U – 6599

Max. Marks : 75

(Pages : 3)

First Semester M.Sc. Degree Examination, February 2025

Physics/Physics with Specialization in Nano Science/Physics with Specialization in Space Physics

PH 212/PHNS 512/PHSP 512 : MATHEMATICAL/PHYSICS

(2020 Admission Onwards)

Time : 3 Hours

PART - A

Answer any five questions. Each question carries 3 marks.

1. Verify whether eigen values of the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ are in the disc $|\lambda - 1| \le 2$.

2. When will the matrices $\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ and $\begin{pmatrix} a & 0\\ 0 & b \end{pmatrix}$ commutes under multiplication. Verify.

- 3. What is the projection of a vector $\vec{a} = 2\hat{x} 3\hat{y} + 6\hat{z}$ on vector $\vec{b} = \hat{x} 3\hat{y} + 5\hat{z}$?
- 4. If $f(z) = (x^2 + ay^2) + ibxy$ is a complex analytic function of z = x + iy, what are the values of a and b.

5. What is the Laplace transform $f(t) = t^2$?

P.T.O.

Solve the differential equation $\frac{dy}{dx} = \frac{y}{x}$.

Why a set of matrices under multiplication do not make Abelian group, Define contravariant and covariant tensors with examples.

U - 6599

PART – B

Answer three questions each question carries 15 marks.

Given the eigen values $\lambda_1 = 1$, $\lambda_2 = -1$ and corresponding eigen values $f_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $g_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $f_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $g_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Construct A and verify $Af_n = \lambda_n g_n$ and $Ag_n = \lambda_n f_n$.

(b) In the spherical polar coordinate system, $q_1 = r$, $q_2 = \theta$, $q_3 = \varphi$. The transformation equations are $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$. Calculate the spherical polar coordinate scale factors: $(h_r, h_{\theta}, h_{\varphi})$.

OR

- 10. (a) Obtain the Fourier series of a triangular wave.
 - (b) Explain different distributions in probability.
- 11. (a) Find the Laplace transform of
 - (i) Dirac delta function.
 - (ii) $sin(\omega_0 t)$
 - (iii) $\cos(\omega_0 t)$
 - (b) Consider the differential equation $x \frac{d^2y}{dx^2} + (1-2n)\frac{dy}{dx} + xy = 0$. Check whether $x^n J_n(x)$ is a solution of the differential equation.

OR

Show that $(1-2xt-t^2)^{-1/2}$ is a generating function of $P_n(x)$. (a)Prove that following recurrence relation. (b) $nP_n(x) = (2n-1)xP_n(x) - (n-1)P_{n-1}(x)$ (i) $nP_n(x) = xP_n(x) - P_{n-1}(x)$ (1) (ii) 13. (a) In a 3D system, find values of $\delta_{\hat{n}}$ (1) (ii) $\delta_{ij} \varepsilon_{ijk}$ (b) What is C_{3v} , group? Obtain the group multiplication table for the same. OR (a) What do you mean by character table? Write down character table for C_{4v} group. Define covariant tensor, if $dS^2 = g_{ij}dx^i dx^j$ is invariant, show that g_{ij} is a (b) symmetric covariant tensor of rank 2.

(3 × 15 = 45 Marks)

PART - C

Answer any three questions. Each question carries 5 marks.

With any vector $\vec{A}_{j}\vec{A}.\nabla \vec{r} = A$ verify the result in Cartesian and polar coordinates.

- 15. State and prove Cauchy's integral formula. 16.
- Fit a straight line using principle of least square. 17.

20.

- 18.) Find the value of $J_{n-1}(x) + J_1(x)$.
- Define a group, Construct a group of order 4 and justify that the group satisfy all 19. properties of a group.

Obtain the metric tensor for two dimensional plane in polar coordinates.

 $(3 \times 5 = 15 \text{ Marks})$