(Pages : 4)

ON AVELIKARA CON MAVELIKARA CON MAVE

S - 1669

Reg. I	Vo.	 	 	 * *	 	 	 	 		 		
Name	:	 		 			 				 *	

Fifth Semester B.Sc. Degree Examination, December 2023

First Degree Programme under CBCSS

Chemistry

Core Course V

CH 1541: PHYSICAL CHEMISTRY I

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. What is meant by Critical Pressure of a gas?
- 2. Define an Ideal gas.
- 3. Define Unit cell.
- 4. State the law of constancy of interfacial angles.
- 5. Explain Van't Hoff factor.
- 6. What are isotonic solutions?
- 7. What is meant by the term transport number?
- 8. Give any two differences between electronic and electrolytic conduction.

- 9. What is a galvanic cell?
- 10. Give an example for a cation reversible electrode.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B (Short answer)

Answer any eight questions. Each question carries 2 marks.

- 11. What are the causes for the deviations of real gases from ideal behavior?
- 12. The Van der Waal's constants for nitrogen are : a = 1.38 atm dm⁶ mol⁻² and b = 0.0391 dm³ mol⁻¹. Find the critical temperature.
- 13. Why do crystals diffract X-rays?
- 14. Define Schottky defect. Give an example of a crystal showing this defect.
- 15. Calculate the molarity of an aqueous solution containing 15.9 g of anhydrous sodium carbonate in 3 litres.
- 16. What are azeotropes? Give one example.
- 17. State and explain Boyle-van't Hoff law for solutions.
- 18. Explain the term electrophoretic effect implied in the Debye-Huckel theory of strong electrolytes.
- 19. Discuss Wien effect.
- 20. How do the molar conductivities of strong and weak electrolytes vary with dilution?
- 21. Why is KCI commonly used in a salt bridge?
- Why NaCl acquires a yellow colour when its crystal is heated in sodium vapour?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C (Short essay)

Answer any six questions. Each question carries 4 marks.

- 23. Define Mean free path. How does it vary with (a) increase in temperature and (b) decrease of pressure.
- 24. Explain the features of the rock-salt structure.
- 25. First order diffraction was observed for X-rays of wavelength 0.0576 nm at an angle 6°54' for a single crystal of a certain solid. Calculate the distance apart of consecutive planes.
- 26. What is reverse osmosis? Explain one important application of the method.
- 27. Discuss the variation of viscosity of a liquid with temperature.
- 28. State Kohlrausch's law of independent migration of ions. How is it useful in determining the molar conductivity at infinite dilution of a weak electrolyte.
- 29. At 298K, the molar conductivity of a 0.1 M solution of a weak acid HA is 1.2 S cm² mol⁻¹. The limiting molar conductivity of HA is 90.90 S cm² mol⁻¹. Calculate the dissociation constant of the acid at 298 K.
- 30. How is the pH of a solution determined using the hydrogen electrode?
- 31. What are concentration cells? How are they classified?

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D (Essay)

Answer any two questions. Each question carries 15 marks.

- 32. Discuss the significance of Maxwell's equation for the distribution of molecular velocities and the effect of temperature on such distribution.
- 33. (a) Explain the principle of conductometric titrations as an application of conductance measurements.
 - (b) What are the advantages of the method?

- (c) Explain how the following titrations can be conducted conductometrically.
 - (i) Strong acid vs strong base
 - (ii) Weak acid vs strong base.
- 34. (a) What are fuel cells?
 - (b) Discuss the H₂-O₂ fuel cell. Mention its advantages.
 - (c) What is liquid junction potential? How can it be eliminated?
- 35. What are liquid crystals? How are they classified? Explain the structural features of each class.

 $(2 \times 15 = 30 \text{ Marks})$

