(Pages : 3)

Reg.	No.	:	 	•••	••••	 	
Name	:.		 		••••	 	

Second Semester M.Sc. Degree Examination, November 2023 Physics

PH 221 : MODERN OPTICS AND ELECTROMAGNETIC THEORY (2020 Admission onwards)

Time: 3 Hours Max. Marks: 75

PART - A

Answer any five questions. Each carries 3 marks.

- 1. What is meant by delay distortion?
- 2. Explain the basic theory of holography.
- 3. What do you mean by "four-wave mixing" in non-linear optics?
- 4. Obtain the electromagnetic wave equations.
- 5. Differentiate between TE mode and TM mode.
- Explain Coulomb gauge and Lorentz gauge.
- 7. Discuss the characteristics of quarter wave monopole antenna.
- 8. Explain electric dipole radiation.

 $(5 \times 3 = 15 \text{ Marks})$

PART - B

Answer any three questions. Each carries 15 marks.

- 9. Explain the formation of fringes in Fabry Perot interferometer. How will you use it for the measurement of wavelength of light?
- Explain the second harmonic generation process. Obtain phase matching criterion.
- 11. (a) Explain reflection and transmission of em waves at oblique incidence.
 - (b) Also derive an equation for snell's law from oblique incidence.
- 12. What is electromagnetic field tensor? Obtain the Lorentz transformation equations for the electric and magnetic fields.
- 13. What are TE modes? Derive an expression for the intrinsic impedance of TE mode.
- 14. Explain in detail the characteristics of an antenna as a radiator of electromagnetic energy.

 $(3 \times 15 = 45 \text{ Marks})$

PART - C

Answer any three questions. Each carries 5 marks.

- 15. Define X-ray diffraction. Derive an expression for Braggs law.
- 16. A uniform plane wave with $E=8\cos(\omega t-4x-3z)a_y$ V/m is incident on a dielectric slab $(z\geq 0)$ with $\mu_r=1.0$, $\varepsilon_r=2.5$, $\sigma=0$. Find the polarization and angle of incidence.

- 17. An airline has characteristic impedance of 70 Ω and phase constant of 3 rad/m at 100 MHz. Calculate the inductance and capacitance per meter of the line.
- 18. A magnetic field strength of 5 μ A/m is required at a point on $\theta = \pi/2$, 2km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is a half-wave dipole?
- 19. Calculate the reflection coefficient for light at an air-to-silver interface $\mu_1 = \mu_2 = \mu_0$, $\varepsilon_1 = \varepsilon_0$, $\sigma = 6 \times 10^7 (\Omega m)^{-1}$, at optical frequencies $\omega = 4 \times 10^5 / s$.
- 20. Explain in detail the parametric generation of light.

 $(3 \times 5 = 15 \text{ Marks})$

