(Pages : 4)

Reg. No. :

Name :

First Semester B.Sc. Degree Examination, June 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course I for Chemistry and Polymer Chemistry

MM 1131.2 : MATHEMATICS I – DIFFERENTIAL CALCULUS AND SEQUENCE AND SERIES

(2021 Admission)

Time : 3 Hours

Max. Marks : 80

SECTION - A

Answer all questions.

- 1. Find $\frac{d}{dx}(\sqrt[3]{x})$.
- 2. Compute the derivative of $tan(x^2 + 1)$ with respect to x.
- 3. Find the inflection points, if any, of $f(x) = x^4$.
- 4. State the extreme-value theorem.
- 5. If $f(x, y) = \sqrt{y+1} + \ln(x^2 y)$, find f(e, 0).
- 6. Write the one-dimensional wave equation.
- 7. When do we say that a function *f* of two variables has an absolute maximum at (x_0, y_0) ?
- 8. Show that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

N - 4002

- 9. Verify whether the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ converges.
- 10. Write the Bessel function $J_1(x)$ using sigma notation.

$$(10 \times 1 = 10 \text{ Marks})$$

Answer any eight questions.

- 11. Evaluate : $\lim_{x\to+\infty} \left(\sqrt{x^6 + 5} x^3 \right)$.
- 12. Compute : $\frac{ds}{dt}$ if $s = (1+t)\sqrt{t}$.
- 13. Estimate $\frac{dy}{dx}$ if $y = \cos(x^3)$.
- 14. Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $4x^2 2y^2 = 9$.
- 15. Obtain the value of $\lim_{n \to \pi/2} \frac{1 \sin x}{\cos x}$
- 16. Show that $f(x) = x^3$ has no relative extreme.
- 17. Write a procedure for finding absolute, extreme of a continuous function f on a finite closed interval [a, b].

SECTION - B

18. State the mean value theorem.

19. Find
$$\frac{dz}{dx}$$
 and $\frac{\partial z}{\partial y}$ if $z = x^4 \sin(xy^3)$.

- 20. State the chain rules for derivatives.
- 21. Given that $z = e^{xy}$, x = 2u + v, $y = \frac{u}{v}$, compute $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.
- 22. Consider the sphere $x^2 + y^2 + z^2 = 1$. Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$.
- 23. Determine whether the sequence $\left\{\frac{n}{2n+1}\right\}_{n=1}^{+\infty}$ converges or diverges by examining the limit as $n \to +\infty$.
- 24. State the ratio test.

25. Using the root test check the convergence of the series $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$.

SECTION - C

26. Define the Taylor series for *f* about $x = x_0$.

$$(8 \times 2 = 16 \text{ Marks})$$

Answer any **six** questions.

27. Compute :
$$\lim_{x\to 5} \frac{x^2 - 3x - 10}{x^2 - 10x + 25}$$

- 28. Find : $\frac{dy}{dx}$ if $y = \frac{\sin x}{1 + \cos x}$.
- 29. Evaluate : $\frac{d}{dx} \left[\sin \sqrt{1 + \cos x} \right]$.
- 30. Estimate : (i) $\lim_{x\to+\infty} \frac{x}{e^x}$ (ii) $\lim_{x\to 0^+} \frac{\ln x}{\csc x}$.
- 31. Find : $\lim_{x\to 0} (1 + \sin x)^{1/x}$.
- 32. Identify the intervals on which $f(x) = x^2 4x + 3$ is increasing and the intervals on which it is decreasing.
- 33. Find the second order partial derivatives of $f(x, y) = x^2y^3 + x^4y$.

34. Suppose
$$w = \sqrt{x^2 + y^2 + z^2}$$
, $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$. Find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$.

- 35. Use appropriate forms of the chain rule to find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$ where $w = x^2 + y^2 z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$.
- 36. Find the interval of convergence and radius of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}.$
- 37. Use an n^{th} Maclaurin polynomial for e^x to approximate *e* to five-decimal place accuracy.
- 38. Find the first four Taylor polynomials for $\ln x$ about x = 2.

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions.

- 39. (a) Find $f''(\pi/4)$ if $f(x) = \sec x$.
 - (b) On a sunny day, a 50 *ft* flagpole casts shadow that changes with the angle of elevation of the Sun. Let *s* be the length of the shadow and θ the angle of elevation of the Sun. Find the rate at which the length of the shadow is changing with respect to θ when $\theta = 45^{\circ}$. Express your answer in units of *feet/degree*.
 - (c) Compute $\frac{d}{dx}\left[\ln\left(\frac{x^2 \sin x}{\sqrt{1+x}}\right)\right]$.
- 40. Sketch the graph of the equation $y = x^3 3x + 2$ and identify the locations of the intercepts, relative extrema, and inflection points.
- 41. (a) Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the *y*-direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$.
 - (b) Describe the level surface of $f(x, y, z) = x^2 + y^2 + z^2$.
- 42. Use Lagrange multipliers to determine the dimensions of a rectangular box, open at the top, having a volume of 32 ft^3 , and requiring the least amount of material for its construction.
- 43. (a) Use the comparison test to determine whether the following series converge or diverge :

(i)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k} - \frac{1}{2}}$$
 (ii) $\sum_{k=1}^{\infty} \frac{1}{2k^2 + k}$

(b) Prove that the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges. Find the sum.

44. Find the Maclaurin series for

(a)
$$e^x$$
 (b) $\sin x$ (c) $\cos x$ (d) $\frac{1}{1-x}$.

 $(2 \times 15 = 30 \text{ Marks})$

N - 4002