(Pages : 3)

Reg. No. :

Name :

Third Semester M.Sc. Degree Examination, January 2023

Physics

PH 232 : ATOMIC AND MOLECULAR SPECTROSCOPY

(2020 Admission Onwards)

Time : 3 Hours

Max. Marks : 75

PART - A

Answer any **five** questions, each question carries **3** marks.

- 1. Write the matrix representation of the following symmetry elements, $\sigma(xy)$, *i* and $C_n(z)$.
- 2. Arrive at an expression for the Lande *g*-factor
- 3. Explain Franck-Condon principle.
- 4. What are Auger electrons? What information one can derive from the Auger spectrum?
- 5. Distinguish between overtones and hot bands in vibration spectra.
- 6. Briefly discuss the two types of relaxations in NMR.
- 7. Distinguish between progression and sequence.
- 8. Discuss the factors influencing the intensities of spectral lines.

(5 × 3 = 15 Marks)

P.T.O.

P - 6067

PART – B

Answer three questions, each question carries **15** marks.

- 9. (a) Distinguish between normal and anomalous Zeeman effects.
 - (b) Sketch the anomalous Zeeman pattern for the sodium D_1 and D_2 lines.

OR

- 10. (a) Explain Photoelectron spectroscopy. Discuss the information derived from this technique.
 - (b) What is X-ray fluorescence? Explain how XRF is useful for the characterization of materials?
- 11. (a) What is finger print region and explain its relevance in the structure determination of molecules.
 - (b) With necessary theory discuss the vibration spectrum of a symmetric top molecule.

OR

- 12. (a) Discuss the formation of PQR branches in the electronic spectrum of diatomic molecules.
 - (b) What is Fortrat diagram? Explain the terms band-head and band-origin.
- 13. (a) Discuss the principle of Mossbauer spectroscopy.
 - (b) Explain quadrupole and magnetic hyperfine interactions in Mossbauer spectroscopy.

OR

- 14. (a) Discuss the classical theory of Raman effect.
 - (b) Explain how Raman and IR spectroscopy is used for the structure determination of H_2O and CO_2 molecules.

 $(3 \times 15 = 45 \text{ Marks})$

P-6067

$\mathsf{PART} - \mathsf{C}$

Answer any three questions. Each question carries 5 marks.

- 15. Arrive at the character table for C_{3v} point group.
- 16. Find the spectral terms arising out of the LS coupling between a *p*-electron and a *d*-electron.
- 17. The rotational spectrum of ⁷⁹Br¹⁹F shows a series of equidistant lines 0.71433 cm⁻¹ apart. Calculate the rotational constant B and hence the moment of inertia and bond length of the molecule.
- 18. The fundamental band of HCl is found at 2886 cm⁻¹. Calculate the wave numbers of the first line of P and R branches. The bond length of HCl molecule is 1.276 Å. μ HCl = 1.6275 × 10⁻²⁷Kg.
- 19. An ESR spectrometer operates at 24 GHz. Find the magnetic field used. Sketch out the hyperfine structure of hydrogen atom Zeeman lines and the transitions involved.
- 20. Find the maximum populated rotational quantum number at 300K for a molecule with rotational constant 10.59 cm⁻¹.

 $1 \text{ a m u} = 1.66 \times 10^{-27} \text{ Kg.}$

 $h = 6.626 \times 10^{-34} JS$

 $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$

 $(3 \times 5 = 15 \text{ Marks})$

