			(u.go.
Reg.	No.	***************************************		

Name :

Fourth Semester B.Sc. Degree Examination, July 2023 First Degree Programme under CBCSS Physics

Complementary Course for Mathematics

PY 1431.1 : MODERN PHYSICS AND ELECTRONICS

(2018 Admission Onwards)

Time: 3 Hours Max, Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries 1 mark.

- 1. Define Bohr radius.
- Define Bohr magnetron.
- 3. Write time independent dependent Schrodinger equation.
- 4. Define Half life of a radioactive element.
- 5. What is nuclear binding energy?
- 6. Draw the V-I Characteristic of a PN junction diodes.
- 7. Define voltage gain.
- 8. Draw the block diagram of a NAND gate.

- 9. What are hexadecimal numbers?
- 10. 1's compliment form of 011001 is

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions not exceeding a paragraph. Each question carries 2 marks.

- 11. State the bostulates of Bohr atom Model.
- 12. What are the inadequacies of Classical Physics?
- What is Pauli's exclusion principle? On the basis of this principle explain the configuration of electron in atoms.
- 14. Explain the salient features of nuclear force.
- 15. Write a note on secular and transient equilibrium.
- Draw the output characteristic of a common emitter configuration and explain all the regions.
- 17. Why the current amplification factor ais less than unity?
- 18. Draw the circuit diagram and explain voltage divider arrangement in transistor.
- 19. Convert 99.25₁₀ in to binary number system.
- 20. State DE Morgan's theorem and with examples.
- 21. What is an AND gate? Give its symbol and truth table.
- 22. Write a short note on octal numbers with examples.

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. 2gm of a radioactive substance of atomic weight 230 disintegrates at a rate of 3.7x10¹⁰ disintegration per second. Calculate the decay constant, half life and mean life.
- 24. Calculate the radius and energy of the electron in the nth orbit in hydrogen from the following data. E = 1.6×10^{-19} coulomb, m = 9.1×10^{-31} Kg, h = 6.61×10^{-34} Js, ϵ_0 = 8.851×10^{-31} F/M and c = 3×10^{8} m/s.
- 25. A particle moving in a one-dimensional box (of infinite height) of width 10 A°. Calculate the probability of finding the particle with an interval of 1 A° at the centre of the box, when it is in its state of least energy.
- 26. The radius of ¹⁶⁵Ho is 7.731 fm. Deduce the radius of ⁴He.
- 27. Given the following isotope masses: $^7\text{Li}_3 = 7.016004\text{u}$, $^6\text{Li}_3 = 6.015125\text{u}$ and $^1\text{no} = 1.008665\text{u}$. Calculate the binding energy of a neutron in the $^7\text{Li}_3$ nucleus. Express the results in u, MeV and joules.
- 28. A centre-tap full wave rectifier makes use of a 12–0–12V transformer. The forward resistance of each diode = 10Ω . Load resistance = 2000Ω .

Find

- (a) the d.c. load current and
- (b) the efficiency of the rectifier.
- 29. Draw the AC load line for the circuit given below. V_{cc} = 15V, R_1 = 30K Ω , R_2 = 10K Ω , R_c = 3 K Ω , R_E = 2K Ω and R_L = 2 K Ω . Draw the AC load line for the circuit given below. (neglect V_{BE}).

30. Convert

- (a) hexadecimal number in to decimal
 - (i) AC5₁₆
 - (ii) B42₁₆
- (b) Octal number in to decimal
 - (i) 107₈
 - (ii) 42₈
- 31. Simplify the Boolean expression: (A + B) C + ABC.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. Describe the vector model of the atom and explain the different quantum numbers associated with it.
- 33. Derive time dependent Schrodinger equation. Write the equation in three dimensional form
- 34. What is half wave rectifier? Explain the working with necessary theory. Also derive the expression for ripple factor and rectification efficiency.
- 35. With the help of a neat diagram explain the working of a single stage transistor amplifier. Obtain the expression for the current gain, voltage gain and power gain.

 $(2 \times 15 = 30 \text{ Marks})$