(D	20	100	•	<i>1</i>)
(1	aç	jes		4)

T - 2517

Reg. No.	:	
Name .		•

Fourth Semester B.Sc. Degree Examination, July 2024

First Degree Programme under CBCSS

Mathematics

MM 1441 : ELEMENTARY NUMBER THEORY AND CALCULUS – II (2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Find the remainder when 16⁵³ is divided by 7.
- 2. Determine whether the linear congruence $16x \equiv 18 \pmod{12}$ is solvable.
- 3. Find an inverse of 5 modulo 7.
- 4. Determine whether N = 54, 893, 534, 046 is a square.
- 5. State chinese Remainder theorem.
- 6. Evaluate $\int_{0}^{1} \int_{x^2}^{x} dA$.
- 7. Find the limits of integration $\iint_R (3x-2y) dA$ where R is the region bounded by the circle $x^2 + y^2 = 1$.

P.T.O.

- 8. Write the converting formula for 3-dimensional Cartesian to spherical coordinates.
- 9. Show that $\phi(x,y,z) = x^2 3y^2 + 4z^2$ is a potential function for the vector field $\vec{F}(x,y,z) = 2x\hat{i} 6y\hat{j} + 8z\hat{k}$.
- 10. State the fundamental theorem of line integrals.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then show that $(a c) \equiv (b d) \pmod{m}$.
- 12. Solve the congruence $49x \equiv 84 \pmod{35}$.
- 13. Using casting out nines, check if the sum of the numbers 3569, 24387 and 49508 is 78464.
- 14. Show that a positive integer a is self invertible modulo p if and only if $a \equiv \pm 1 \pmod{p}$.
- 15. Evaluate $\iint_{10}^{24} 2xy \, dy \, dx$.
- 16. Use a double integral to find the volume of the solid that is bounded above by the plane z = 4 x y and below by the rectangle $R = [0, 1] \times [0, 2]$.
- 17. Evaluate $\iint_R e^{-(x^2+y^2)} dA$ where R is the region enclosed by the circle $x^2+y^2=1$.
- 18. Find the surface area of that portion of paraboloid $z = x^2 + y^2$ below the plane z = 1.

- 19. Evaluate the triple integral $\iiint_G 12 x y^2 z^3 dV$ over the rectangular box G defined by the inequalities $-1 \le x \le 2, 0 \le y \le 3, 0 \le z \le 2$.
- 20. Find the curl of the vector field $\vec{F}(x,y,z) = x^2 y \hat{i} + 2y^3 z \hat{j} + 3z \hat{k}$.
- 21. Evaluate $\int_C (xy + z^3) ds$ from (1, 0, 0) to $(-1, 0, \pi)$ along the helix C given by $x = \cos t$, $y = \sin t$, z = t $(0 \le t \le \pi)$.
- 22. Show that the vector field $\vec{F}(x,y) = 2xy^3\hat{i} + (1+3x^2y^2)\hat{j}$ is a conservative field on the entire plane.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. Prove that $a \equiv b \pmod{m}$ if and only if a and b leave the same remainder when divided by m.
- 24. Prove that no integer of the form 8n + 7 can be expressed as a sum of three squares.
- 25. Using the Pollard rho method, factor the integer 8051.
- 26. If p is a prime, then prove that $(p-1)! \equiv -1 \pmod{p}$.
- 27. Calculate $\iint_R \frac{\sin x}{x} dA$ where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line x = 1.
- 28. Change the order of integration and hence evaluate $\int_{0}^{22x} (4x + 2) dy dx$.
- 29. Evaluate $\iint_R \frac{x-y}{x+y} dA$ where R is the region enclosed by the lines x-y=0, x-y=1, and x+y=3.

T - 2517

- 30. Find the work done by the force field $\vec{F}(x,y,z) = xy\hat{i} + yz\hat{j} + xz\hat{k}$ on a particle that moves along the curve $C: \vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$ $(0 \le t \le 1)$.
- 31. Using Green's theorem, evaluate the integral $\oint_C (x^2 y^2) dx + x dy$, where C is the circle $x^2 + y^2 = 9$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Using Chinese Remainder theorem solve the linear system of congruence $x \equiv 3 \pmod{7}$; $x \equiv 3 \pmod{5}$ and $x \equiv 4 \pmod{12}$.
 - (b) Find the primes p for which $\frac{2^{p-1}-1}{p}$ is a square.
- 33. (a) Use a triple integral of find the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.
 - (b) Use spherical coordinates to find the volume of the solid that is within the sphere $x^2 + y^2 + z^2 = 9$, outside the cone $z = \sqrt{x^2 + y^2}$, and above the xy plane.
- 34. Verify the divergence theorem for $\vec{F}(x,y,z) = 2x\hat{i} yz\hat{j} + z^2\hat{k}$ where the surface σ is the paraboloid $z = x^2 + y^2$ capped by the disk $x^2 + y^2 \le 1$ in the plane z = 1.
- 35. Verify Stoke's theorem for the vector field $\vec{F}(x,y,z) = (z-y)\hat{i} + (z+x)\hat{j} (x+y)\hat{k}$, taking σ to be the portion of the paraboloid $z = 9 x^2 y^2$ above the xy plane with upward orientation.

 $(2 \times 15 = 30 \text{ Marks})$