(Pages: 4)

Reg. No. :	***************************************	
Name :		

Second Semester B.Sc. Degree Examination, September 2023 First Degree Programme under CBCSS

Mathematics

Foundation Course - II

MM 1221 : FOUNDATIONS OF MATHEMATICS

(2018 Admission Onwards)

Time: 3 Hours Max. Marks: 80

PART - A

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Define Universal quantifier.
- 2. Find the cartesian product of $A = \{a,b\}$ and $B = \{y,z\}$.
- 3. Examine whether the function $f: R \to R$ defined by $f(x) = x^2$ is one—one.
- 4. How many relations are there on a set with n elements?
- 5. Draw the graph of the parametric equations $x = \cos t$, $y = \sin t$ where $o \le t \le 2\pi$.
- 6. Define a parabola.
- 7. Find the eccentricity and distance from the pole to the directrix for the curve $r = \frac{3}{2 2\cos\theta}.$
- 8. Find the distance between the points (2,7,6) and (5,4,-2).

- 9. Find the norm of the vector v = (2,3,6).
- 10. Let u = (1,2,-2) and v = (3,0,1). Find $v \times u$.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. These questions carry 2 marks each.

- 11. Show that $(p^q) \to p$ is a tautology by using truth table.
- 12. Is 'x + 2 = 12' a statement? If not rewrite it as statement.
- 13. Let Q(x) be the statement "x< 2". What is the truth value of the quantification for every x,Q(x), where the universe of discourse is the set of real numbers?</p>
- 14. Find the domain D of the following real valued functions.

(a)
$$f(x) = \frac{1}{x-2}$$

- (b) $g(x) = x^2 3x 4$
- 15. Consider the following relation R on S = $\{1,2,3,4\}$, R = $\{(1,1), (2,2), (1,3), (3,1), (3,3), (4,4)\}$. Show that R is an equivalence relation. Also find the equivalent classes.
- 16. Find the arc length of the curve $x=\cos 3t$, $y=\sin 3t$ over the interval $0 \le t \le \pi$.
- 17. Express the relation between the polar and the rectangular coordinates.
- 18. Check whether the graph of $r = \cos 2\theta$, symmetric about the x-axis and y-axis.
- 19. Find the entire area of the cardioid $r = 1 + \cos \theta$.
- 20. Find a vector that is orthogonal to both the vectors u = (1,2,-3) and v = (5,2,-6).
- 21. Find the parametric equations of the line passing through (1, 3) and parallel to v = (2, -5).
- 22. Determine whether the planes 2x-y+7z=0 and -4x+2y-14z-5=0 are parallel.

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. These questions carry 4 marks each.

- 23. Prove that $\sqrt{2}$ is irrational by giving a proof by the method of contradiction.
- 24. Construct a truth table for the following compound proposition $(p \rightarrow q) V (\neg p \rightarrow r)$.
- 25. Consider the functions $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove the following:
 - (a) If f and g are one-to-one functions, then the composition function g∘f is one-to-one.
 - (b) If f and g are onto functions, then the composition function g∘f is an onto function.
- 26. Find the slope of the tangent line to the circle $r=4\cos\theta$ at the point where $\theta=\frac{\pi}{4}$.
- 27. Find the total arc length of the cardioid $r = 1 \cos \theta$.
- 28. Sketch the graph of the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$ and find their vertices, foci and asymptotes.
- 29. Show that (2,1,6), (4,7,9) and (8,5,-6) are the vertices of a right triangle. Find the vertex which is at the 90° angle. Find the area of the triangle.
- 30. Find the area of the triangle that is determined by the points P_1 (2,2,0), P_2 (-1,0,2) and P_3 (0,4,3).
- 31. (a) Find the vector of length 3 that makes an angle of $\frac{\pi}{6}$ with the positive x-axis.
 - (b) Find the angle that the vector v = i + j makes with the positive x-axis.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions. These question carry 15 marks each.

- 32. (a) Let A be the set of integers, and let ~ be the relation on A x A defined by (a, b) ~ (c, d) if a + d = b + c;
 - (i) Prove that ~ is an equivalence relation.
 - (ii) Suppose $A = \{1,2,3,...8,9\}$, find the equivalence class of (2,5).
 - (b) Find all partitions of S = {a,b,c,d}
- 33. (a) Give a proof of the theorem "If 3n + 2 is odd, then n is odd" by the method of contraposition.
 - (b) Find the area inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$.
- 34. (a) Describe and draw the graph of the equation $16x^2 + 9y^2 64x 54y + 1 = 0$.
 - (b) Describe and draw the graph of the equation $x^2 y^2 4x + 8y 21 = 0$.
 - (c) State Kepler's laws.
- 35. (a) Find the distance D between the point (1,-2,3) and the plane 2x-2y+z=4.
 - (b) Sketch the graph of the hyperboloid of one sheet $x^2 + y^2 \frac{z^2}{4} = 1$.
 - (c) Find the rectangular coordinates of the point with cylindrical coordinates $(r,\theta,z)=(2,\frac{\pi}{4},-5)$.

 $(2 \times 15 = 30 \text{ Marks})$