(Pages: 3)

R - 3112

Reg. No. :	
Name :	

Second Semester B.Sc. Degree Examination, September 2023

First Degree Programme under CBCSS

Physics

Core Course

PY 1241: HEAT AND THERMODYNAMICS

(2018 Admission Onwards)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer all questions in a word or sentence, each carries 1 mark.

- State Wiedemann-Franz law.
- 2. Define coefficient of thermal conductivity.
- 3. State the working principle of refrigerator.
- 4. What is an indicator diagram?
- 5. Give two demerits of Diesel engine.
- 6. Give the principle of pressure cooker.
- 7. How entropy is related to disorder.
- 8. State Wien's displacement law.
- 9. Explain first order phase transition.
- 10. What is Lambda point?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions in two or three sentences. Each carries 2 marks.

- 11. Distinguish between isothermal and adiabatic processes.
- 12. State and explain zeroth law of thermodynamics.
- 13. Draw the experimental set up for determining Stefan's constant.
- Represent Carnot's Cycle on a TS diagram.
- 15. Cooking utensils are provided with wooden handles. Why?
- 16. Compare Otto engine and Diesel engine in terms of efficiency.
- 17. Distinguish between reversible and irreversible process.
- 18. Show that adiabatic elasticity is γ times isothermal elasticity.
- 19. Obtain Mayer's relation as an application of first law of thermodynamics.
- 20. Explain the effect of pressure on the melting point of a substance.
- 21. Name the various strokes of an otto engine.
- 22. Explain thermometric conductivity.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

(Problem - write all relevant formulae)

Answer any six questions, each carries 4 marks.

- 23. A brass boiler has a base area $0.15~\text{m}^2$ and thickness 1 cm. It boils water at the rate of 6 Kg/mm when placed on a gas stove. Estimate the temperature of the part of the flame in contact with the boiler. K for brass = $109~\text{JS}^{-1}\text{m}^{-1}\text{K}^{-1}$. Latent heat of vaporisation of water = $2256~\text{Jg}^{-1}$.
- 24. A body at 1500K emits maximum energy of wavelength 20000A°. If the sun emits maximum energy of wavelength 5500 A°. what would be the temperature of the sun?
- 25. Calculate the wavelength and frequency of a quantum of radiation of energy 1.65×10^{-18} J, h = 6.6×10^{-34} J.S. Velocity of light = 3×10^{8} ms⁻¹.

- 26. A quantity of air of 27°C and atmospheric pressure is suddenly compressed to half its original volume. Find the final pressure and temperature. ($\gamma = 1.4$).
- 27. One mole of a gas at 27°C expands isothermally until its volume is doubled. Calculate the work done. ($\gamma = 1.4$).
- 28. A Carnot engine working between two temperatures has efficiency 0.2. When the temperature of the source is increased by 25°C, the efficiency increases to 0.25. Find the temperature of the source and sink.
- 29. Calculate the increase in entropy when 2 Kg of water at 100° C is converted to steam at the same temperature. Given latent heal of steam = 2.268×10^{6} J/Kg.
- 30. Find the efficiency of a Carnot engine working between 127°C and 27°C.
- 31. A sample of gas expands isothermally to 5 times initial volume. Calculate the change in entropy in terms of the gas constant.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions Essay. Each carries 15 marks.

- 32. Describe an experiment to determine the thermal conductivity of poor conductors by Lee's disc method.
- 33. Define solar constant. Describe an experiment to determine solar constant.
- 34. Describe with diagram the working of an Otto engine and derive an expression for its efficiency.
- 35. Calculate the total change in entropy when unit mass of ice at 0°C is converted into steam at 100°C.

 $(2 \times 15 = 30 \text{ Marks})$

