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PART – A 

Answer any five questions and each question carries 3 marks. 

1. Prove sinvuvu


 . 

2. Find the fourier sine transform of xe . 

3. State and prove Cauchy’s principle value theorem. 

4. Distinguish between the Continuous and discrete variables. 

5. Find the Laplace transform of F(t) = cosh(kt). 

6. Define Green’s function for a differential operator and explain the reciprocity 
relation. 

7. Prove that, the metric tensor is a fundamental tensor of rank two. 

8. Discuss the properties of Special Unitary Group, SU(n).  

(5  3 = 15 Marks) 
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PART – B 

Answer all the questions and each question carries 15 marks. 

9. (a) Using divergence theorem calculate the flux emerging from a vector field 
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 through surface enclosed by a hemisphere meant by 

the equations 2222 azyx   and 0z . 6 

(b) What is residue and derive the general expression for finding the residue of 
function and evaluate the given integration Evaluate the integral using 

Cauchy’s residue theorem 
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OR 

10. (a) Find the Fourier transform of 
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(b) Derive an expression for the probability of POISSON DISTRIBUTION?  8 

11. (a) Find the solution of Bessel’s differential equation order n is 
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(b) Deduce the Rodrigue’s Formula for Hermite’s Function.  6  

OR 

12. (a) Solve, by Green’s function method, the initial value problem 
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(b) Solve the Poission’s equation by Green Function method. 8  
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13. (a) Deduce the Differential form of a mixed tensor. 9  

(b) Derive an expression for Riemann curvature tensor. 6  

OR 

14. (a) Define a group and explain the properties of a group with a set of matrices. 6 

(b) Define the elements of symmetry transformation of a square and find out the 
representation of matrix elements to the corresponding group.  9 

 (3  15 = 45 Marks) 

PART – C 

Answer any three questions and each question carries 5 marks. 

15. Prove 11 )2()(   nn rnrr


. 

16. State and Prove Chebychev inequality. 

17. State and Prove Laplace convolution theorem. 

18. Deduce the Recurrence relations in Legendre Function, 
)()()( 1 xPxPxxPl lll  . 

19. Deduce the Ricci Scalar tensor from the Riemann Christoffel tensor. 

20. Prove that any finite-dimensional representation of a group of finite order is 
equivalent to a unitary representation.  

(3  5 = 15 Marks) 
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