Rea.	No.	:	•••••
· veg.	110.	•	•••••

Name :

Fourth Semester B.Sc. Degree Examination, July 2023

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1431.2 : MATHEMATICS IV — DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

PART - A

Answer all questions. Each carries 1 mark.

- 1. Write the order and degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + 2y = \left(\frac{d^2y}{dx^2}\right)^2$.
- 2. Find an integrating factor of the differential equation $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2.$
- 3. Write the general form of Cauchy's homogenous linear equation.
- 4. Find the Wronskian of e^x and e^{-x} .
- 5. Define the inverse square field of a radius vector \overline{x} .

P.T.O.

Scanned with CamScanner

- 6. If C is a piecewise smooth curve from (1, 2, 3) to (4, 5, 6), then $\int_{c} dx + 2dy + 3dz = ----$
- 7. State Gauss's law for inverse square fields.
- 8. Find all solutions of $x +_{12} x = 2$ in z_{12} .
- 9. Find the order of the subgroup of z_6 generated by 3.
- 10. Describe all units in the ring Q.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. Each carries 2 marks.

11. Solve
$$\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$$
.

- 12. Check whether the differential equation $(y \cos x + 1) dx + \sin x dy = 0$ is exact.
- 13. Solve $\frac{d^4y}{dx^4} + 13\frac{d^2y}{dx^2} + 36y = 0$.
- 14. Transform the differential equation $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$ into a linear equation with constant coefficients.
- 15. Find the divergence of $\overline{v} = xyz\hat{i} + 3x^2y\hat{j} + (xz^2 y^2z)\hat{k}$ at the point (2, -1, 1).
- 16. Evaluate $\int_{c} (1 + xy^2) ds$, where $c: \bar{r}(t) = t\hat{i} + 2t\hat{j}$, $0 \le t \le 1$.
- 17. Find $\iint_{\sigma} (x^2 + y^2 + z^2) ds$, where σ is the sphere of radius 2 centred at the origin.

- 18. Using divergence theorem, find the outward flux of the vector field $\overline{F}(x, y, z) = z\hat{k}$ across the sphere $x^2 + y^2 + z^2 = a^2$.
- 19. Determine whether the binary operation * defined on z^+ by $a*b=a^b$ is associative.
- 20. Write the group table of z_4 .
- 21. Compute M_{σ^2} if $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$.
- 22. Define ring. Give an example of a ring with unity.

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. Each carries 4 marks

23. Solve
$$\left[x \tan\left(\frac{y}{x}\right) - y \sec^2\left(\frac{y}{x}\right)\right] dx - x \sec^2\left(\frac{y}{x}\right) dy = 0$$
,

- 24. Solve $y = 2px p^3$.
- 25. Using the method of variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.
- 26. Prove : $curl(\varphi \overline{F}) = \varphi curl \overline{F} + \nabla \varphi \times \overline{F}$.
- 27. Find the work done by the conservative field $\overline{F}(x, y) = e^y \hat{i} + x e^y \hat{j}$ on a particle that more from (1, 0) to (-1, 0) along a semicircular path.
- 28. Apply Green's theorem to evaluate $\int_{c} (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$.

- 29. Show that (Z, +) is isomorphic to (2Z, +), where + is the usual addition.
- 30. Find all subgroups of Z_{12} and draw its subgroup diagram.
- 31. If R is a ring with additive identity o, then for any $a, b \in R$, prove that
 - (a) oa = ao = 0
 - (b) a(-b) = (-a)b = -(ab)

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions. Each carries 15 marks

- 32. (a) Solve (3y + 2x + 4) dx (4x + 6y + 5) dy = 0.
 - (b) Solve $(xy^3 + y) dx + 2(x^2y^2 + x + y^4) dy = 0$
- 33. (a) Find the orthogonal trajectory of the cardiods $r = a(1 \cos \theta)$.
 - (b) Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$.
- 34. Varity Stoke's theorem for the vector field $\overline{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.
- 35. (a) Show that if G is a finite group with identity e and with an even number of elements, then there is an element $a \neq e$ in G such that a * a = e.
 - (b) Let $(R_1 +)$ be an abelian group. Show that $(R, +, \cdot)$ is a ring if we define $ab = 0, \forall a, b \in R$.

 $(2 \times 15 = 30 \text{ Marks})$

R - 2351