20/03/201

Reg.	No.	:	
Nam	۵.		

Third Semester M.Sc. Degree Examination, February 2024

Physics

Special Paper 1

PH 233 M: MATERIALS SCIENCE I

(2020 Admission onwards)

Time: 3 Hours

Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

- 1. What are single crystals? Give an example of single crystal.
- Distinguish between Frenkel and Schottky defects.
- Give the cause for formation of grain boundaries.
- Write a note on the steps involved in the Czochralski process.
- Briefly comment on the symmetry elements in crystals.
- 6. Give an account on spray pyrolysis technique.
- 7. What are point defects?
- 8. Discuss the significance of nucleation process.

 $(5 \times 3 = 15 \text{ Marks})$

P.T.O.

SECTION - B

Answer all questions. Each question carries 15 marks.

- (a) Explain the process of diffusion in solids.
 - (b) Briefly explain the temperature dependence of diffusion coefficient.

OR

- 10. (a) Discuss the functional classification of materials with suitable examples.
 - (b) Explain strong excitonic confinement.
- 11. (a) Explain the classical theory of nucleation.
 - (b) Discuss homogeneous formation of 3D nuclei.

OR

- 12. (a) Discuss the kinetics of growth of thin films.
 - (b) Brief the mechanism and control for nanostructures in 0 and 1 dimensions.
- 13. (a) With a neat diagram, explain molecular beam epitaxy.
 - (b) What are the applications of molecular beam epitaxy?

OR

- 14. (a) Explain plasma enhanced chemical vapor deposition (CVD) process.
 - (b) With a neat diagram, explain plasma enhanced chemical vapor deposition (PECVD) reactors.

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three of the following questions. Each question carries 5 marks.

- 15. Using the temperature Vs solute concentration graph, explain supersaturation.
- 16. Solve Fick's second law $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$ using suitable conditions.
- 17. Show schematic diagram of different stages of film growth.

S – 6827

- 18. If Boron is diffused into a slice of pure silicon at 1100° C for 2h, what is the depth below the surface at which concentration is 10^{7} atoms/cm³, if surface concentration is 10^{18} atoms/cm³. Diffusion coefficient of boron into silicon is 4×10^{-3} cm²/s and erf(1.2) = 0.9.
- 19. A steel rod has uniform concentration of 0.25 wt% carbon. One end of the rod is kept in contact with an atmosphere of carbon concentration of 1.20 wt%. The rod is heated to 950°C. What will be the concentration of carbon at a depth of 0.50 mm after a time interval of 7h? Diffusion coefficient of carbon in steel at 950°C is 1.6 × 10⁻¹¹ m²/s.
- 20. Using suitable diagram, explain Bridgmann method of crystal growth. Mention its advantages and disadvantages.

 $(3 \times 5 = 15 \text{ Marks})$