(Pages: 4)

Reg.	No.	:	
		_	

Name :

Fourth Semester B.Sc. Degree Examination, July 2024

First Degree Programme under CBCSS

Mathematics

Complimentary Course for Chemistry / Polymer Chemistry

MM 1431.2 : MATHEMATICS IV – DIFFERENTIAL EQUATIONS, VECTOR CALCULUS AND ABSTRACT ALGEBRA

(2018-2020 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Solve $\frac{dy}{dx} = 2xe^{x^2}$.
- 2. Find the Wronskian of $y_1 = \sin x$ and $y_2 = \cos x$.
- 3. Write the Laplace transform of $\sin \omega t$.
- 4. Find the integrating factor of $y' + \frac{y}{x} = x^2$.
- 5. If f(x,y) = xy, then find $\nabla f(x,y)$ at (2, 4).
- 6. Define conservative vector field.
- 7. State Gauss Divergence Theorem.
- 8. Define the identity element of a Group (G,*).
- 9. Write the property of a group (G,*) to be an abelian group.
- 10. Write an example for non-abelian Group.

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION - II

Answer any eight questions. These question carries 2 each.

- 11. Solve $\frac{dy}{dx} + \frac{x}{y} = 0, y(0) = 2$.
- 12. Find the general solution of y'' 8y' + 15y = 0.
- 13. Solve $x^2y'' 5xy' + 9y = 0$.
- 14. Find the Particular integral of $y'' + y = x^2 + 1$.
- 15. Evaluate the line integral $I = \int_{c} F.dr$, where F = (x + y)i + (y x)j, along the parabola $y^2 = x$ from (1, 1) to (4, 2).
- 16. Use Green's theorem to find the area of the circle $x^2 + y^2 = a^2$.
- 17. Find the vector area of the surface of the hemisphere $x^2 + y^2 + z^2 = a^2$ with $z \ge 0$.
- 18. Show that $\varphi(x,y) = \tan^{-1} xy$ is the scalar potential function of $F = \frac{1}{1+x^2y^2}(y\,i+x\,j).$
- 19. Prove that two cosets are either disjoint or identical.
- 20. Define the centre of a Group G.
- 21. Define a homomorphism from a group G to G'.
- 22. Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}$. Find $\beta \alpha$ and $\alpha \beta$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These question carries 4 marks each.

- 23. Verify the equation $x \log x \frac{dy}{dx} + y = 2 \log x$ is linear and hence solve.
- 24. Solve $y'' 5y' + 6y = \sin x + 10\cos x$.
- 25. Show that the vector field $F = 3x^2yz^2i + (x^3z^2 + e^z)j + (2x^3yz + ye^z)k$ is conservative and find its potential function.
- 26. Evaluate the surface integral $I = \int_S a.ds$ where a = xi and S is the surface of the hemisphere $x^2 + y^2 + z^2 = a^2$ with ≥ 0 .
- 27. Find the volume enclosed between a sphere of radius a centred at origin and a circular cone of a half angle α with its vertex at origin.
- 28. Define a group with an example.
- 29. Define
 - (a) Odd permutation
 - (b) Even permutation
 - (c) Alternating group A_n .
- 30. Define quaternion group Q. Determine the conjugacy classes of Q.
- 31. Consider the group $G = (\mathbb{Z}_4, +)$ and $G' = (\mathbb{Z}_4, +)$. Let $\phi: G \to G'$ defined by $\phi(n) = n \mod(4)$
 - (a) Find ker (ϕ) .
 - (b) Show that ker (ϕ) is a subgroup of G.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. These question carries 15 marks each.

- Solving the following
 - (a) $2y \frac{dy}{dx} = e^{x-y^2}$, y(4) = -2.
 - (b) $(1+y^2)\frac{dx}{dy} + x = e^{\tan -1}y$.
 - (c) $(\cos x 2xy)dx + (e^y x^2) dy = 0$; y(0) = 0.
- 33. Using Method of Variation of Parameter solve.
 - (a) $\frac{d^2y}{dx^2} + 4y = \tan 2x$.
 - (b) $\frac{d^2y}{dx^2} + y = x \sin x.$
- 34. (a) State Green's theorem in plane.
 - (b) Verify Greens theorem in plane $\int_c (3x^2 5y^2) dx + (4y 6xy) dy$ where C is the boundary for the region enclosed by the parabola $y = x^2$ and $y^2 = x$.
- 35. (a) Find the right and left cosets of the subgroup $H = \{0, 2, 4\}$ in the group $G = \{0, 1, 2, 3, 4, 5\}$ under addition modulo 6.
 - (b) Sate Lagrange's Theorem in Group theory.
 - (c) Suppose G is a group with order |G|=24. Let H be a subgroup of G with order H=6. Using Lagrange's theorem in group theory, answer the following questions:
 - (i) How many left cosets of H are there in G?
 - (ii) How many distinct right cosets of H are there in G?
 - (iii) What is the index of H in G.

 $(2 \times 15 = 30 \text{ Marks})$