(Pages : 4)

S - 2704

Reg. No.:....

Name :

First Semester B.Sc. Degree Examination, January 2024

First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry and Polymer Chemistry

MM 1131.2 : Mathematics I – DIFFERENTIAL CALCULUS AND SEQUENCE AND SERIES

(2021 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions.

- 1. If $f(x) = 3x^4 2x^3 + x^2 4x + 2$, then compute $f^{(5)}(x)$.
- 2. Find $\frac{d}{dx} \left(\ln \left[x^2 + 1 \right] \right)$.
- 3. Find: $\lim_{x\to 2} \frac{x^2-4}{x-2}$.
- 4. Define an inflection point of a continuous function f.
- 5. Let $f(x, y) = y^2 e^x + y$. Evaluate f_{xyy} .
- 6. Write the steps to find the absolute extrema of a continuous function *f* of two variables on a closed and bounded set *R*.

- 7. Find $\frac{dy}{dx}$ if $x^3 + y^2x 3 = 0$.
- 8. State the Squeezing theorem for sequences.
- 9. Verify whether the series $\sum_{k=1}^{\infty} \frac{k}{2^k}$ converges.
- 10. Write the Bessel function $J_0(x)$ using sigma notation.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions.

11. Let
$$f(x) = \begin{cases} \frac{1}{x+2}, & x < -2 \\ x^2 - 5, & -2 < x \le 3. \text{ Estimate } \lim_{x \to -2} f(x). \\ \sqrt{x+13}, & x > 3 \end{cases}$$

- 12. Find $\frac{dy}{dx}$ if $y = x \sin x$.
- 13. Compute $\frac{dw}{dt}$ if $w = \tan x$ and $x = 4t^3 + t$.
- 14. Find: $\lim_{x\to 0} \frac{e^x 1}{x^3}$.
- 15. Obtain all critical points of $f(x) = x^3 3x + 1$.
- 16. Find the two x intercepts of the function $f(x) = x^2 5x + 4$ and confirm that f'(c) = 0 at some point c between those intercepts.
- 17. State the Rolle's theorem.

- 18. Evaluate $f_x(1, 3)$ and $f_y(1, 3)$ where $f(x, y) = 2x^3y^2 + 2y + 4x$.
- State the chain rules for partial derivatives.
- 20. If w = xy + yz, $y = \sin x$, $z = e^x$, then estimate $\frac{dw}{dx}$.
- 21. Find the sum of the series $\sum_{k=1}^{\infty} \left(\frac{3}{4^k} \frac{2}{5^{k-1}} \right)$.
- 22. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k} \frac{1}{2}}$ converges.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions.

- 23. Evaluate: $\lim_{x\to +\infty} \frac{\sqrt{x^2+2}}{3x-6}$.
- 24. Find y'(x) for $y = \frac{x^3 + 2x^2 1}{x + 5}$.
- 25. Estimate: (a) $\lim_{x\to 0^+} x \ln x$ (b) $\lim_{x\to \pi/4} (1-\tan x) \sec 2x$.
- 26. Find the relative extrema of $f(x) = 3x^5 5x^3$.
- 27. Identify the intervals on which $f(x) = x^3$ is increasing and the intervals on which it is decreasing.
- 28. Let $f(x, y) = x^2y + 5y^3$. Find the slope of z = f(x, y) in the
 - (a) x direction at the point (1, -2)
 - (b) y direction at the point (1, -2).

- 29. Show that $u(x, t) = \sin(x ct)$ is a solution of the one-dimensional wave equation.
- 30. Locate all relative extrema and saddle points of $f(x, y) = 3x^2 2xy + y^2 8y$.
- 31. Find the n^{th} Maclaurin polynomial for $\frac{1}{1-x}$ and express it in sigma notation.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions.

- 32. Determine whether the function $f(x) = \frac{1}{x^2 x}$ has any absolute extrema on the interval (0, 1). If so, find them and state where they occur.
- 33. (a) The length, width and height of a rectangular box are measured with an error of at most 5%. Use a total differential to estimate the maximum percentage error that results in these quantities that are used to calculate the diagonal of the box.
 - (b) Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter *p* and maximum area.
- 34. Find the absolute maximum and minimum values of f(x, y) = 3xy 6x 3y + 7 on the closed triangular region R with vertices (0, 0), (3, 0) and (0, 5).
- 35. Use the ratio test to determine whether the following series converge or diverge:

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$
 (b) $\sum_{k=1}^{\infty} \frac{(-1)^k 2^k}{k!}$ (c) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$ (d) $\sum_{k=3}^{\infty} \frac{(2k)!}{4^k}$ (e) $\sum_{k=1}^{\infty} \frac{1}{2k-1}$

 $(2 \times 15 = 30 \text{ Marks})$