(Pages : 4)

S - 3417

Reg. No. :

Name :

Third Semester B.Sc. Degree Examination, February 2024

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1341 : ELEMENTARY NUMBER THEORY AND CALCULUS I (2018 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the questions are compulsory. Each question carries 1 mark

- 1. State the Pigeonhole Principle.
- 2. State the Fundamental Theorem for Arithmetic.
- 3. Define continuity of a vector valued function.
- 4. If $r_0 = r(t_0)$, $v_0 = r'(t_0)$, give the vector equation of the tangent line to the graph of r(t) at r_0 .
- 5. Define Unit Tangent Vector.
- 6. Give the formula for a_T , the tangential component of acceleration for a moving particle in terms of the velocity v and the acceleration a.

P.T.O.

- 7. Find the natural domain of $f(x,y) = \sqrt{y+1} + \ln(x^2 y)$.
- 8. Define boundary point of a set.
- 9. Define directional derivative of f(x,y,z) in the direction u.
- 10. Give the equation of the tangent plane to a level surface S at a point (x_0, y_0, z_0) .

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks

- 11. Prove that there are infinitely many primes.
- 12. Express 3014 in base 8.
- 13. Prove that if p is a prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.
- 14. Give the general solution of an LDE ax + by = c, if (x_0, y_0) is its particular solution.
- 15. Find the parametric equations that represent a line in 3-space that passes through the point (1,0,0) and is parallel to the vector (–1,3,2).
- 16. Find the derivative of $r(t) = t^2 i + e^t j (2\cos \pi t)k$.
- 17. If $r_1(t)$ and $r_2(t)$ are two vector functions of t, derive the expression for $\frac{d}{dt}(r_1 \cdot r_2)$.
- 18. A particle moves along a circular path in such a way that its x and y coordinates at time t are $x = 2\cos t$, $y = 2\sin t$. Find the instantaneous velocity and speed of the particle at time t.
- 19. Define Level Surfaces of f(x,y,z) and find the level surfaces of $f(x,y,z) = x^2 + y^2 + z^2$.

2

- 20. For $f(x,y) = x^2y + 5y^3$, find the slope of the surface z = f(x, y) in the x-direction in the y-direction at the point (1, -2).
- 21. Let $f(x,y) = x^2 e^y$. Find the maximum value of a directional derivative at (-2,0).
- 22. State the Second Partial test for finding the relative extrema of a function.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. Let a and b are any positive integers. Prove that the number of positive integers $\leq a$ and divisible by b is $[a \setminus b]$.
- 24. Prove that every integer $n \ge 2$ has a prime factor.
- 25. Prove that two integers a and b are relatively prime if and only if there are integers α and β such the $\alpha a + \beta b = 1$.
- 26. Prove that, if r(t) is a vector-valued function and r(t) is differentiable at t, then r't = x'(t)i + y'(t)j. Also for vector-valued functions $r_1(t)$ and $r_2(t)$, Prove that $\frac{d}{dt}[r_1(t) + r_2(t)] = \frac{d}{dt}[r_1(t)] + \frac{d}{dt}[r_2(t)].$
- 27. If r(t) is a differentiable vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all t, then $r(t) \cdot r'(t) = 0$.
- 28. Give the formula for arc Length L from t=a to t=b, for the graph of a smooth vector-valued function r(t). Also Find the arc length of that portion of the circular helix, $x = \cos t$, $y = \sin t$, z = t from t = 0 to $t = \pi$.
- 29. Assuming that polynomials in one variable and sine function are continuous, show that $f(x, y) = \sin(3x^2y^5)$ is continuous everywhere State the results used for the proof.
- 30. Prove that if a function f(x,y) is differentiable at a point, then it is continuous at that point.
- 31. Suppose that $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos \theta$, $y \sin \theta$, $z = \tan \theta$. Use the chain rule to find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 32. (a) State and prove the Division Algorithm for integers.
 - (b) Using Euclidean Algorithm express (4076, 1024) as a linear combination of 4076 and 1024.
- 33. (a) Find T(t) and N(t) for the circular helix $x = a \cos t \ t$, $y = a \sin t$, z = ct where a > 0
 - (b) Find the curvature for the ellipse $r = 2\cos t \, i + 3\sin t \, j \, (0 \le t \le 2\pi)$.
- 34. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = x^4 \sin(xy^3)$. Given $f(x,y) = -\frac{xy}{x^2 + y^2}$, Find the limit of f(x,y) as $(x,y) \to (0,0)$ limit along.
 - (a) the x-axis

(b) the y-axis

(c) the line y = x

- (d) the line y = -x
- (e) the parabola $y = x^2$
- 35. Explain Lagrange's Multiplier method for finding extreme values and find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point (1,2,2). (2 x 15 = 30 Marks)