(Pages : 4)

•	(Pages: 4)
Reg. No. :	PIN: 690110 B
lame :	*

Fourth Semester B.Sc. Degree Examination, July 2023 First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1431.2 : MATHEMATICS IV – DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2018-2020 Admission)

Time: 3 Hours Max. Marks: 80

PART – A

Answer all questions. Each carries 1 mark.

- 1. Write the form of exact first degree first order ODE.
- 2. Say true or false: The Bernoulli's equation is a linear equation.
- 3. What is the most general standard form is Higher-degree first-order equation.
- 4. The Legendre's equation has the form _____.
- 5. Say true or false: The line integral depends on the end-points A and B but not on the path C joining them.
- 6. If P is any point on the path of integration that lies between the path's end-points A and B then $\int_A^B a \cdot dr =$ ______.
- 7. Let V is a small volume enclosing P and S is its bounding surface. If φ is a scalar field and a is a vector field then at any point P, $\nabla \cdot a = \underline{\hspace{1cm}}$.

P.T.O.

- 8. In a group G, $(U \bullet V \bullet \cdots \bullet Y \bullet Z)^{-1} = \underline{\hspace{1cm}}$
- 9. If $X^m = I$, then m is called the _____ of the element X in G.
- 10. Define homomorphism of a group G.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. These questions carry 2 marks each.

11. Solve
$$\frac{dy}{dx} = x + xy$$
.

12. Solve
$$\frac{dy}{dx} = (x + y = 1)^2$$
.

- 13. Find the complementary function of the equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x$.
- 14. Find a solution of $(x^2 + x) \frac{dy}{dx} \frac{d^2y}{dx^2} x^2y \frac{dy}{dx} x \left(\frac{dy}{dx}\right)^2 = 0$.
- 15. Solve $\frac{dy}{dx} + 2xy = 4x$.
- 16. Find an expression for the angular momentum of a solid body rotating with angular velocity ω about an axis through the origin.
- 17. Find the volume enclosed between a sphere of radius a centred on the origin and a circular cone of half-angle lpha with its vertex at the origin.
- 18. Reduce $\int_c a \cdot dr$ to a set of scalar integrals by writing the vector field a in terms of its Cartesian components as $a = a_x i + a_y j + a_z k$, where a_x , a_y , a_z are each (in general) functions of x, y, z.
- 19. When do you say that a plane region R is doubly connected?

R - 2350

- Consider the ordered set of six distinct objects {a b c d e f}. Suppose φ is the permutation [4 5 3 6 2 1] and θ is the permutation [2 5 6 1 4 3]. Then find φ θ {a b c d e f}.
- 21. Define isomorphism of groups.
- 22. Write three properties of the subgroups of a group G.

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. These questions carry 4 marks each.

- 23. Solve $x \frac{dy}{dx} + 3x + y = 0$.
- 24. Solve $(x^3 + x^2 + x + 1)p^2 (3x^2 + 2x + 1)yp + 2xy^2 = 0$.
- 25. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4x$.
- 26. Evaluate the line integral $I = \oint_C x dy$, where C is the circle in the xy-plane defined by $x^2 + y^2 = a^2$, z = 0.
- 27. Evaluate the line integral $I = \oint_C \left[(e^x y + \cos x \sin y) dx + (e^x + \sin x \cos y) dy \right]$ around the ellipse $x^2 / a^2 + y^2 / b^2 = 1$.
- 28. Find the vector area of the surface of the hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, by evaluating the line integral $S = \frac{1}{2} \oint_C r \times dr$ around its perimeter.
- 29. Let $\Phi: \mathcal{G} \to \mathcal{G}$ be a homomorphism of \mathcal{G} into \mathcal{G}' ; then show that the set of elements \mathcal{K} in \mathcal{G} that are mapped onto the identity \mathcal{G} in \mathcal{G}' forms a subgroup of \mathcal{G} .
- 30. Show that the traces of equivalent matrices are equal.
- For the hydrogen molecule consists of two atoms H of hydrogen, what are different sets of operations rotations, reflections, and inversions.

 $(6 \times 4 = 24 \text{ Marks})$

J

R - 2350

Answer any two questions. These questions carry 15 marks each.

- 32. (a) A house-buyer borrows capital B from a bank that charges a fixed annual rate of interest R%. If the loan is to be repaid over Y years, at what value should the fixed annual payments P, made at the end of each year, be set? For a loan over 25 years at 6%, what percentage of the first year's payment goes towards paying off the capital?
 - (b) Two electrical circuits, both of negligible resistance, each consist of a coil having self-inductance L and a capacitor having capacitance C. The mutual inductance of the two circuits is M. There is no source of e.m.f. in either circuit. Initially the second capacitor is given a charge CV_0 , the first capacitor being uncharged, and at time t=0 a switch in the second circuit is closed to complete the circuit. Find the subsequent current in the first circuit.
- 33. (a) Solve $(1-x^2)\frac{d^2y}{dx^2} 3x\frac{dy}{dx} y = 1$.
 - (b) Use the variation-of-parameters method to solve $\frac{d^2y}{dx^2} + y = \cos ecx$ subject to the boundary conditions $y(0) = y(\pi/2) = 0$.
- 34. Evaluate the line integral $I = \int_A^B a \cdot dr$ where $a = (xy^2 + z)i + (x^2y + 2)j + xk$, A is the point (c, c, h) and B is the point (2c, c/2, h), along the different paths
 - (a) C_1 , given by x = cu, y = c/u, z = h,
 - (b) C_2 , given by 2y = 3c x, z = h. Show that the vector field a is in fact conservative, and find φ such that $a = \nabla \varphi$.
- 35. If n_{μ} is the dimension of the μ th irrep of a group G then show that $\sum_{\mu} n_{\mu}^2 = g$, where g is the order of the group. (2 × 15 = 30 Marks)

R - 2350