(Pages : 4)

T - 2551

Reg. N	o. :	•••••	••••	•••••	•••••	
Name :					•••••	

Fourth Semester B.Sc Degree Examination, July 2024 First Degree Programme under CBCSS

PHYSICS 1

Complementary Course for Chemistry

PY 1431.2 : ATOMIC PHYSICS, QUANTUM MECHANICS AND ELECTRONICS

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences.

- 1. What is Bohr's correspondence principle?
- 2. State Pauli's exclusion principle.
- Give the properties of super conductors.
- 4. What is isotopic effect in superconductor?
- 5. Define probability density.
- 6. What is wave function?
- 7. Define emission spectroscopy?

P.T.O.

Scanned with CamScanner

- 8. What region of the spectrum is radio?
- 9. What is the need for biasing?
- 10. Draw the AND gate and its truth table.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions.

- 11. Explain spin orbit coupling.
- 12. Write a short note on periodic table?
- 13. Explain Meissner effect.
- 14. List out the application of super conductors.
- 15. Explain visible rays.
- 16. Discuss the Planck's hypothesis.
- 17. Explain Zener diode and its V- I Characteristics.
- 18. What is operating point? How will you stabilize it?
- 19. Compare emitter feedback bias and voltage divider bias.
- 20. Give the difference between IR and microwave spectra.
- 21. Discuss the behavior of a pn junction under forward and reverse biasing.
- 22. Convert the following decimal number in to binary number.
 - (a) 25
 - (b) 11.8125

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions.

- Discuss the vector atom model.
- 24. Obtain an expression for magnetic moment of orbiting electrons.
- 25. Explain high temperature ceramic superconductors.
- 26. Differentiate the Type I and Type II superconductors.
- 27. Discuss AC load line and DC load line of transistor biasing.
- Explain the principle of UV and Microwave spectrometer.
- 29. An electron is trapped in one dimensional potential region of length 1.0×10^{-10} m. How much energy must be supplied to excite the electron from the ground state to the first excited state.
- 30. Define ripple factor? Obtain an expression for ripple factor of a bridge rectifier.
- 31. Explain Hexadecimal number and Octal numbers with examples.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions.

- 32. (a) Explain the basic feature of Bohr atom model.
 - (b) Discuss the different quantum numbers that define an energy state.
- 33. Briefly explain the working of CE transistor amplifier and discuss the amplifier gain, frequency response and band width.

T - 2551

- 34. Derive Schrodinger Time dependent and independent wave equation.
- 35. Explain the following gates giving symbol, truth table and Boolean equations.
 - (a) OR
 - (b) AND
 - (c) NOT
 - (d) NOR
 - (e) NAND

 $(2 \times 15 = 30 \text{ Marks})$