S	_	2	6	9	0

(Pages : 4)

Reg.	No.	:	

First Semester B.Sc. Degree Examination, January 2024

First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1131.1 : Mathematics I — CALCULUS AND SEQUENCE AND SERIES (2021 Admission onwards)

Time: 3 Hours

Max. Marks: 80

- I. All the first ten questions are compulsory. They carry 1 mark each.
- 1. Find $\lim_{x\to 2} (x^2 x + 1)$.
- 2. Find x such that $ln(x+1) = \sqrt{2}$.
- State the quotient rule of differentiation.
- 4. Evaluate $\int \cos^2 x \, dx$.
- 5. Find $f_x(1, 3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
- 6. Compute the differential of function $z = xy^2$.
- 7. State the extreme value theorem for the function of two variables.

P.T.O.

- 8. Find the limit of the sequence $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$,....
- 9. Show that $\lim_{n \to +\infty} \sqrt[n]{n} = 1$.
- 10. Does the series $\sum_{k=1}^{\infty} \frac{1}{k}$ converge or diverge?

 $(10 \times 1 = 10 \text{ Marks})$

- II. Answer any eight questions. These questions carry 2 marks each.
- 11. Show that |x| is continuous everywhere.
- 12. Find $\lim_{x \to -\infty} \frac{4x^2 x}{2x^3 5}$.
- 13. Find the equation of the tangent line to $y = x^2$ at x = 2.
- 14. Find $\int_{1}^{e} \frac{1}{x} dx$.
- 15. Find $\frac{d}{dx} \left[\int_{1}^{x} t^{3} dt \right]$.
- 16. Find the area of the region under the curve $y = 3 \sin x$ over the interval $\left[0, \frac{2\pi}{3}\right]$.
- 17. Find the slope of the surface $z = f(x, y) = x^2y + 5y^3$ in the x-direction at the point (1, -2).
- 18. Let $f(x, y) = y^2 e^x + y$. Find f_{xyy} .
- 19. Let $(x, y) = x^2 e^y$. Find the maximum value of a directional derivative at (-2, 0).

S - 2690

- 20. Find the limit of the sequence $1, -\frac{1}{2}, \frac{1}{2^2}, -\frac{1}{2^3}, \dots, (-1)^n \frac{1}{2^n}, \dots$
- Find the rational number represented by the repeating decimal 0.784784784...
- 22. Use the root test to determine whether the series converge or diverge $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1} \right)^k.$

 $(8 \times 2 = 16 \text{ Marks})$

- III. Answer any six questions. These questions carry 4 marks each.
- 23. Find $\lim_{x \to +\infty} (\sqrt{x^6 + 5x^3 x^3})$.
- 24. Find $\frac{d}{dx}[\sin\sqrt{1+\cos x}]$.
- 25. Evaluate $\int \frac{e^x}{\sqrt{1-e^x}} dx$
- 26. Evaluate $\int_{0}^{1} \tan^{-1} x \, dx$.
- 27. Find the second-order partial derivatives of $f(x,y) = x^2y^3 + x^4y$.
- 28. Prove that $f(x, y) = x^2 + y^2$ is differentiable at (0, 0).
- 29. Given that $z = e^{xy}$, x = 2u + v, $y = \frac{u}{v}$, find $\frac{dz}{du}$ and $\frac{\partial z}{\partial v}$ using the chain rule.
- 30. Test for convergence of series $\sum_{k=1}^{\infty} \frac{3k^3 2k^2 + 4}{k^7 k^3 + 2}$.
- 31. Find the n^{th} Maclaurin polynomials for $\cos x$.

 $(6 \times 4 = 24 \text{ Marks})$

IV. Answer any two questions. These questions carry 15 marks each.

32. Let
$$f(x) = \begin{cases} \frac{1}{x+2}, & x < -2\\ x^2 - 5, & -2 < x \le 3\\ \sqrt{x+13}, & x > 3 \end{cases}$$

Find

(a) $\lim_{x\to -2} f(x)$

(b) $\lim_{x\to 0} f(x)$

- (c) $\lim_{x\to 3} f(x)$.
- 33. (a) Use implicit differentiation to find $\frac{dy}{dx}$ for the Folium of Descartes $x^3 + y^3 = 3xy$.
 - (b) Find an equation for the tangent line to the Folium of Descartes at the point $\left(\frac{3}{2},\frac{3}{2}\right)$.
 - (c) At what point in the first quadrant is the tangent line to the Folium of Descartes horizontal?
- 34. Locate all relative extrema and saddle points of $f(x,y) = 4xy x^4 y^4$.
- 35. Find the interval of convergence and radius of convergence of the following power series.

(a)
$$\sum_{k=0}^{\infty} x^k$$

(b)
$$\sum_{k=0}^{\infty} k! \ x^k$$

(c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^k}{3^k (k+1)}$$
.

 $(2 \times 15 = 30 \text{ Marks})$