-		1	C	$\mathbf{\Omega}$	
	_	1	О	0	J

Reg. No. :	
------------	--

Name :

First Degree Programme under CBCSS

Mathematics

Core Course IX

MM 1641: REAL ANALYSIS - II

(2018 Admission Onwards)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- State composition of continuous functions theorem.
- State extreme value theorem for continuous functions.
- 3. Define uniform continuity and give an example.
- State intermediate value theorem.
- 5. Find the 10^{th} derivative of $f(x) = x^5 + 4x^2 + 1$.
- 6. Give an example of a monotone function.
- 7. When we say that a function is Riemann integrable.
- 8. Give an example of a set of measure 0.

P.T.O.

9. If
$$\int_a^b f = 10$$
, then $\int_b^a f = \cdots$.

10. State Lebesgue's Theorem.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. State sequential criterion for functional limits.
- 12. Evaluate $\lim_{x \to \pi} (x + \sin x)$.
- 13. Construct two functions f and g, neither of which is continuous at 0 but f(x)+g(x) is continuous at 0.
- 14. Whether there exists a continuous function defined on a closed interval with range equal to {1,2,3}.
- 15. Define Lipschitz Function and give an example of a function which is uniformly continuous but not Lipschitz.
- Define removable discontinuity with an example.
- 17. State Darboux's Theorem.
- 18. State Mean Value Theorem.
- 19. Find $\lim_{x \to 1} \left(\frac{1-x}{\ln x} \right)$.
- 20. If P_1 and P_2 are any two partitions of [a, b], then prove that $L(f, P_1) \le U(f, P_2)$.

21. Distinguish between upper integral and lower integral.

22. If
$$\int_{1}^{4} f = 4$$
 and $\int_{2}^{4} f = 1$, then find $\int_{1}^{2} f$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. Using $\varepsilon \delta$ definition prove that $\lim_{x \to 2} (3x + 4) = 10$.
- 24. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0,\infty)$.
- 25. Is the converse of intermediate value theorem true? Justify your claim.
- 26. Let f be differentiable on an open interval (a, b). If f attains a maximum value at some point $c \in (a,b)$ then prove that f'(c) = 0.
- 27. State and prove Rolle's theorem.
- 28. If $f: A \to R$ is differentiable at a point $c \in A$, then prove that f is continuous at c. Is the converse true? Justify your answer.
- 29. If $g: A \to R$ is differentiable on an interval A and satisfies g'(x) = 0 for all $x \in A$, then prove that g(x) = k for some constant $k \in R$.
- 30. Assume that $f_n \to f$ uniformly on [a, b] and that each f_n is integrable. Prove that f is integrable and $\lim_{n\to\infty}\int\limits_a^b f_n=\int\limits_a^b f$.
- 31. Prove that the Dirichlet's function $g(x) = \begin{cases} 1 \text{ for } x \text{ rational} \\ 0 \text{ for } x \text{ irrational} \end{cases}$ is not integrable.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. Let $f: A \to R$ be continuous on A. If $K \subseteq A$ is compact, then prove that f(K) is also compact.
- 33. State and prove chain rule for derivatives.
- 34. (a) Prove that a bounded function f is integrable on [a, b] if and only if, for every $\varepsilon > 0$, there exists a partition P_{ε} of [a, b] such that $U(f, P_{\varepsilon}) L(f, P_{\varepsilon}) < \varepsilon$.
 - (b) Prove that if f is continuous on [a, b], then it is integrable.
- 35. State and prove the fundamental theorem of integral calculus. ($2 \times 15 = 30 \text{ Marks}$)

T - 1605