(Pages:4)

Reg. No. :

Name :

First Semester B.Sc. Degree Examination, June 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course I for Chemistry and Polymer Chemistry

MM 1131.2 : MATHEMATICS I — CALCULUS WITH APPLICATIONS IN CHEMISTRY I

(2018 & 2019 Admission)

Time : 3 Hours

Max. Marks : 80

SECTION - I

All the **first ten** questions are compulsory. They carry **1** mark each.

- 1. Find the first derivative of $\cos 2x$.
- 2. Find the 1000^{th} derivative of e^x .
- 3. Define stationary point.
- 4. State Leibnitz's point.
- 5. State Demoivre's theorem.
- 6. Define argument of a complex number.
- 7. Find the complex conjugate of 2-2i.
- 8. If v = 3i 4j is a velocity vector. Then find speed.

N - 4000

- 9. Define dot product.
- 10. Evaluate $\int x \sin x$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. If $x = \sec t$ and $y = \tan t$, find $\frac{dy}{dx}$.
- 12. Find $\frac{dy}{dx}$, if $e^x \sin y = x$.
- 13. Express $\frac{(x-iy)^2}{(x+iy)}$ in the form a+bi.
- 14. Find modulus of 6+8i.
- 15. Find $\frac{d}{dx}(\cosh x)$.
- 16. Find the angle between two vectors *a* and *b* with magnitudes $\sqrt{3}$ and 2 respectively, and such that *a*, $b = \sqrt{6}$.
- 17. Find the value of *p* for which the vectors 3i+2j+9k and i+pj+3k are perpendicular.
- 18. Show that if $a = b + \lambda c$, for some scalar λ , then $a \times c = b \times c$.
- 19. Find the unit vector corresponding to the vector i + j + k.
- 20. Find the area of the parallelgram with sides i + 2j + 3k and 4i + 5j + 6k.

N - 4000

- 21. Evaluate $\int_{0}^{\infty} \frac{x}{(x^2+a^2)^2} dx.$
- 22. Find the mean value *m* of the function $f(x) = 3x^2 3$ between the limits x = 0 and x = 1.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION – III

Answer **any six** questions. These questions carry **4** marks each.

- 23. Find the magnitude of radius of curvature at a point (x, y) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 24. Find the positions and stationary points of the function $f(x) = 3x^4 4x^3 8$.
- 25. Solve the hyperbolic equation $\cosh x 5 \sinh x 5 = 0$.
- 26. Find the value of $(1+i)^i$.
- 27. Find an expression for $\cos^3 \theta$ in terms of $\cos 3\theta$ and $\cos \theta$.
- 28. Evaluate $\int e^{ax} \cos bx dx$.
- 29. The vertices of triangle *ABC* have positive vectors *a*,*b* and *c* relative to some origin O. Find the position vector of the centroid *G* of the triangle.
- 30. A line is given by $r = a + \lambda b$, where a = i + 2j + 3k and b = 4i + 5j + 6k. Find the coordinates of the point *P* at which the line intersects the plane x + 2y + 3z = 6.
- 31. Find the volume of a cone enclosed by the surface formed by rotating the curve y = 2x about the x-axis the line between x = 0 and x = h.

 $(6 \times 4 = 24 \text{ Marks})$

N – 4000

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Determine inequalities satisfied by ln *x* and sin *x* for suitable ranges of the real variable *x*.
 - (b) Determine the constants *a* and *b* so that the curve $y = x^3 + ax^2 + bx$ has a stationary point inflection at the point (3, -9).
- 33. (a) Express $\cosh^{-1} x$ in logarithmic form.

(b) Evaluate
$$\frac{d}{dx}(\sinh^{-1}x)$$
.

- 34. (a) A point P divides a line segment AB in the ratio $\lambda : \mu$. If the position vectors of the points A and B are a and b respectively, find position vector of the point P.
 - (b) Find the minimum distance from the point *P* with coordinates (1, 2, 1) to the line $r = a + \lambda b$, where a = i + j + k and b = 2i j + 3k.
- 35. (a) Using integration by parts, find a relationship between I_n and I_{n-1} where $I_n = \int_{0}^{1} (1 - x^3)^n dx$ and n is any positive integer. Hence evaluate $I_2 = \int_{0}^{1} (1 - x^3)^2 dx$.
 - (b) Find the surface area of a cone formed by rotating about the x-axis the line y = 2x between x = 0 and x = h.

 $(2 \times 15 = 30 \text{ Marks})$

N – 4000