(Pages:4)

Reg. No. :

Name :

First Semester M.Sc. Degree Examination, May 2023

Physics

PH 212 : MATHEMATICAL PHYSICS

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 75

R – 6206

SECTION - A

Answer any **five** questions. **Each** question carries **3** marks.

- 1. Find the inverse Laplace transform of $\frac{1}{9s^2 + 6s + 1}$
- 2. What are cyclic groups?
- 3. Express the square matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3 \end{bmatrix}$ as sum of a symmetric and a skew symmetric matrix.
- 4. Prove that the contraction of the tensor A_q^p is a scalar or invariant.
- 5. Prove the recurrence relation $nP_n = xP'_n P'_{n-1}$.
- 6. Determine the analytic function whose real part is $x^3 3xy^2 + 3x^2 3y^2 + 1$.

P.T.O.

- 7. The radius *r* of a cylinder is given as (2.1 ± 0.1) cm and the length *l* as (6.4 ± 0.2) cm. Find the volume of the cylinder and its standard error.
- 8. Show that the function z|z| is not analytic anywhere.

$$(5 \times 3 = 15 \text{ Marks})$$

SECTION – B

Answer all questions. Each question carries 15 marks.

9. (a) Find the Fourier half – range even expansion of the function

$$f(x) = \left(-\frac{x}{l}\right) + 1, \ 0 \le x \le l$$

(b) If the Fourier transform of a function f(x) is F(s), then prove that

$$F[x^n f(x)] = (-1)^n \frac{d^n}{ds^n} F(s).$$

OR

10. (a) Find the eigen values and normalised eigen vectors of the vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.

(b) Find the characteristics equation of the following matrix and verify the

Cayley – Hamilton theorem. Given
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$
.

11. (a) Derive the Rodrigue's formula for Hermite polynomial and hence obtain $H_0(x), H_1(x)$ and $H_2(x)$.

(b) Show that
$$H_n(-x) = (-1)^n H_n(x)$$
 and $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$.

OR

- 12. (a) Find solution in generalised series from about x = 0 of the differential equation $3x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = 0$ using Frobenius method.
 - (b) Find the Laplace transform of $\{t^3\delta(t-4)\}$.
- 13. (a) Prove that $\in_{ilm} = 2\delta_{ij}$ and $\in_{ijk} \in_{ijk} = 6$.
 - (b) What is Riemann Christoffel tensor? Discuss its properties.

OR

- 14. (a) Show that SU(2) group describes rotation and obtain a representation for SU(2) in terms of Pauli matrices.
 - (b) Show that the permutation elements formed by three objects (1 2 3) form a group.

$(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three of the following questions. Each question carries 5 marks.

- 15. Find the Green's function for the boundary value problem $\frac{d^2y}{dx^2} k^2y = f(x)$ with boundary conditions, $y(\pm \infty) = 0$.
- 16. Find the directional derivative of the scalar point function $\phi = x^2 + xy + x^2$ at the point A(1,-1,-1) in the direction of the line AB where B has coordinates (3,2,1).

- 17. Find out the conjugate elements and class structure of symmetry group of a square.
- 18. Using the Laplace transform find the solution of the initial value problem $y'' + 25y = 10 \cos 5t$. Given y(0) = 2 and y'(0) = 0.
- 19. Evaluate $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^3}$
- 20. Show that $\vec{F} = (y^2 + 2xz^2)i + (2xy z)j + (2x^2z y + 2z)k$ is irrotational and hence find its scalar potential.

(3 × 5 = 15 Marks)