANALYSIS I

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Write the greatest lower bound for a set $A \subseteq R$.
- 2. Define a one-to-one function.
- 3. Define a countable set
- 4. When will you say a Sequence Converges?
- Define a Cauchy sequence.
- 6. When will you say a series converges absolutely?
- 7. State true or false: The sum of positive terms $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ diverges to infinity.

- 8. Define a compact set.
- 9. What is an F set?
- 10. What is the basic example of a compact set?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. If $A \subseteq B$ and B is countable, then prove that A is either countable or finite.
- 12. Show that (0, 1) is uncountable if and only if R is uncountable.
- 13. Define the power set P(A) of a set A. Let A = {a, b, c}. List the eight elements of P(A).
- 14. Give an example of (a) Sequences (x_n) and (y_n) , which both diverge, but whose sum $(x_n + y_n)$ converges, (b) A convergent sequence (b_n) with $b_n \neq 0$ for all $n \in N$ such that $(1/b_n)$ diverges.
- 15. Show that $\lim_{n\to\infty} \left(\sqrt{n+1} \sqrt{n} \right) = 0$.
- 16. Let (a_n) and (b_n) be sequences of real numbers such that $\lim a_n = a$ and $\lim b_n = b$. Then show that $\lim (a_n + b_n) = a + b$.
- 17. Let (a_n) and (b_n) be sequences of real numbers such that $\lim_{n\to\infty} a_n = a$, and $\lim_{n\to\infty} b_n = b$. If $a_n \ge 0$ for all $n \in N$, then show that $a \ge 0$.
- 18. Let $(a_n) \to 0$ and use Algebraic limit theorem, compute $\lim_{n \to \infty} \frac{1 + 2a_n}{1 + 3a_n 4a\frac{2}{n}}$

- 19. Define the closure of a set $A \subseteq R$. Find the closure of $\left\{\frac{1}{n} : n \in N\right\}$.
- 20. Define the Cantor set.
- 21. Let $A = \left\{ (-1)^n + \frac{2}{n} : n = 1, 2, 3, ... \right\}$ and $B = \left\{ x \in \mathbb{Q} : 0 < x < 1 \right\}$. Find the limit points of each set. Also find the closure of A and B.
- 22. Prove that $\{x \in R : c \le x \le d\}$ is a closed set.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. State and prove the Nested Interval Property.
- 24. Show that Q is countable.
- 25. Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then show that $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s \epsilon < a$.
- 26. Prove that every convergent sequence is bounded.
- 27. Let (a_n) and (b_n) be sequences of real numbers such that $\lim a_n = a$ and $\lim b_n = b$. Then show that $\lim (a_n/b_n) = a/b$ provided $b \neq 0$.
- 28. State and prove Monotone Convergence Theorem.
- 29. Prove that a set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.
- 30. Show that a set F is closed if and only if F^c is open.
- 31. Show that the union of a finite collection of closed sets is closed.

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. Show that there exists a real number $\alpha \in R$ satisfying $\alpha^2 = 2$.
- 33. Define a monotone sequence. Give an example. Also state and prove the Monotone Convergence Theorem.
- 34. If $K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq \bullet \bullet \bullet$ is a nested sequence of nonempty compact sets, then prove that the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty.
- 35. State and prove the Heine Borel Theorem.

 $(2 \times 15 = 30 \text{ Marks})$

