(Pages : 4)

P - 3860

Reg. No.	:
Name :	

Third Semester B.Sc. Degree Examination, January 2023.

First Degree Programme under CBCSS

Chemistry

Core Course - II

CH 1341 - INORGANIC CHEMISTRY II

(2020 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in a word or one or two sentence. Each question carries 1 mark.

- Mention the hybridisation and geometry of SF₆ molecule ————
- 2. What is the magnetic property of B₂ molecule?
- 3. Which is more lonic BeCl₂ or BaCl₂? Give reason.
- 4. Name two dibasic oxyacids of phosphorous.
- 5. Draw the geometry of XeF₄ molecule.
- 6. Give any two examples for pseudohalogens.
- 7. How many α particles will be emitted in the change $^{238}_{92}U$ to $^{206}_{82}Pb$?
- 8. What are isotones?

- 9. Name a nanomaterial used in Li ion batteries.
- 10. What are nano sensors?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks

- 11. Which is paramagnetic- CO or NO? Why?
- 12. Define lattice energy. Why lattice energy of ionic solid is high?
- 13. Predict the geometry of IF₇ molecule on the basis of VSEPR theory.
- 14. The effect of H-bonding in NH₃ is less than that of H₂O. Why?
- 15. Give a suitable example of dipole-dipole interaction.
 - 16. State and explain Fajan's rule.
 - 17. What is tracer technique?
- 18. Explain artificial transmutation with an example.
- 19. Discuss neutron activation analysis.
- 20. What are quantum dots?
- 21. Write a method for the preparation of Au nanoparticles.
- 22. What is inorganic benzene. Why is it called so?
- 23. Draw the structure of P_4O_6 and P_4O_{10} .
- 24. How is diborane converted to boron nitride?
- 25. What are polyphosphazines?
- 26. What is the peculiarity of pyrex glass?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks

- 27. Define dipole moment. Explain how is it helpful in predicting the geometry of molecules.
- 28. What is LCAO? Discuss this in the formation of HF molecule.
- 29. Compare VB theory with MO theory.
- 30. Calculate the binding energy per nucleon of 9_4Be nucleus in both MeV and Joule. Given mass of proton = 1.008 amu, mass of neutron = 1.009 amu and mass of Be isotope is 9.012 amu.
- 31. How radioisotopes are useful in medical diagnosis and radiotherapy? Give examples.
- 32. Explain the structure of diborane.
- 33. Write a short note on refractory materials.
- 34. Write a short note on carboranes and boron nitrides.
- 35. Discuss the applications of different noble gases.
- 36. What are pseudohalogens?
- 37. What are the different types of carbon nanotubes?
- 38. Write a note on fullerenes.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks

- 39. (a) What are the applications of radioisotopes?
 - (b) One microgram of Na-24 was injected into the blood of a patient. How long will it take for the radioactivity to fall to 10% of the initial value? The half-life of Na-24 is 14.8 hours.

P - 3860

40.	(a)	Sketch the MO diagram of O ₂ molecule.	7	
	(b)	Arrange O_2 , O_2^+ , O_2^- and O_2^{-2-} in the increasing order of their stability.	4	
	(c)	Comment on their magnetic behaviour.	4	
41.	Disc	cuss different types of silicates with suitable examples.		
42.	Disc	Discuss the structures of different oxyacids of halogens.		
43.	Wri	Write a note on		
	(a)	Kuroll's salts	-4	
	(b)	Silicones	7	
	(c)	Zeolites	4	
44.		lain the following methods for the synthesis of nanoparticles with suit mples.	able	
	(a)	Sol-gel ,	7	
	(b)	Combustion	4	
	(c)	Ball milling	4	
		$(2 \times 15 = 30 \text{ Ma})$	rks)	