M3/33 DW.

(Pages : 2)

Reg. No.:....

Name :

Third Semester M.Sc. Degree Examination, February 2024 Physics

PH: 231 ADVANCED QUANTUM MECHANICS (2020 Admission Onwards)

Time: 3 Hours Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

- 1. Discuss Rayleigh- Ritz method.
- 2. Explain the emission of alpha particle by nucleus.
- 3. Discuss the first order correction to the wave function.
- 4. Prove that the conservation of linear momentum is a consequence of the translational invariance of the Hamiltonian of the system.
- 5. Write a short note on scattering cross section.
- 6. Discuss Pauli exclusion principle.
- 7. What do you mean by negative energy states?
- 8. Discuss commutation relations of angular momentum operators.

 $(5 \times 3 = 15 \text{ Marks})$

P.T.O.

SECTION - B

Answer all questions. Each question carries 15 marks.

9. Explain variational principle and discuss ground state energy of helium.

OR

- Discuss the effect of electric field on the ground state and first excited sate of hydrogen.
- 11. Derive Breit Wigner Formula.

OR

- Derive Hartree equation.
- What is Klein Gordon equation and Discuss the interpretation of Klein Gordon equation.

OR

14. Obtain eigen values of J^2 and J_z .

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three of the following questions. Each question carries 5 marks.

15. Calculate the ground state energy up to first order of the anharmonic oscillator having a potential energy $V = H_0 = bx + \frac{m\omega^2 x^2}{2}$

where $b = \text{independent of } x \text{ and } bx << \frac{m\omega^2 x^2}{2}$

- 16. The potential of a particle confined to a positive x axis is mgx. The wave function tends to zero as x tends to zero and infinity. Use the trial wave function $x e^{-ax}$ and obtain the best value of parameter a.
- 17. Derive scattering amplitude in terms of differential scattering cross section.
- Explain how the momentum operator becomes the generator of infinitesimal translation in space.
- 19. Evaluate the Clebsh Gordan coefficients for $j_1 = 1/2$ and $j_2 = 1/2$.
- 20. Starting from the Klein Gordon equation, obtain the equation of continuity.

 $(3 \times 5 = 15 \text{ Marks})$