(Pag

	SE COLLE
es:3)	lor low
	SMAVELIKARA C
	D PIN: 690110
	130
	*

Reg. No.:

Name:

Fifth Semester B.Sc. Degree Examination, December 2023 First Degree Programme under CBCSS

Physics

Core Course V

PY 1541: QUANTUM MECHANICS

(2018 Admission onwards)

Max. Marks: 80 Time: 3 Hours

SECTION - A

Answer all questions; each question carries 1 mark.

- What is photoelectric effect? 1.
- State Planck's quantum theory. 2.
- Give expression for fine structure constant α . 3.
- Define threshold frequency. 4.
- Write the de-Broglie relation. 5.
- Define phase velocity. 6.
- Write the operator corresponding to energy. 7.
- Define zero point energy. 8.
- Give the condition for two functions to be orthogonal. 9.
- 10. What is Hilbert's space?

 $(10 \times 1 = 10 \text{ Marks})$

21

26.

Answer any eight; each question carries 2 marks.

- 11. State and explain Einstein's photoelectric equation.
- 12. Explain how uncertainty principle accounts for the natural line width of spectral lines.
- 13. Prove the non-existence of electrons in the nucleus on the basis of uncertainty principle.
- 14. Outline the various admissibility conditions on the wavefunction of a system.
- 15. Define a Hermitian operator and name its two properties.
- 16. Distinguish between co-ordinate representation and momentum representation.
- 17. Derive time independent shrodinger equation for a linear harmonic oscillator.
- 18. Write the operators corresponding to angular momentum components.
- 19. What are linear operators?
- 20. Outline the probability interpretation of the wavefunction.
- 21. Write the equation of continuity for probability current density.
- 22. What is the difference between Einstein's and Debye's theory of specific heat?

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six; each carries 4 marks.

- 23. X-ray with wavelength 1A° are scattered from a carbon block. The scattered radiation is viewed at 90° to the incident beam. What is the compton shift.
- 24. Calculate the photelectric work function for sodium metal given that the threshold wavelength is 6800 A° and $h = 6.625 \times 10^{-34} \text{ Js}$.
- 25. What is the de-Broglie wavelength of an electron which has been accelerated from rest through a potential difference of 100 V?

- 26. Calculate the velocity and frequency of revolution of the electron of the Bohr hydrogen atom in its ground state.
- 27. Normalize the wave function $\psi(x) = A \exp(-ax^2)$ where a, A are constant over the domain $-\infty \le x \le \infty$.
- 28. Show that phase velocity of a relativistic electron is $v_p = c \left[1 + \frac{m_0^2 c^2 \lambda^2}{h^2} \right]^{1/2}$ where λ is its de-Broglie wavelength.
- 29. Show that any eigenvalues of a Hermitian operator belong to different eigen values are orthogonal.
- 30. If A and B are Hermitian operators, show that (AB+BA) is Hermitian, and (AB-BA) is not Hermitian.
- 31. For an electron in a one dimensional infinite potential well of width 1 A°. Calculate
 - (a) The separation between the two lowest energy levels.
 - (b) The frequency and wavelength of the photon corresponding to a transition between these two levels.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two; each carries 15 marks.

11

- 32. What do you mean by a free particle? Write down the Schrodinger equation for a free particle, discuss its solution.
- 33. What is Compton effect? Derive an expression for Compton shift.
- 34. Outline different postulates of Quantum mechanics.
- 35. What is a harmonic oscillator? Obtain expression for its energy. Discuss its importance.

 $(2 \times 15 = 30 \text{ Marks})$