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Foreword

This book is based on lecture notes written and rewritten for mathematical meth-
ods courses given at both the undergraduate and graduate levels over a period of more
than 30 years. The suggestion that [ write a book was first made by students in one of
those courses back in 1982. It seemed like a good idea but like many good ideas had
to await a window of opportunity. The window did not open until I had completed a
number of other projects and more especially until I had completed a 14 year stint in
academic administration. Work began in earnest only in 1999 and even then only on
a part-time basis, competing for attention with the demands of yet another adminis-
trative assignment. Retirement in 2005 finally removed professional distractions and
slow but steady progress ensued.

It was always my intention to make the book freely accessible through posting on
the internet. The book is in pdf format and can be downloaded chapter by chapter.

Curricular change is often driven by resource considerations and can result in con-
siderable variability in the sequencing of topics. Necessity has proven to me that pre-
senting boundary value problems before introducing complex analysis or even Fourier
analysis is quite feasible. Nevertheless, I believe that the sequence adopted in this
book beginning with complex analysis and proceeding through Fourier analysis and
the solution of ordinary differential equations to boundary value problems is optimal.

While I solve a large number of example problems in the course of presenting
theory, I have not included lists of suggested problems at the end of chapters. This
omission is due to two observations. The first is that students seldom attempt prob-
lems other than those they are assigned and the second is that instructors already have
many excellent sources to use when constructing their assignments.

Readers will discover that the proofs of theorems are sometimes included and
sometimes not. As I told my students inclusion occurs only if the proof is “educa-
tional”. By this I meant only if the proof provides some insight into how to apply the
theory. Thus, the (rigorous) proof of Cauchy’s theorem is excluded but the proofs of its
many corollaries are included.

No matter how exhaustively a book is edited some errors or infelicities will al-
ways persist. Readers who detect any are invited to bring them to my attention at
Icopley@physics.carleton.ca. I invite as well any comments you may have whether
favourable or otherwise and more especially any suggestions on how to improve the
text.

[ 52Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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1 Functions of a Complex Variable

1.1 Introduction

Physics is concerned with phenomena that are describable in terms of measurable
quantities that assume real values. This is the basis of our intuitive understanding of
the nature and significance of real numbers. It suggests as well that physicists deal
primarily with functions of a real variable. Nevertheless, the theory of functions of a
complex variable is one of the most important cornerstones of mathematical physics.

The uses of complex analysis range from the pedestrian one of providing nota-
tional simplification in the formulation of certain problems, (cyclotron dynamics for
example), to that of furnishing the most elegant and evocative way of expressing the
basic assumptions in certain physical theories. An example of the latter is the use of
dispersion relations in optics and in the quantum theory of scattering; another treats
momentum, energy and even angular momentum as complex variables to acquire an
enhanced understanding of the outcome of collisions between subatomic particles.
In between the pedestrian and the exotic are such applications as the evaluation of
real definite integrals, the solution of potential problems in two dimensions, and the
determination of the asymptotic behaviour of functions. Underlying them all is the
fact that complex analysis permits a complete determination of functions on the basis
of very limited detailed knowledge. Thus, it offers a much more powerful language for
the discussion of the properties of the functions of interest to physicists than does real
variable analysis.

1.2 Complex Numbers

What follows is a review of some foundational concepts of complex analysis. We start
with the definition of complex number and of the rules of complex arithmetic and
these may not look as familiar as the word “review” implies. That is because we shall
use formal definitions that emphasize the distinction that exists between the complex
and real number systems.

1.2.1 Complex Arithmetic

Definition: A complex number z is an ordered pair of real numbers, x and y say,
z=(x,y);
x is called the real part and y the imaginary part of z:

x=Rez, y=Imz.

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



2 =— Functions of a Complex Variable

Definition: Two complex numbers z; = (xq,Y;) and z, = (x,Y,) are equal if and

only if their real and imaginary parts are separately equal; that is,
z1 =z, ifand onlyif x; =x; and y; =Y,.
Definition: If z; = (x, ;) and z, = (x2,Y,), then

z1+2z3 = (X1 +Xx2,Y1+Y2)
-z =(-x,-y)
z1-z2=z1+(-22) = (X1 - %2, Y1 -Y2)

z1-22 = (X1 X2 -Y1 Y2, X1 Y2 + X2 V1).

(1.2.1)

Armed with these definitions of the fundamental operations, one can readily show
that the standard laws of real number arithmetic apply to complex numbers as well:

(i) the commutative and associative laws of addition,

Z1+2p=22+2Z1

z1+(z2 +23) = (21 + 22) + 233
(ii) the commutative and associative laws of multiplication,

Z12) =2221

z1(22 z3) = (21 22) 23 = 21 22 23;
(iii) the distributive law,

(Z1+22)z3=2123+2223 .

(1.2.2)

(1.2.3)

(1.2.4)

Definition: If z; = (x1,¥)and z, = (x2,¥,) # (0, 0), the quotient z = ? is that
2

complex number (x, y) for which
z1=22=(XX2-YY2,XY2+X2¥).
From the definition of equality we have

X1 =xx2—yy2
Vi=XxY2+tyx2

which is a system of two linear equations in two unknowns, x and y. Solving, we ob-

tain the unique expressions

_X1x2+Y1)>
- 2 2
X5+Y5

X2Y1-X1Y>

dy =
andy e

Notice that division by the complex number (0, 0) is meaningless.

(1.2.5)
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Definition: Complex numbers of the form (x, 0) are called complex real numbers or
simply complex reals while numbers of the form (0, y) are called pure imaginaries.

The operations of addition, subtraction, multiplication and division with complex
reals only lead to other complex reals. For example,

(x,0)+(y,0) = (x+y,0)
(x,0)-(y,0) = (xy, 0).

Moreover, complex reals evidently obey exactly the same arithmetic laws as do their
real number counterparts. In other words, complex reals can be treated just as though
they were real numbers. It is important to recognize that this is a statement of isomor-
phism or equivalence, not of identity. As a consequence of the isomorphism it has
become customary to use the same symbol x to denote both the complex real (x, 0)
and its real number counterpart. Then, representing the pure imaginary (0, 1) with
the symbol i, we obtain the simplified notation

(x,y) = x +1iy, (1.2.6)
since

x+iy =(x,0)+(0,1)- (y,0) = (x,0) +(0,y) = (x,y).

Notice that
i#=(0,1)-(0,1) = (-1,0) = -1

so that i may be thought of as the square root of the (complex) real number -1.

When using this notation, we may treat x, y and i as though they are ordinary real
numbers provided that we always replace i by — 1. It is permissible to do so because
we understand the logical significance of each symbol that appears in z = x + iy.
Specifically, we know there is an important distinction between the real number x and
the complex number (x, 0) but it is a distinction that admits interchangeable use of
their symbols for practical convenience. Moreover, thanks to the pure imaginary i, our
ordered pairs of real numbers remain ordered and real number arithmetic becomes
applicable.

We shall now introduce two definitions with no counterpart in the real number
system. The first one partially makes up for the fact that there is no order on the basis
of size among complex numbers.

The phrases “greater than” and “less than” have no meaning when applied to the
numbers but do in reference to their moduli.

Definition: The modulus of z = x + iy, written |z|, is the real number

+Vx2+y2.

Notice that |z] = Oifand onlyif x =Oand y = 0.
Definition: If z = x + iy, then z* = x - iy is the complex conjugate of z.
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One can readily show that the operation of complex conjugation commutes with
addition, subtraction, multiplication and division:

(z1£22) = (21 £2)
(z122) =212

(z1/22) =21 /2.

Equally readily shown are the important relationships
1 *
Rez=x= i(z+z)

Imz=y= %(z -z 1.2.7)

lz?=z-2".

The third of these equations is, in fact, a special case of (1.2.5) since it can be rewritten
as

*

z

= e (1.2.8)

N
Il
N =

Moreover, it allows us to write the quotient of two numbers in a much more compact
form than that provided by (1.2.5):

*
Z12y
*

Z1 -1
% 1(z2)

(1.2.9)
|z

The third relationship in (1.2.7) leads directly to three simple but very important
results involving moduli:

lzitz2 | <|z1]+] 22 (1.2.10)
|z1z2| =|z1]| 22 |5 (1.2.11)
|z1-22 > |(|z1] - | 22])] .- (1.2.12)

For reasons which will soon be apparent, the last two results are usually referred to as
triangle inequalities.

1.2.2 Graphical Representation and the Polar Form
Since an ordered pair of real numbers (x, y) defines the Cartesian coordinates of a

point in a plane, it follows that there is a one to one correspondence between such
points and the set of complex numbers z = x +1iy. Thus, to visualize complex numbers



Complex Numbers =— 5

we can make use of a complex plane whose Cartesian axes correspond to x = Re zand
y = Imz and so are called the real and imaginary axis, respectively. The resulting
representation of a complex number (see Figure 1.1) is called an Argand diagram.
Jean-Robert Argand (1768-1822) was a Swiss mathematician and bookkeeper.
If we introduce polar coordinates in the complex plane via

x=rcos@ y=rsinb,

we can write

z =r(cos 0 + isin 6) (1.2.13)
where
r=Vx2+y2 =|z| (1.2.14)
and

0 = arctan % (1.2.15)

The directed angle 6, measured from the positive real axis to the directed line joining

Im z A
(x,y) or(r,0)

L
) » Rez

Figure 1.1: The complex number z = x + iy represented by a point with coordinates (x, y).

the origin to the point (x, y) in Figure 1.1, is called the argument of z and is denoted by
arg z. The argument of z is infinitely many-valued since if 6 is a value, sois 8+ 2nm, n =
1,2,3,....

Hence,

argz=0zx2nm, n=0,1,2,... (1.2.16)

with 0 restricted to some range of length 271. Normally, but by no means invariably,
this range is chosen to be -1 < 6 < 7.
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Definition: The principal value of arg z, Argz, is that restricted to the range
- < Argz < m.

Evidently, a complex number z = x + iy can also be represented by a two-
dimensional vector of length |z| and components x and y. Thus, since complex num-
bers obey the same addition rule that applies to vectors in a plane, we can add them

graphically by means of the parallelogram rule.
From the diagrams in Figure 1.2, we see that the distance between the two points z;

and z; is | z1 — z2 |- Thus, since the sum of the lengths of two sides of a triangle is larger
than the length of the third side, we understand why equations (1.2.11) and (1.2.12) are
called triangle inequalities.

Imz " et
2, o
4 4
/ v
[
J’II 7 5
."l ” et o
s Re:
Imz 7.
Zj= Z .I4
L /
. y K
/
! =
\. f oo Ly
N > Re z

Figure 1.2: The use of the parallelogram law for the addition of vectors to determine graphically the
sum and difference of two complex numbers.

While the Cartesian representation is clearly the most useful one for working
out sums and differences of complex numbers, it is the polar representation which
should be employed when taking products, quotients and powers. For example, if
z1 = r1(cos @, +isin @;) and z> = r,(cos §, +isin g,), then

212y =11 12[(cos @, cos @, —sin @, sin @,) + i(sin @; cos 9, + cos §; sin 9,)]

= r112[cos(9; + 6;) + isin(; + 6,)] (1.2.17)
and

z1 z1zy, N .
— = = — |cos(f; - +isin(9; - . 1.2.18
n nf N [cos(61 - 62) (61 - 62)] ( )
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These two equations immediately yield a previously obtained result involving moduli,
(see equation (1.2.10)),

|z1z2| = |21 22| (1.2.19)
2l (1.2.20)
z2|  |za|

as well as a new one involving arguments,

arg(z, z>) = argz, +arg z (1.2.21)

arg (?) =argz, —argz, . (1.2.22)
2
The generalization of (1.2.17) reads

Z1Z2...Zn=T1T2...Tn[COS(@1 + @2 +...+ @) +isin(@; +0, +...+0,)] (1.2.23)

as can be easily proven by induction. Specializing to the case z; =z, = ... = zn = z,
this becomes

z" =[r(cos 0 +isin)]" = r"(cos né + i sin nbh). (1.2.24)

This result is known as de Moivre’s theorem and is valid for both positive and nega-
tive integer values of n.

Abraham de Moivre (1667-1754) was born in Vitry in France. A Protestant, he came
to England in about 1686 and worked as a teacher. He became known to the leading
mathematicians of his time and was elected a Fellow of the Royal Society in 1697. In
this capacity he helped to decide the famous controversy between Newton and Leib-
niz on the origins of the calculus. His principal work is The Doctrine of Chances (1718)
on probability theory, but he is best remembered for the fundamental formula given in
equation (1.2.23).

At this point it is convenient to note that equations (1.2.19) through (1.2.24) imply
that the sum cos 6 + i sin 6 possesses all the properties that we would be inclined to
associate with an exponential. In other words, if we define

e = cos @ +isin6, (1.2.25)
then
ei 01, ei 0 _ ei(91 +62)
d o . i
— e =ie",
do

e =1.
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Equation (1.2.25) is called Euler’s formula. In due course we shall derive it from the
formal definition of the exponential function e?. We have introduced it now to take
advantage of the evident simplification it brings to the polar representation of complex
numbers,

z=re
It is useful to remember the following special values of ~ e?:

eiiﬂ =1, eriﬂ/Z = +i

Leonhard Euler (1707-83) was born in Basel where he studied mathematics under
Jean Bernoulli. In 1727 he went to St. Petersburg where he became professor of physics
(1731) and then professor of mathematics (1733). In 1741 he moved to Berlin at the invi-
tation of Frederick the Great but returned to St. Petersburg in 1766 after a disagreement
with the king. He became blind but still continued to publish, remaining in Russia un-
til his death. He was a giant of 18®-century mathematics with over 800 publications,
almost all in latin, on every aspect of pure and applied mathematics, physics and as-
tronomy.

Next, consider the algebraic equation w" = z whose solutions are the nth roots
of the complex number z. If we set w = R e'? and z = re'®, then, from de Moivre’s
theorem, we have

Wn =Rn ein(p _ reie =z

Equality between two complex numbers requires separate equality of their moduli and
arguments. Thus, we must have

R"=r or R=r'",
where the root is real and positive and therefore uniquely determined, and
ng =0+2km or ¢ =6/n+2kn/n, k=0,+1,%2,....

Successively substituting the numbers 0,1, 2,...n — 1 for k, we obtain n distinct
values for z/". Substitution of other values of k only gives rise to repetitions of these
values. Thus, we conclude that, for |z| # 0, z}/" has the n distinct values

ZHn = pi/n expli(@ + 2km)/n], k=0,1,...,n- 1. (1.2.26)

These n values lie on a circle of radius r*/"

vertices of a regular n — sided polygon.
Example: w = \/z has the two values

, centre at the origin, and constitute the

wo = r'/? exp(i6/2)

wi = r'"? exp(i0/2 + int) = - wo,
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where 6 = arg z and r = |z|. These two values are symmetric with respect to the origin.

In the specific case of z = i, arg z = 7 and |z| = 1, and so the two values of i/ are
. 1 i
wo = exp(in/4) = 5 + 7
. 1 i
wy = EXp(l[ﬂ/4+ﬂ]) = _ﬁ - ﬁ =—Wp.

Notice that we used the principal value of argi in our calculation of v/i. This is the
conventional choice when evaluating the n roots of complex numbers but any other
choice of value for arg z would yield the same set of numbers for z!/" but in a different
order. Had we set argi = 71/2 + 27, for example, we would have obtained

wo = exp(i[r/4 + m]) = Lot

V2 V2

1 i
wi=explif[r/4+m+m])= — + .
L= exp V2 V2
Example: If z is a positive (complex) real, so that argz = O, then w = z1/3 has one

(complex) real value

1/3 1/3

wo = |z exp(0) = |2,

and two conjugate complex values

w1 = wo exp(i27/3) = wo (—% + ?)
w2 = wo exp(i4n/3) = wo (—% - “f) .

Notice that this simple example illustrates the important distinction between a com-
plex real and its real number counterpart. The former has exactly three cube roots
while the latter has only one, the real number counterpart of wy.

1.2.3 Curves and Regions in the Complex Plane

A prerequisite for discussing sets of complex numbers or equivalently, sets of points
in the complex plane, is to agree upon a basic vocabulary. Thus, the purpose of this
section is to introduce some of the terminology which will appear throughout this and
subsequent chapters.

Since the distance between two points, z and zy, is |z — 2o |, it follows that a circle
C of radius r and with centre at the point z, can be represented by the equation

|z-zo|=T. (1.2.27)
Consequently, the inequality

|z-zo| <7 (1.2.28)
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holds for any point z inside C and thus it represents the interior of C. Such a region is
often called an open (circular) disc, while the region described by

|z-zo| <1 (1.2.29)

is called a closed (circular) disc, since it also includes the bounding circle C. Simi-
larly, the inequality

|z-zo|>7 (1.2.30)
represents the exterior of C while
r1 < |Z - 20 | <r (1.2.31)

is the annulus bounded by the concentric circles |z —zo | = r1, |z — 20 | = 12,11 < 12,

Im:z

Figure 1.3: The circle C, |z — zo | = 1, with centre at zo and radius r.

And now we present a few formal definitions:

Definition: A neighbourhood of a point zj is the set of all points z contained in the
open disc |z - zp | < € where ¢ is a given positive number. A deleted neighbourhood
of zy is one from which the point z; itself is omitted: 0 < [z - z¢ | < €.

Definition: A point z belonging to a set of points S is called an isolated point of S
if it has a neighbourhood that does not contain further points of S.

Definition: A point z; is called a limit point of a set of points S if every deleted neigh-
bourhood of z, contains at least one point of S. (This implies that every deleted neigh-
bourhood of a limit point zy actually contains an infinite number of points of S for,
given £ > 0, the neighbourhood |z - zo| < € contains z; # zo, the neighbourhood
|z-z0| <|2z1-20| < € contains a point z, # zo and so on, ad infinitum.)
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Examples: The set of points z =n,n =1, 2, 3, ..., consists entirely of isolated points
and has no limit points in the finite plane.

The set of points z = i/n,n = 1, 2, 3, .. ., also consists only of isolated points but
it does have a limit point. The limit point, z = 0, does not belong to the set.

In contrast to the first two examples, the set |z| < 1 has no isolated points; every
point of the set as well as every point on the unit circle |z| = 1 is a limit point.

Evidently, limit points need not belong to the set in question. This observation
prompts the next group of definitions.

Definition: A set S is said to be closed if every limit point of S belongs to S.

An obvious example of a closed set is the closed circular disc |z| < 1.
Definition: A limit point zo of S is an interior point if there exists a neighbourhood
of zo which consists entirely of points of S. A limit point which is not an interior point
is a boundary point.

For example, the points lying on the circle |z| = 1 are boundary points of the discs
|z] < 1and |z| < 1, since no neighbourhood of a point on |z| = 1 lies entirely in either
set.

Definition: A set which consists entirely of interior points is said to be an open set;
thus, every point of an open set has a neighbourhood every point of which belongs to
the set.

Obvious examples are the disc |z| < 1 and the points of the right or left half-plane,
Rez>0 or Rez<O.

As the set consisting of the disc |z| < 1 plus the point z =1 illustrates, a set need
not be either open or closed.

Definition: The equation

z=2z(t) = x(t) +iy(t), t1 <t<ta, (1.2.32)

where x(t) and y(t) are real functions of the real variable ¢, determines a set of points
in the complex plane called, interchangeably, an arc or curve.

Appropriate adjectives are required to distinguish between curves defined by func-
tions possessing varying degrees of “smoothness”. Thus, a continuous curve is one
for which x(t) and y(t) are continuous in the specified range ¢t; < t < ¢,.If, in addition,
x(t) and y(t) have continuous first derivatives there then we have a smooth curve.

We must also address the possibility of curves intersecting themselves or even
closing on themselves. This will occur when more than one value of t in the range
t1 < t < t; yields the same complex number x(t) + iy(t) in which case we say that
the curve has a multiple point. We shall be interested primarily in continuous curves
consisting of a finite number of smooth arcs and possessing no multiple points, except
possibly for a double point corresponding to the terminal values of ¢, t; and ¢,. We
refer to such curves as simple curves and, should they possess the double point, as
simple closed curves. Obvious examples of the latter are a circle, which consists of
a single smooth arc, and a polygon, which consists of a finite chain of straight line
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Figure 1.4: The simple curve on the left consists of three smooth arcs and so is piecewise smooth
with no self- intersections. The simple closed curve on the right consists of a single, smooth closed
arc with no self-intersections.

Figure 1.5: The points z1 and z, as well as the pointszs and z, can be connected by a simple curve
lying entirely within the shaded areas. When the pointsz; and z3 are connected, a part of curve
necessarily lies outside the shaded areas.

segments. Thus, the adjective simple connotes both piecewise smoothness and an
absence of self-intersections.

The next group of definitions refers once more to unspecified sets of points and
culminates with the important concept of domain.
Definition: A set S is said to be bounded if there exists a positive real constant M such
that |z| < M for every point in S; (that is to say, S is bounded if all points in S lie within
a circle of finite radius).
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Definition: A set S is said to be connected if any two of its points can be joined by a
simple curve all of whose points are contained within the set.

Definition: An open connected set of points is called a domain. The set obtained by
adding to a domain some (all) of its boundary points is a (closed) region.

Example: In Figure 1.5, the points belonging to either one of the shaded areas but not
lying on one of the boundary curves form a domain. However, the set consisting of
points belonging to both shaded areas, the union of the two domains, is not itself a
domain.

An apparently self-evident theorem states that a simple closed curve divides the

complex plane into two domains which have the curve as a common boundary. Of
these domains, one is bounded and is called the interior, the other is unbounded and
called the exterior. An immediate example is offered by the domains |z| < rand |z| > r
which are the interior and exterior, respectively of the circle |z| = r.
Definition: A domain is said to be simply-connected if its boundary consists of a
simple closed curve. Otherwise, it is said to be multiply connected. More precisely, a
domain is n-fold connected if its boundary consists of n simple closed curves with
no common points. Thus, for example, one of the domains in Figure 1.5 is simply
connected while the other is three-fold connected.

1.3 Functions of a Complex Variable
1.3.1 Basic Concepts

Definition: Let S be an arbitrary point set in the complex plane. Suppose that to each
point zo in S there corresponds a complex number (or numbers) wo = f(zo). We then
say that w is a function of the complex variable z,

w=f(z) forzin S, (1.3.2)

and that it defines a mapping of S into the complex plane.

Since it is defined over a set of points in a plane, f(z) must be a function of the
two real variables x and y. Thus, separating its complex values into their real and
imaginary parts, we see that we can always write it in the form

w=f(2) = ulx,y) +iv(x, y), (1.3.2)

where u and v are real functions of the two real variables x and y. This suggests that
the properties of functions of a complex variable should be readily deduced from the
theory of functions of two real variables. However, we are quickly disabused of this
idea when we recall that the variables x and y are determined by

1 . 1 *
x—i(z+z) y—i(z—z).
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Thus, an arbitrary pair of real functions combined according to
w=u(x,y)+iv(x,y)

will necessarily result in a function that depends explicitly on both z and z". The lat-
ter dependence is unwanted: x and y must always occur in the unique combination
x + iy. Evidently, this requires the imposition of a restriction that limits the choice
of functions v(x, y) that can be paired with a specified u(x, y) and vice versa. But if its
real and imaginary parts are so closely interrelated for some range of x andy, f(z) must
itself be restricted in the way it varies as a function of z. As we shall see, the required re-
striction is differentiability throughout a domain of the complex plane. That being
said, we shall postpone a formal definition of differentiability and introduce instead
the concept of a point at infinity.

The function w = % provides a well-defined, one-to-one mapping of the points of
the z - plane onto those of the w — plane with but two exceptions: the point z = 0 has
no image and the point w = 0 has no pre-image. For example, the unit circle |z| = 1
is mapped onto itself, [w| = 1; its exterior |z| > 1 is mapped onto the interior points
[w| <1, w # 0, and its interior |z| < 1, |z| # O is mapped onto the exterior points
|w| > 1. This suggests that the two exceptions are closely related and that they can
be eliminated by defining the image of z = 0 to be the point at infinity, denoted by
w = oo, Then, since the inverse of our mappingis z = %, the point z = oo is the required
pre-image of w = 0.

The z—plane augmented by z = oo is referred to as the extended complex plane.
When we wish to emphasize the exclusion of z = oo, we shall refer to the finite com-
plex plane. The function w = 1 maps the extended complex plane onto itself without
exceptions. In particular, it maps circular discs with centre at the origin onto circular
discs with centre at the point at infinity. Thus, a neighbourhood of the point z = oo is
denoted by |z| > R, where R is a given positive number. It is useful on occasion to think
of the extended complex plane as the surface of an “infinite sphere”. In that context
the origin and point at infinity are at opposite poles of the sphere and are joined by
the rays arg z = constant. All other straight lines in the plane correspond to “circles
of infinite radius” intersecting at z = oo.

1.3.2 Continuity, Differentiability and Analyticity

Real variable analysis provides us with a prototypical format to follow in defining what
we shall mean by continuity and differentiability. Thus, for a function defined on a
domain D we define continuity as follows.

Definition: The function f(z) is continuous at the point z¢ of D if, given any € > 0,
there exists a § such that

f(2) - f(zo0)| < €
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for all points z in D satisfying
|z-2zo| < 6.

An alternative statement, which really defines what we shall mean by a limit, is that
f(2) is continuous at zg if

Zan; f(2) = f(zo) for zin D. (1.3.3)

In geometrical terms this means that we can restrict f(z) to lie within a circle of radius
€ about f(zp) in the w — plane simply by requiring that z lie within a circle of radius
6 about zy in the z - plane. This in turn reveals a critically important feature of lim-
its in complex analysis: the limit in (1.3.3) exists only if the number f(z,) is obtained
regardless of the path followed by z as it approaches z.

The same path-independence is required of limits involving two or more real vari-
ables. Therefore, it should come as no surprise that if u(x, y) and v(x, y) are continuous
functions of x and y then

f@ =ulx,y) +iv(x,y)

is a continuous function of z. The converse is also true. This means that the imposition
of a requirement of continuity does not preclude the possibility of an explicit depen-
dence on z" as well as on z, the goal we set ourselves at the beginning of the preceding
section. Therefore let us move on and introduce differentiation.
Definition: Let f(z) be a single-valued continuous function defined in a domain D. We
say that f(z) is differentiable at the point z, of D if the limit
lim M, zin D (1.3.4)
z—2Zo Z—-2p
exists as a finite number, independent of how z approaches z,. The limit, when it ex-
ists, is called the derivative of f(z) at zo and is denoted by f’(zo).
The path independence of this limit is a much more exacting condition than is
its counterpart in the definition of continuity. Consequently, continuity by no means
implies differentiability.

Examples: The function
. 3 1 .
f(z) =x+2iy= 52-572

is continuous everywhere in the finite plane. However, forming the quotient pre-
scribed in (1.3.4), we obtain
f@) -f(z0) _3(z-20)-(z-2) _3 _1(z-2)

zZ-2zg 2(z - zo) T2 2 (z-z9)

Setting z — zo = |z — zo | exp(if), 6 = arg(z - zo), this becomes

f2)-f(z0) _3

1 .
7 5~ Eexp(—219)
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which obviously does not tend to a unique value as z — z¢. In particular, if z — 2o
parallel to the real axis then 8 = 0 and the quotient tends to +1, and if z — z, parallel
to the imaginary axis, 8 = § and so the quotient tends to +2. Thus, this function is not
differentiable anywhere.
Similarly, the continuous function f(z) = |z|? is differentiable only at zo = 0. For
if z # 0, we have
f@-fz0) 22" -2025 _ - (2-20)

Z +z
zZ-2zo zZ-2zo °(z-2z0)

= 2" +zgexp(-2iarg(z - zo))

which again exhibits a dependence on arg(z — zo).
By way of contrast, the function f(z) = z? is differentiable everywhere in the finite
plane as can be seen from

2

/ . 22 _ZO .
f'(zo) = lim =limz+z9=22.
z—z0 Z— 20 z—2g

These examples suggest that our search for a condition which will guarantee that
functions have no explicit dependence on z* may be at an end. To confirm that this is
the case we shall determine necessary and sufficient conditions for a function to be dif-
ferentiable; the question of z” independence will be resolved as a corollary. However,
before we do so, we should note that all the familiar rules of real differential calculus
continue to hold. Specifically,

LR . (135)
%(f.g)zg.gﬂc.% (1.3.6)
%(g)zgiz(%.g_f.%) (1.3.7)
fsen - L% (138)

provided that, in each case, the derivatives on the right hand side exist.

As the next theorem details, the path independence of derivatives implies a rela-
tionship between the real and imaginary parts of a differentiable function.
Theorem: Suppose that f(z) = u(x, y) + iv(x, y) is defined and continuous in a neigh-
bourhood of z = x + iy. A necessary condition for the existence of f’(z) is that all first
partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations,

ou ov ou ov

%% 3w (1.3.9)
at the point (x, y).
Proof: If f(z) is differentiable at z, the limit

lim f(Z+AZ)—f(Z) Efl(z)

Az—0 Az
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must exist and be independent of how Az — 0. Since

fiz+42)-f(z)  [ulx+Ax,y+ Ay) - ulx, y)] +ilv(x + Ax, y + Ay) - v(x, y)]
Az - Ax +idy

and since we may take Az to be real, so that Ay = 0, it follows that

u(x +Ax,y) - u(x,y) N l.V(x +Ax,y) - vix,y)
Ax Ax

tends to a definite limit as Ax — 0. Therefore, the partial derivatives % and 9% must
exist at the point (x, y) and the limit is

al.}.lg
ox ox’

fl(z) = (1.3.10)
Similarly, if we take Az to be a pure imaginary, so that Ax = 0, we find that g—; and g—;

both exist at (x, y) and obtain the limit

1y _ OV .0U
f'(2) = oy oy (1.3.11)
Since the two limits must be identical, we can equate real and imaginary parts to ob-

tai
am ou _ov ou _ ov

oXx 9y oy  ox
as required.

Baron Augustin Louis Cauchy (1789-1857) was born in Paris. He studied to become
an engineer but ill health obliged him to forego engineering and to teach mathematics
at the Ecole Polytechnique. Following the 1830 revolution he spent some years in exile
in Turin and Prague, returning to Paris in 1838. He did important work on partial dif-
ferential equations, the wave theory of light, the mathematical theory of elasticity, the
theory of determinants and group theory, but is primarily remembered as the founder of
the theory of functions of a complex variable.

Georg Friedrich Bernhard Riemann (1826-66) was a German mathematician who
studied under Carl Friedrich Gauss. He succeeded Gustayv Dirichlet as professor of math-
ematics at Gottingen in 1859 but was forced to retire by illness in 1862 and subsequently
diedin Italy of tuberculosis. His first publication (1851) was on the foundations of the the-
ory of functions of a complex variable. In this and a later paper (1857) he introduced the
concept of “Riemann surface” to deal with multi-valued functions. Meanwhile, in geom-
etry, he introduced the concept of an n-dimensional curved space which is fundamental
to the modern theory of differentiable manifolds and to the general theory of relativity
in physics. His name is also associated with the zeta-function which plays an important
role in number theory.

Have we stumbled across the relationship between u and v that will ensure that
the function of z they comprise does not have an explicit dependence on z" as well?
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To answer, we shall treat z and z* as independent variables and define the partial
derivatives
of _of ox, of oy
0z 0x0z O0yoz
of _ of ox . of oy
0z" 0x0z" 0dyoz’

These lead almost immediately to the equalities

of _1Tou ov], ifov ou
oz 2|ox 9y| 2|ox oy
of _1jou_ov| ifov ou
0z° 2 |ox oy| 2|ox oy|’

Applying the Cauchy-Riemann equations we then obtain

of _df

oz dz

of _

37 0. (1.3.12)

Thus, a function that is differentiable throughout some domain D cannot have an ex-
plicit dependence on z”.

Our prolonged search for a criterion to limit the range of our study is at an end. It
only remains to attach an identifying label to those functions which satisfy it.
Definition: A single-valued continuous function f(z) is said to be an analytic func-
tion of z (or more simply, to be analytic) in a domain D if it is differentiable at every
point of D, save possibly for a finite number of exceptional points. The exceptional
points are called the singular points or singularities of f(z) in D. If no point of D is
a singularity of f(z) then we say that it is holomorphic in D. Further, we say that f(z)
is holomorphic at a point z = zj if it is holomorphic in some neighbourhood of z.

The terms regular and (with even greater potential for confusion) analytic are used
by some authors as synonyms of holomorphic. Thus, some care is required when read-
ing other texts.

Our next theorem, an extension of the last one, identifies sufficient conditions for
a function to be holomorphic. It is presented without proof.

Theorem: The continuous single-valued function f(z) = u(x, y)+iv(x, y) is an analytic
function of z = x+iy, holomorphic in a domain D, if the four partial derivatives % , %,
g—; and g—; exist, are continuous , and satisfy the Cauchy-Riemann equations at each
point of D.

Definition: An analytic function which is holomorphic in every finite region of the
complex plane is said to be entire.

Such functions have no singularities in the finite plane but as we shall see, this
has implications for their behaviour at infinity.
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Definition: An analytic function f(z) is holomorphic at z = oo if f(1/w) is holomorphic
atw=0.

Examples: The function f(z) = 1 - is holomorphic in any domain that excludes the
point z = 1. Ev1dently, the derlvatlve fl(z) = @ )2 is undefined at z = 1. On the other
hand, f(1/w) = ;5 is holomorphic at w = 0 and so f(z) is holomorphic at z = o. Thus,
the full domain of holomorphy is the extended plane with the point z = 1 removed. In
contrast, any polynomial

f@)=co+ciz+...+cnz",n>1

is singular at z = co. However, this is their only singularity; they are entire functions.
Definition: Two real functions u and v of the two real variables x and y are said to be
conjugate functions if f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy.

As a consequence of the Cauchy-Riemann equations, conjugate functions are solu-
tions of Laplace’s equation. To see why this is so we need only differentiate the Cauchy-
Riemann equations,

(%
N
<
(%
N
<
(%
N
<
(=%
N
<

X2 oxdyoy?  oyox
_o%v otu v

0yoxX 9y2 axay x2’
and assume equality of the mixed second derivatives,

’u _ d'u o’v _ v
0x0y  0ydx 0xoy  0yox’

We immediately obtain

2y = U QU
Vu:a a 0,

and R R
2,_0°V _oV_
Vv’ax2+ay2 0.

Since we obtain two solutions of Laplace’s equation merely by separating any an-
alytic function of z into its real and imaginary parts, complex analysis has an evident
relevance to the solution of potential problems in two dimensions. The converse is
true also; in fact, an important insight can be gained at this point from the theory of
partial differential equations. As we know, a particular solution of a PDE is completely
and uniquely determined by specifying its behaviour at the boundary of the domain in
which the partial differential equation obtains. Thus, since u(x, y) and v(x, y) satisfy
the equations

viul,y)=0 v’v(x,y)=0

throughout the domain of the xy — plane in which f(x + iy) = u(x,y) + iv(x,y) is a
holomorphic function of z = x + iy, it follows that a knowledge of how f(z) behaves at
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the boundary of its domain of holomorphy is sufficient to determine how it behaves
everywhere else in that domain. Or, since the boundary is where the function ceases to
be holomorphic, we can assert that analytic functions are completely determined
by their singularities. This is the basis of the most important applications of complex
analysis. Consequently, our exploration of the theory will be directed primarily toward
discovering how these determinations can be made in practice.

We conclude this section by noting that the Cauchy-Riemann equations can be
used to find the conjugate of any given harmonic function and hence determine an
analytic function that has the original harmonic function as either its real or imaginary
part.

Example: The function u(x, y) = x? - y* is harmonic and has derivatives 9% = 2x and

g—; = —2y. Hence, the conjugate of u(x, y) must satisfy
ov ov
a—y—Zx and &—Zy.

Integrating the first of these with respect to y, we find

v(x,y) = 2xy + p(x)

where ¢(x) depends only on x. Substituting this expression into the second of our two
equations, we obtain ¢’(x) = 0 and so conclude that ¢(x) = ¢, constant. Thus, the
conjugate of u(x, y) = x> - y? is v(x, y) = 2xy + c and the analytic function which they
comprise is

f(2) = x> -y* +i(2xy + ¢) = 2% +ic,

where c is an arbitrary real constant.

1.4 Power Series

Many of the analytic functions one encounters in mathematical physics are defined
by means of power series. This section will provide an introduction to their properties
as well as a brief overview of the convergence theorems that apply to complex infinite
series.

As usual we begin our discussion with a raft of definitions.
Definition: A series of the form

oo

Z cm(z-20)" = co+ci(z—20) + C2(z—20)* +..., (1.4.0)
m=0
where z is a variable while cg, ¢1, ¢2,...,Cm, ... and zg are all constants, is called a

power series about the point z = z, (or, with centre at the point z = zj).
Definition: A series of complex numbers
oo
Zwm =W1+Wo+WwW3+...+Wpn+...
m=0
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is said to converge to a limit S if, for each £ > 0, there exists an integer N such that
|Sn=S| <&

forall n > N, where S, is the series’ n" partial sum,

n
Sn = g Wm .
m=0

The number S is called the value or sum of the series and we write

S=Zwm.

m=0

A useful test of convergence (or rather, divergence since it involves a necessary
but not sufficient condition for convergence) is provided by a theorem which we state
without proof.

Theorem: If the series > wy, converges, then
m=0

lim wp =0. (1.4.2)

m—yoo

Thus, a series which does not satisfy (1.4.2) necessarily diverges.

Definition: A series > wy, of complex numbers is said to be absolutely convergent
m=0

if the (real) series of moduli > | wn | converges. If >~ wp, converges but > | wy, | di-
m=0 m=0 m=0
verges, the series is called conditionally convergent.

Theorem: If a series ) w, is absolutely convergent, then it converges.
=

Because of this the Orem and the relative ease of working with the moduli of com-
plex numbers rather than the numbers themselves, one generally tries to establish
the convergence of a complex series by showing that it is absolutely convergent. The
following three tests are the most important means of doing this.

1. Comparison Test If one can find a convergent series of positive real terms > um
m=0

such that | wm | < um for each m, then the series > w, is absolutely convergent.
m=0
2. Ratio Test Assume that wn, # O for all m and that the sequence of ratios | Wm+1 / Wi |

converges to a limit L. If L < 1, the series > wy, converges absolutely; if L > 1, the
m=0
series diverges; if L = 1, the test fails.

Should the sequence of ratios possess more than one limit point, the test can still
be used but it requires a more general wording: if the largest value of lim W1/ Wm| <
m—yoco

1then theseries Y wn converges absolutely ; if the smallest value of lim w1/ Wm| >
m=0 m—yoo
1 then the series diverges.
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3. Root Test Assume that the sequence of roots | wn |$ ,m=1,2,3,..., converges to
alimit L. If L < 1, the series > wnconverges absolutely; if L > 1, the series diverges;
m=0
if L = 1, the test fails. More generally, the series is absolutely convergent or divergent
1
according as the largest or smallest value of lim |w, |~ is respectively less than or
m—yoo

greater than one.

Application of these tests to power series leads to a simple characterization of
their convergence properties. For example, suppose that it is known that a given power
series > cm(z — 2o )™ converges when z is assigned the specific value z;. Then, since

m=0
li_r>n | cm(z1 —z0)™ | = 0, there must exist a real positive number M such that
m oo

|cm(z1—20)™ | < M for all m.
Let us now assign z a second value z, which is subject to the single constraint
|Z2—Zo|<|Zl—Zo|. (1.4.3)

We then have

m
<

m
Z) — 2o

Z1— 20

Z)— 2o
Z1 - 20

lem(z2 = 20)™| = |cm(z1 — 20)™| -

Therefore, the series Y cm(z2 —zo)™ converges absolutely by comparison with the
m=0

Z2=20
Z1~20

oo
geometric series Y Mr™ = <1.
m=0

Since z, was arbitrary, subject only to (1.4.3), we have just proven that if a power
series converges at a given point z; then it converges absolutely for all z for which

Moo
i I'=

|z-—2z0|<|z1-20],

that is, at all points z lying closer to zo than does z;. (See Figure 1.6). This result sug-
gests that we attribute to each power series a radius of convergence R defined to be
the smallest real number such that the distance from the centre z, to any point z at
which the series converges is at most equal to R. It then follows that the power series
converges absolutely for all z for which |z - zo | < R and diverges for all z for which
|z - zo | > R. Nothing definite can be said about the behaviour of a power series on its
circle of convergence, |z - zo | = R. It may diverge at every point, converge at some
points and diverge at others or, converge (absolutely) at every point. If a power series
converges for all values of z, then we set R = oo; if it converges only at z = zo, then
R=0.

As the next theorem shows the ratio and root tests provide methods for explicitly
calculating the radius of convergence for a given power series.
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Y

Figure 1.6: Convergence at a point z; implies absolute convergence at any point z such that |z-z¢ | <
‘Zl ) ‘ < R.

The Cauchy-Hadamard Theorem: The radius of convergence R of the power series

S cm(z - z0)™ is determined by its coefficients ¢, and can be evaluated as follows:
m=0

R= lim |-&" (1.4.4)
m—reo | Cm+1
if the limit exists, (the improper limit +oo is allowed), or
R = min lim (1.4.5)

m—oo ‘Cm |E

if the limit exists, (the improper limit +oo is allowed).

Jacques Hadamard (1865-1963) was born in Versailles and educated in Paris. He
became a lecturer in Bordeaux (1893-97), the Sorbonne (1897-1909), and then Professor
at the College de France and the Ecole Polytechnique until his retirement in 1937. He
was a leading figure in French mathematics throughout his career, working in complex
analysis, differential geometry and partial differential equations. He was still publishing
mathematical work in his eighties.

Power series will be used over and over again as our exposition of complex anal-
ysis unfolds. One of the reasons for this is provided by our next theorem.

Theorem: The sum of a power series is a holomorphic function within its circle of
convergence.

The standard proof of this theorem shows that the derivative of the power series

f@) = cmlz-zo)"

m=0
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can be obtained by differentiating the series term by term:

fl2)=> mem(z-z0)"".
m=0

It takes little additional effort to show that this series has the same radius of conver-
gence as does f(z).

By repeated application of this theorem we obtain a further important result.
Theorem: Within its circle of convergence, a power series

f@) = cmlz-zo)"
m=0
has derivatives of all orders, with the k™ derivative given by
f(k)(z) = Z mm-1)...(m-k+1)cm(z - zo)’"’k,
m=k

all of which possess the same radius of convergence as does the original series. More-
over, we have
fP(z0) = Kl e

and so the original power series is the Taylor series of its sum:

_ . f(m)(zo) m
f(Z)—Z m (Z—Zo) .
m=0
In a subsequent section we shall prove the converse of this theorem. It is the con-
verse that is referred to as Taylor’s theorem and it states that a function f(z) may be

expanded in a unique power series > cm(z - zo)™, with non-zero radius of conver-

gence, about any point zo at which 1? i(; holomorphic. Taken together, these two the-
orems tell us that a function f(z) may be expanded in a Taylor series about a point
zo if and only if zj lies within the function’s domain of holomorphy. Moreover, the
Taylor series is the only power series expansion about zo that is possessed by f(z).
This important result is most explicitly exploited in a formulation of complex analysis
due to Weierstrass. It begins by defining an analytic function to be one which admits
expansion in a power series with non-zero radius of convergence.

Karl Theodor Wilhelm Weierstrass (1815-97) was a German mathematician, edu-
cated at the Universities of Bonn and Munster. He became professor at Berlin in 1856.
He published relatively little but became famous for his lectures on analysis. In addi-
tion to his contributions to complex function theory, he made important advances in the
theory of elliptic and abelian functions.

We shall now use power series to define what are known as the “elementary func-
tions”.
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1.5 The Elementary Functions

1.5.1 Rational Functions

A polynomial in z,

n

n m

W=Cyt+Ci1Z+...+Cn2Z2 = E Cmz ,
m=0

is, as we have seen already, an entire function. Therefore, it may be regarded as a
power series about z = 0 that converges for all values of z. To obtain its power series
expansion about any other point zo, we need only replace z by zo +(z - zo). The result
is another polynomial, in powers of (z—zo) this time, and so the radius of convergence
isagain R = oo.
The quotient of two polynomials

_CotC1ZH ...+ CnZ"

Cdo+diZ+... +dizk
is called a rational function. It is an analytic function whose only singularities are the
zeros of the denominator. One of the simplest but at the same time, most important

rational functions is that defined by the geometric series > z™. This is a power series
m=0
about z = 0 which, by the Cauchy-Hadamard theorem, has radius of convergence R =

1. If we consider its n™ partial sum

Sp=1l+z+2%+...+2"

and subtract from it

ZSp=z+2%+... +2

we find -
1-z
Sn = 4z
-z
Thus, taking the limit as n — oo, we have
izm L |z| < 1. (1.5.1)
1-2°
m=0

This identity is the basis for a practical prescription for generating the power series
expansions possessed by an arbitrary rational function. The prescription will be given
in a subsequent and more relevant section.

1.5.2 The Exponential Function

The exponential function exp z is defined to be the sum function of the series

2 3

e z° z
expzzezzzﬁ=1+z+i+§+.... (1.5.2)
m=0
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Applying the Cauchy-Hadamard theorem we find that the radius of convergence of
this series is infinite. Thus, exp z is an entire function of z. This is confirmed by term
by term differentiation of the series which yields a well-defined derivative

dz
for all finite z. By multiplication of series one can also prove that the familiar multi-
plication law

holds for complex z and w.

In Section 1.1.2 we arbitrarily introduced e?® = cos 6 + i sin @ for reasons of nota-
tional convenience. Now that we have defined what is meant by an exponential func-
tion of a complex variable, we can derive this expression. Assigning z the pure imagi-
nary value iy, y real, in (1.5.2), we find

° - o 2n+1

Z_ ) (Zn)' IZ( 1) (2n+1)'

However, the latter two power series are known to be the Taylor series expansions of
the cosine and sine of the real variable y. Thus, as anticipated,

eV =cosy +isiny.

Consequently,

4 X+iy _

e = e = e¥ el = e¥(cosy +isiny) (1.5.3)

or |e*| = e* and arg(e?) = y.

Since e?™ = 1, wehave e#*2" = ¢ n =0, 1,2, ....Thus, e?isa periodic function
of period 27i. This means that every value which e” can assume is attained in the
infinite strip - < y < m, or in any strip obtainable from it by a translation parallel to
the imaginary axis.

Finally, we note that e? never vanishes for, if e** = 0, then e”** would be infinite
which contradicts the fact that e” is entire.

1.5.3 The Trigonometric and Hyperbolic Functions

The sine and cosine functions of a complex variable are defined to be the sum-
functions of the series

2m+1

Z( Dk Gmi DI =sinz,

Z(-1)"’ ém)! = cosz. (1.5.4)

m=0
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Since each of these power series has an infinite radius of convergence, sin z and cos z
are entire functions. The other trigonometric functions are defined by

tanz = Slﬂ, cotz = i, cosecz:.i, secz = i (1.5.5)
cosz anz C
Differentiating the power series (1.5.4) term by term we find that

d . d .
o sinz = cos z, pe cosz = -sinz. (1.5.6)

Also, applying to e’? the same manipulations that led us to Euler’s formula we
obtain

e*? = cosz +isinz (1.5.7)
or, equivalently,
Yl iy oo L i iz
oSz = f(e +e¥),sinz = Z(e e ). (1.5.8)

From these formulae, and the multiplication rule for e*, one can readily deduce that
all the trigonometric identities that hold for real variables do so for complex variables
as well. In particular,

sinz+cos’z=1
sin(z + w) = sinzcosw * coszsinw

cos(z + w) = coszcos w F sinzsin w. (1.5.9)

Many of the properties possessed by the trigonometric functions are most easily
discerned by expressing the functions in terms of their real and imaginary parts. Set-
ting z = x + iy, we have

sinz = % [e!HY) _ omilcti)] % [e™¥(cosx +isinx) — €¥(cos x — isinx)],
or
sin z = cosh y sin x + i sinh y cos x, (1.5.10)
where we have used the real variable definitions
; _ 1oy
sinhy = E(e -e”)

coshy = %(ey +e”).

Similarly,

cos z = cosh y cos x — i sinh y sin x. (1.5.11)
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Evidently, sin z can only vanish if both sin x cosh y = 0 and cos x sinh y = 0. Since
coshy > 1, we require sinx = Oor x = nm,n = 0,1, +2,.... This in turn implies
that cosx # 0 and hence, that sinhy = 0. The latter condition can only be met if
y = 0. Thus, we conclude that sin z vanishes if, and only if z = nm,n = 0, £1, £2,....
Similarly, cos z vanishes if, and only if, z = (n + })m,n = 0,21, 22, ....

Unlike their real variable counterparts, | sinz| and | cos z| are not bounded, let
alone bounded by unity. This too follows from equations (1.5.10) and (1.5.11) which
yield

|sinz|? = sin’ x + sinh? y (1.5.12)

| cos z |2 = cos® x +sinh’ y (1.5.13)

both of which increase without limit as y — oo. This behaviour reflects a singularity
at the point at infinity which the trigonometric functions have in common with the
exponential function.

Other properties that follow immediately from (1.5.10) and (1.5.11) are

(sinz)" =sin(z")  (cosz)" = cos(z")
sin(-z) = -sinz cos(-z) = cos z

and, the very important periodicity conditions
sin(z + 2nm) = sinz, cos(z+2nm) =cosz, n=0,+1,+2,....
The hyperbolic functions of a complex variable are defined by

sinhz = —isiniz coshz = cosiz
sinz = —isinhiz cosz = coshiz

and so their properties can be deduced from those of the trigonometric functions. In
particular, one finds

sinhz = %(ez -e?), coshz = %(ez +e?)
and,
cosh? z - sinh? z = 1.
1.5.4 The Logarithm

The natural logarithm of the complex variable z, denoted by

w=lInz,
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is defined for each |z| # 0 by the equation
eV =z (1.5.14)

We have already seen that the exponential function e” has period 277i and hence,
that it maps each of the strips

n-Da<Imz<(n+Dm, n=0,+1,+2,...

onto the entire complex plane (less the origin). Therefore, it should come as no sur-
prise that equation (1.5.14) admits an infinite number of solutions each of which is a
logarithm of z. To see how this comes about in detail, set

w=u+iv and z = |z| ' ¥¢*

so that (1.5.14) becomes

e =e"- eV =|zle

iargz
Thus, from the definition of equality,
v=argz and e"=|z|.

But, since v and |z| are both real, with |z| > O, the latter equation has the unique
solution u = In |z|. Therefore, we finally obtain

Inz=In|z| +iargz. (1.5.15)

Since arg z is only determined to within multiples of 27, In z is infinitely many-valued
with successive values differing by 2i.

The principal value of In z, which is obtained by giving arg z its principal value,
will be denoted by Lnz. Thus,

Lnz =In|z| + iArgz, -m<Argz<n (1.5.16)
and,Inz =Lnz+2nmi, n=0,1,2,.... The principal value is identical with the real
logarithm when z is real and positive.

Since
lim [Ln(|z| i)y _ Ln()z| ™) = 27i,
=0

Lnz is discontinuous across the negative real axis. It should be noted however that
the exact location of this line of discontinuity was determined by our choice for the
range of Argz in the definition of Lnz. Because of the discontinuity, the single valued
function Lnz can only be holomorphic in a domain that excludes the negative real
axis. Certainly, it is differentiable for |z| # O, Argz # +m as can be seen from

d 0 . 0 Y X .y 1

—Inz=-—InvVx2+y?+i—tan'Z= " _ i~ - —, 1.5.1

ZE= 5 In X2 +y +1axtan X" 1)? 1x2+y2 p (1.5.17)
Thus, its domain of holomorphy must be the domain 0 < |z| < o, - < Argz < 7
which is the cut plane obtained by removing the origin and negative real axis.
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1.5.5 The General Power 2%

We define the power z%, where z and a denote any complex numbers, to be

2% =eM7 |z 40 (1.5.18)

and its principal value to be e*"2,

Since In z is infinitely many-valued, z* might reasonably be expected to be so too.
In general, this is indeed the case; the only exceptions occur, as we have seen al-
ready, when a assumes integer or rational values. This is most easily discerned by
writing (1.5.18) in the form

2% = tllnz+2kmll o _ 0 11,42, ..., (1.5.19)

+2knmi

Ifa=n,n=+1,+2,...then,sincee = 1, equation (1.5.19) yields the single value

Zn _ |Z ‘n einArgz
which is precisely what one obtains from the de Moivre theorem. If @ = m/n, with the
integer n not a divisor of the integer m then, as expected, equation (1.5.19) yields the
n values

2™ = |z MM exp [i%(Argz+ k2n)} , k=0,1,...,n-1.

Finally, if a is a complex or real irrational number then e?*®™ » 1 for any value of

k =+1,+2,...and so each value of k yields a distinct value of z*.

The principal value of z* (for non-integer a) is discontinuous across the negative
real axis. Hence, like Lnz, it is holomorphic only in the cut plane 0 < |z| < o0, -7 <
Argz < .

Example: We conclude this Section with an evaluation of what might appear to be the
epitome of a complex number, i'. From (1.5.19) we have

it = ezlnl _ ez[Ln1+2km], k = 0,+1,%2,....

But, |i| = 1 and Argi = 7/2 so that Lni = Zi. Thus, it is in fact the infinity of real
numbers
i'=exp [—g—an} , k=0,+1,+2,...

s
2

and has the principal value e~

1.6 Multivalued Functions and Riemann Surfaces

Our definition of analyticity requires functions to be single-valued. However, as we
have just seen, some important elementary functions, In z, z%, and any of the inverse
trigonometric and hyperbolic functions, are multivalued. Thus, one might suppose
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that we require two distinct theories of functions of a complex variable: one for an-
alytic functions and the other for a suitably defined class of multivalued functions.
Fortunately, this is not the case. As we will now show, a geometrical construction due
to Riemann can be used to ensure that the theory of analytic functions can be applied
to both single and multivalued functions.

The definition of the various principal value functions in the preceding Section
demonstrates that one can dissociate a multivalued function into a series of single
valued ones that are individually holomorphic in a cut plane. This provides us with
an important first clue as to how to proceed. A second and decisive clue is presented
by the way in which the multivalued character of a function manifests itself in the
behaviour of its single valued constituents.

For clarity, we shall consider the specific function

w=2z"2 =z exp [ argz} = |z|Y? exp [%(Argz+ Zlcn)} , k=0,1. (161

We shall denote the values corresponding to k = 0 by w; and those corresponding to
k =1byw,.

Let us see what happens to w as z describes a closed path encircling the ori-
gin. Starting from a point zo = (| 2o |, 69), we perform a complete anticlockwise cycle
around the origin, returning again to zo. The function w = z'/? changes continuously
as we follow the closed curve but, after completion of a full cycle, Zé/ 2 differs from its
initial value by a factor of (-1):

[ 1/2] |Z |1/2 i6o/2

1/2 90+2n)/2 1/2 eieo /2 1/2]

[25/°;, = |20 | ~| 2o [z

Moreover, to regain the initial value of z%/>
complete cycle:

we see that we must perform yet another

1/2 1/2 460 +4m)/2 _ 1/2 4i6o /2 _ [zé/z Ji-

(2521, = | 20 = | 20|

This requirement of two complete cycles to regain the function’s initial value is clearly
a manifestation of the function’s double-valuedness.

Definition: A point of the complex plane having the property that after the comple-
tion of any cycle around it a given function is not restored to its initial value is called
a branch point of the function. A branch point is of n™ order if after making not
less than (n + 1) complete cycles around it we restore the function to its initial value.
Otherwise, a branch point is said to be of infinite order.

Example: The point z = 0 is a branch point of order one of the function z'/? . It fol-
lows that ¢ = 0 is similarly a branch point of order one of { 12 andsoz = wisa
second branch point of order one of z'/2 . These are the only two branch points that
this function possesses.



32 — Functions of a Complex Variable

Im:z A

.
.

Figure 1.7: After one complete cycle about the origin the argument of z, is increased by 27.

1/2 35 z cycles around the branch point z = 0 in

We shall now follow the progress of z
a little more detail. If 9, is assigned a specific value of - < Argz < m, [z(l)/ 2 |; assumes
one of the values possessed by the single valued function w(k = 0). As we proceed
around the curve C in Figure 1.7 , z/2 varies continuously through values that corre-
spond to w; until we reach the negative real axis. On crossing the axis z'/? still varies
continuously but its values are now those that correspond to w, (k = 1). A further cycle
around the curve sees z'/? vary continuously through the values of w, until the nega-
tive real axis is again encountered, at which point it re-assumes values corresponding
to wy. This is shown in Figure 1.8 in which we have used a unit circle on each of two
superposed planes to picture the two complete cycles.

In summary, 212 yaries continuously through the values of w; and w; as z goes
from (| zo |, 6o) to (| zo |, o +47) because, even though w; and w; are separately dis-
continuous across the negative real axis,

lin})[wk(|z|, m-¢€)—wi(|z|, -+ €)] = £2i|z |1/2, k=1,2, (1.6.2)
E—r

the value of w;(w;) just above the axis is the same as the value of w,(w1) just below
it:

lim wy(|z|, 7€) = lim w,(|z|, -7 + €) = i|z|/?

£—0* £—0*
lim w(jz|, - €) = lim wy(|z|, -7 + €) = —i|z|/2. (1.6.3)
£—=0" e—0"

This fact, plus the knowledge that w; and w; are holomorphic in the domain O < |z| <
oo, —11 < Argz < m is all we require in order to construct a domain of definition on
which z'/2 will enjoy the benefits of analyticity.

The first step in the construction is to choose a curve joining the two branch points

of z'/2; a line starting from z = 0 and extending to z = oo is an obvious example.
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Figure 1.8: The value of wy(w;) just above the real axis is the same as the value of w,(w1) just be-
low it.

Next, we cut the complex plane by removing all the points that lie on this curve; the
curve is then referred to as a branch cut. This provides a domain of definition for two
single valued functions or branches which together reproduce all the values that z'/2
can assume, except of course those corresponding to values of z lying on the cut. To
conform with our earlier conventions, we shall take the cut to lie along the negative

real axis. Our two branches are thus the familiar functions
wi = |z ‘1/2 2,

wy=—|z|Y2e?, —m<f<m0<|z| <oo (1.6.4)

-m<0<m0<|z]<oo

which are analytic throughout the cut plane. (Notice that we have opted to use 6 in
place of Argz.)

To complete our construction we now superpose two cut planes joined edge to
edge at the cut, the upper edge of each being joined continuously with the lower edge
of the other. The two planes are then referred to as Riemann sheets and the surface
resulting from their superposition is called a Riemann surface. As the following ar-
gument shows, this surface provides a domain of holomorphy for z'/2.

Let arg z vary from - to +m — € for fixed |z|. Then, z describes a circle about the
origin on the top sheet and z'/? assumes the values of w;. At the end of the circle,
(arg z = m), we cross to the second sheet where, as arg z increases from m+¢ to 3m-¢, z
describes another circle about the origin and z1/2 assumes the values of w>. At the end
of this circle, (argz = 37), we cross back to our starting point on the first sheet. Be-
cause of equation 1.6.3, z/2 varies continuously along the whole of this path, tracing
out a complete circle of radius |z |*/? in the w-plane. Thus, cuts are no longer neces-
sary and the function z'/? is holomorphic over the whole Riemann surface, except at
the two branch points z = 0 and z = oo.
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Figure 1.9: The Riemann surface for the function w = z1/2,

Since the mapping aspect of functions of a complex variable can enhance our intuitive
appreciation, we note that we have just shown that the function z = w? maps the w-
plane onto a two- sheeted Riemann surface for z.

Recall that the branch cut joining z = 0 and z = oo is a line of “man-made” singu-
larities for the two branches w; and w, and as such, has an entirely arbitrary location.
Any simple curve connecting these two points could serve as an acceptable cut along
which the two Riemann sheets of z'/? can be joined. For example, suppose that we
choose the ray argz = g,; (straight lines are always the easiest curves to deal with).
The two branches of z'/2 must then be defined as
1/2 41612

wi = |z| 0o <0< @y+2m

wy = —|z|12 62 g, <0< g+2m;

that is, we merely change the range of variation of 6. A definition of z'/? that makes it

holomorphic everywhere, except at its branch points z = 0 and z = o, is now obtained
by constructing a two-sheeted Riemann surface, cut and joined along the line arg z =
0o. Some of the values of z'/? which occurred for z on the first Riemann sheet when
the cut was made along the negative real axis now correspond to the second Riemann
sheet and vice versa. This illustrates that the Riemann construction is merely a way
of classifying the values of a function in a single valued manner and the details of the
classification are matters of convention.

For the more general case of the n-valued functions z*/" and z™", it can be readily
shown that z = 0 and z = oo are branch points of order (n - 1) and that the appropriate
Riemann surface is a closed n-sheeted structure with the n' sheet reconnected to the
first. Such a surface is difficult to visualize and impossible to sketch, except in the
most schematic way. Rather than try to do so the reader should keep in mind that the
surface is a mathematical construction whose sole purpose is to classify the n values.
On the k' sheet, for example, the function z'/" assumes the values of its k™ branch

1/n m/n

wk=|Z|1/"exp{%[9+2(k—1)n]}, -m<f<m 0<|z]<o0

where we have again chosen the branch cut to lie along the negative real axis. Thus, as
arg z increases through 7, z crosses from the first to the second sheet and z'/" varies
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continuously from the values of w; to those of w,. As arg z increases through 37, z
again encounters the cut and so drops down from the second to the third sheet. This
process continues until we reach the n' sheet, which corresponds to (2n-3)m < arg z <
(2n - 1)71. As arg z increases through (2n - 1)1, z moves through the cut back up to
the first sheet and z!/" varies in a continuous fashion from the values of wy, to those
of wi.

Paradoxically, the Riemann surface for the infinitely many valued logarithm func-
tion

Inz=In|z|+iargz = Lnz + 2kmi, k=0,%1,+2,... (1.6.5)

is somewhat easier to visualize. The function’s branch points are readily seen to be
z = 0 and z = oo again. For example, if one completes a counterclockwise cycle about
the origin one leaves In |z| unchanged but arg z is increased by 27 and so, In z changes
value by an amount 27ri. Moreover, no matter how many times one encircles the origin,
the logarithm never regains its original value. Thus, in this case, z = O and z = oo
are branch points of infinite order. This means that a single valued definition of the
logarithm requires a Riemann surface consisting of an infinite number of sheets, each
one joined to the one above and below it by a cut running from z = 0 to z = <.

Figure 1.10: A part of the Riemann surface for the logarithm. The path C encircles the branch point at
the origin and hence, necessarily crosses from one sheet to the next.

Choosing the cut to again lie along the negative real axis, the single valued
branches of In z that correspond to this construction are

wi=1In|z| +i0+ 2mki, -m<0<m0<|z|<oo,k=0,%1,%2,.... (1.6.6)

These functions are holomorphic everywhere in the cut plane and the n™ member of
the set, wy, takes on the same values that Inz assumes when (2n - 1) < argz <
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(2n + 1)71. Although each wy has a jump discontinuity of
lim[w(|z], m - €) - wi (|2, -7 + €)] = 2mi
e—0

across the cut, the value of wy, just above the cut is the same as the value of w;,, just
below it:

lim w(|z|, m-¢€) = lim wy, (2], -7 + €).

£—0* e—0*

Thus, with the upper lip of the cut in the k™ sheet connected to the lower lip of the cut
inthe (k+1 )th sheet, the Riemann surface provides a domain of definition on which
In z varies continuously through all the values it can assume and hence, on which
In z is holomorphic everywhere, except for the two branch points z = 0 and z = oo.

The preceding discussion provide a good basis from which to tackle more compli-
cated functions.

For example, w = (z — @)~ has a branch point at z = a rather than z = 0 but
is otherwise identical in behaviour to z!/2. Thus, its Riemann surface is a closed, two-
sheeted structure with the sheets cut and joined along an arbitrary line extending from
z = a to z = oo, Figure 1.11 shows a more or less random choice for this line. To utilize
our experience with 242 we introduce the variable 0, = arg(z — a). Then, the single
valued branches corresponding to our particular choice of branch cut are w; = |z -
a|'? ela/2 and w, = —|z — a |*/? €% /2 with |z| < oo, |z — a| > 0 and Gy —271 < O, < Go»
which completes the definition of a Riemann surface for this function.

1/2

&

A .
“Re z

Figure 1.11: A possible choice of branch cut for the function w = (z - a)"/2.

A more interesting as well as more challenging example is posed by the function w =
[(z-a)z-Db) ]1/ 2, To identify its branch points we introduce the variables r, = |z - a|
, Ty = |z—-b|, §, = arg(z - a) and g, = arg(z — b) as shown in Figure 1.12. Only two of



Multivalued Functions and Riemann Surfaces =—— 37

these four variables are needed to specify z but, by using all four, we can write w in
the suggestive form

i . .
w=(rary)"? exp {5(6[1 - 9b):| = [ry/? &' 2][r}/? €00 /2], (1.6.7)
From our experience with z/2 we can assert that z = a and z = b are both branch
points of order one. This is readily confirmed by performing a cycle around either,
but not both, of the two points. If we encircle z = a on a curve that does not enclose
z = b, 9, increases by 27 while g, increases and then decreases and finally returns to

its initial value. Thus, after one full cycle, w changes its sign and after two full cycles
it returns to its initial value.

Y

Figure 1.12: The definition of the variables rq4, 1y, 04, 05

It is both interesting and important to notice that a cycle enclosing both z = a and
z = b causes no change in w. This is because both g, and g, increase by 277 causing a
change in the argument of w of

1 1 1
E(ea + eb) — i(ea + eb +47T) = E(ea + eb) + 271, (168)

This implies that z = oo is not a branch point although going on past experience alone,
we might mistakenly have assumed that it is. To confirm this, we set z = % and note
that w = [(—12 -1V t% as { — 0. Thus, although w is singular at z = co({ = 0), and
double valued in any neighbourhood of that point, it is unchanged by a cycle about it
and so z = oo is not a branch point.

The next step in defining a Riemann surface for this function is to choose a branch
cut joining z = a and z = b. As Figure 1.13 illustrates, this may be done in two distinct
ways:



38 —— Functions of a Complex Variable

(a) a curve of finite length terminating at z = a and z = b;
(b) a curve which terminates at z = a and z = b but passes through z = oo in between.

Figure 1.13: In the diagram on the left the z plane is cut along the straight line segment that joins
z = aand z = b. Inthe one on the right the plane is cut along two straight lines that meet at the
point at infinity.

To discuss these two options as clearly as possible, we shall specialize to the function
w=Z -1 =[z- D+ 1)]? = (r, 1) /2 i+ 012

whose branch points are at z = +1. Given past conventions, the two obvious choices
for a branch cut for this function are the real axis segments

(a) -1<x<1,and

b)) x<-1,x>1

as shown in Figure 1.14. (This cut structure is also relevant to the function w = In %
which we will encounter in subsequent sections of the book.) Since each of these is a
straight line, the corresponding branches of (z2 -1 )1/ 2 are given by

Wip = #(ry r_ )12 @0 +0/2,
with g, and g_ restricted to prevent us crossing whichever cut we have decided to work
with. The cut along -1 < x < 1is avoided if either g, is restricted to-m < 9, < mor 6_
isrestricted to O < 9_ < 2. However, although w1 and w, are discontinuous across the
cut, they must be continuous everywhere else. In particular, they must be continuous
across the line segments x < -1 and x > 1. This latter restriction can only be satisfied if
0. and g_ have the same range of variation; (cf. equation 1.6.8 and the discussion that
led up toit). To conform with convention, we therefore require -7 < g, < 7. The closed,
two-sheeted Riemann surface that corresponds to this choice of cut is now completely
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specified by assigning to (z2 —1)"/2 the values wy = |z—1 Y% |z+1 |2 ¢i6: +6)/2 _7 <
6. < m, |z + 1| > 0 for z on the first sheet, and the values w, = — w; for z on the second
sheet of the surface.

Figure 1.14: Two obvious choices for the branch cut for the function (z2 -1 )1/2 .

e +ivxI +yx-]
>
-1 -ixtr +1
Sheet 1
N —ix 1 -Vx?-1
h .
»
-1 + i1 4]
Sheet 2

Figure 1.15: The values assumed by (22 -1)'/2 along the real axes of its two Riemann sheets when
the branch cut is chosen to liealong -1 < x < 1.

It is instructive to calculate the values assumed by (z% -1 )1/ 2 for values of z close to
the real axis on the two Riemann sheets. This is done below and the results displayed
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in Figure 1.15. For -1 < x < 1,y = 0%, we have g_ = 0*, §, = 7T and so
wi = V1-x2e? = 1iv1 - x2.
Forx < -1,y =0",wehave §_ =9, = +7T and
wi = Vx2-1e™ = —V/x2 1.
Forx > 1,y =0% wehave §_ = g, = 0* and
wy = +Vx2 1.

If the cut is chosen to lie along the line segment x < -1,x > 1, there is only
one way to avoid crossing it: 9, and 9_ must be restricted to the ranges 0 < g, < 27
and - < §_ < m. This conclusion follows from noting that, with this choice of cut,
r. 12 e10+/2(y_1/2 16-/2) hehaves like z'/2 when its cut is taken to lie along the positive
(negative) real axis. Thus, in this case, the Riemann surface is completely specified
by defining the branches of (z2-1)"? to be wy = |z — 1[*? |z + 1|2 ¢i®:+6)/2 anq
Wy =-w1,0<0, <2m,-n1<@_<mand |z- 1| > 0. The values assumed by (z2-1 )1/2
near the real axes of this surface are shown in Figure 1.16.

A

vxi= 1 , R

-vx'-] +i1-x +vx” -: i
; -] | +7 :

Sheet |
A
+Vx'=1 -WIEx . -vai=1
-vx’-1 -1 S R
Sheet 2

Figure 1.16: The values assumed by (z% -1 )1/2 along the real axes of its two Riemann sheets when
the branch cut is chosen to lie along x < -1, x > +1.

As Figures 1.15 and 1.16 affirm, both Riemann surfaces are closed. Moreover, they are
constructed in such a way that one changes sheets after any cycle that encloses only
one of the branch points but is returned to one’s starting point after a cycle that en-
closes both branch points.

It is now easy to generalize to the case w = \/(z -a))z-az)...(z-an). Ifnis
even, there are n branch points located at z = ay, a», ..., a, while, if n is odd, there
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are n + 1 branch points including the point at infinity. The branch points must be
joined pair-wise by branch cuts and then a closed two-sheeted Riemann surface can
be constructed by means of two interconnections along each cut. Assuming straight
line branch cuts, the surface is completely specified simply by defining the branches
of the function to be

w1 = (ay ... Tay )2 O 02 vy — _w) re = |2 - a;), 04, = arg(z - ay),

witheachof g, ..., g, restricted to ranges of length 277 as determined by the partic-
ular choice of cuts that has been made.

Figure 1.17: If z moves from the point z;, inside a closed curve C on the top sheet of a surface for
V/(z - a1)(z - a2)(z - a3)(z - ay) so that it crosses to the bottom sheet via the cut enclosed by C,
it can cross back to the top sheet via the second cut and thus end up at the point z, , outside C,
without intersecting C itself.

We conclude with a couple of examples of the kind of curious phenomena that can
occur with Riemann surfaces.

On a surface for a function with four or more branch points in the finite plane
one can move continuously from the inside to the outside of a closed curve without
actually crossing the curve itself. How this comes about is shown in Figure 1.17 using
a surface for the function \/ (z-ai)...(z-ay).

Of more practical interest is the behaviour exhibited by the function

Z42 tia

= a>0
zV2 -ia’

which is singular when z'/? = ia. The Riemann surface defined for z'/2 can be used for
this function as well. Thus, we see that w has a singularity at z = — a® on the first sheet
of the surface but on the second sheet it has a zero there. This illustrates that while
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a function may have a singularity (which is not a branch point) on some sheets of a
Riemann surface, it may be perfectly well-behaved at the same point(s) on the other
sheets.

We have devoted what might seem to be an inordinate amount of space to multi-
valued functions. This has not been done because the subject is difficult but because,
on the contrary, it is relatively simple once it is recognized that to attempt to visualize
Riemann surfaces as three dimensional objects will only impede understanding; the
surfaces merely provide a classification scheme, a means of separating and ordering
the many values. Thus, what almost amounts to an overexposure at this juncture is
intended to make the reader feel if not at home, then at least comfortable with the
concepts of branch cuts, sheets and surfaces when they reappear in subsequent sec-
tions.

1.7 Conformal Mapping

The mapping defined by an analytic function w = f (z) has the property that it is con-
formal (angle-preserving) except at points where f’ (z) = 0. As we shall see, this has
an important application in the solution of two dimensional boundary value problems
by transforming a given complicated region into a simpler one.

To see how conformality comes about, consider a smooth curve C passing through
the point z o in the z - plane. A function w = f (z) that is holomorphic at z = z, will
map zo onto a point w = wo and C onto a curve C,, passing through wg. Next, consider
a near-by point z; on C and its image w; = f(z1) on Cy. Denoting z - zo by Az and

w — wo by Aw, we take the limit
Aw

Az
which by definition is the derivative f’(zo). Examining first the modulus and then the
argument of this limit, we obtain

[Aw|
‘AZ| - |f (ZO)‘ (1-7'1)
and
Aw ,
Qo — 0 = [argAw - arg Az] = (arg T\z) =argf’ (z0) =x (1.7.2)

where 0y and ¢, are the angles that the tangents to the curves C and C,, make with
the real axis in their respective planes. This means that C is rotated through an angle
a = arg f'(zo) when it is mapped onto Cy but this angle of rotation is the same for all
curves passing through z,. Thus, the angle formed by two intersecting curves at zo
remains unchanged both in magnitude and direction. At the same time, (1.7.1) tells us
that the magnification of an infinitesimal arc of C that occurs when it is mapped onto
Cw is |f’ (zo) | and so is the same for all curves passing through z,. This means that
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an infinitesimal circle about z, is mapped onto an infinitesimal circle about wy and
the ratio of the radii is |f’ (z0) | These two geometrical properties, invariance of angles
and of the shape of infinitesimal circles, are what define a conformal transformation.
Thus, we have established the
Theorem: If f (z) is holomorphic at zo and fl (zo0) # O, then the mapping z — w =
f(2) is conformal at zo.

An immediate application follows from the orthogonality of the straight lines
u = constant and v = constant in the w — plane. The conjugate harmonic functions
u(x,y) = constant and v (x,y) = constant must form a system of orthogonal curves
(called level curves) in the z — plane. But they are also solutions of Laplace’s equa-
tion in two dimensions, VZu = 0 and V2v = 0. Thus, if u (x, y) is an electrostatic
potential then u (x, y) = constant represents an equipotential surface and the curve
v (x, y) = constant represents a line of force.

The practical significance of conformal mapping stems from the following
Theorem: A harmonic function ¢ (x, y) remains harmonic under a change of variables
resulting from a one to one conformal mapping defined by an analytic function

w=f(2).

The proof is straightforward. If ¢ (x, y) is harmonic (V2@ = 0) within the domain of
holomorphy D of w = f (z) then it has a conjugate Y (x, y) such that @ (x, y) = ¢ (x, y)+
i (x, y) is an analytic function of z = x + iy in D. Since w = f (z) is holomorphic with
a non-vanishing derivative in D, it maps D onto a domain Dy, in the w — plane where
there exists a unique inverse function z = F (w) which has the derivative

ar _ 1
dw df/dW

and maps Dy onto D conformally. Hence, @ (F (w)) is an analytic function of w in Dy,.
Its real part is
dxu,v),yu,v))

and is a harmonic function of u and v in Dy. The theorem is used as follows. Sup-
pose that it is required to solve Laplace’s equation in a given domain D subject to the
imposition of specific values on the boundary of D. It may be possible to identify a con-
formal mapping which transforms D into a simpler domain such as a circular disc or a
half-plane. Then we can solve Laplace’s equation in the w—plane subject to the trans-
formed boundary conditions. The resulting solution transformed back to D will be the
solution of the original problem. The catch is one needs to have a detailed knowledge
of the mapping properties of a great many analytic functions. Catalogues of mappings
have been compiled and can be consulted for exactly this purpose.

Just to illustrate this technique we shall consider one particular example of what
are known as linear fractional transformations,

_az+b

i d’ (ad - bc # 0). (1.7.3)
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The reason for the condition ad — bc # 0 is to ensure that w' # 0. We state without
proof the

Theorem: Every linear fractional transformation maps the totality of circles and
straight lines in the z — plane onto the totality of circles and straight lines in the

w — plane.
Our example is the function
w—g—ib (x-iy)=u+iv
z x2+y? )= '

A standard approach to exploring the properties of a mapping is to find the level curves
in the z — plane that map onto lines of constant u or constant v in the w — plane. In
this case the straight lines u = ¢ = constant have the pre-image

b
x2+y2=zx or

(2o

2c 4¢c2°
This is the equation of circles with centres at (%, 0) and radii % which confirms the
theorem above. Notice that the centre of the circle maps onto the point w = 2¢ and
more generally, the interior of the circle is mapped onto the half-plane u > ¢ while the
exterior is mapped onto u < cif ¢ > 0.

In a similar vein, the lines v = k = constant correspond to the level curves

x> +y? =—%y or

2 +( +£2_L2
Y*¥3& T ae

These are circles with centres at (0, — % ) and radii %. Notice that they are orthogonal
to the previous set of circles. Notice also that the axes u = 0 and v = O are the images of
x = 0and y = 0, respectively but with the origin mapped onto the point at infinity and
vice versa. Once again, the interior of the circles maps onto v > k while the exterior
maps onto v < kif k > 0.

An example that makes use of this analysis is one consisting of an infinite metal
cylinder of radius R maintained at electric potential VV and resting on top of but sep-
arated by a line of insulation from a grounded metal sheet lying in the y = 0 plane.
Since the circular cross-section of the cylinder can be located in the upper half plane
with centre at (0, R), it will be mapped by w = £ onto the line v = — 2. Thus, if we take
b = 2R?, the line will be v = —R. As we have seen, the real axis y = 0 maps onto the
real axis v = 0 and the exterior of the cylinder above the sheet maps onto the area be-
tween v = 0 and v = —-R. Thus, the original problem is mapped onto a parallel plate
capacitor with one plate at potential V and located at v = —R and the other grounded

and located at v = 0. We can write down the solution there immediately:

¢= —%v.
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: _ _2R* ., _ _ 2R’ ; :
But, under our mapping, v = ~3y7y = —5-sin 0 where we have switched to polar

coordinates. Therefore, the solution to the original problem is

b (r, 6) = ﬂsine.

This is the real part of the complex potential @ (z) = i28Y. Thus, the equipotential

surfaces are given by

g sin 6= constant

while the lines of force are described by

Im® (z) = g cos 6 = constant.

A
' Y4
v=k
b
W=-—
Z h
: —_—
x H u
-b
- —
2k

Figure 1.18: The function w = b/z maps the circle centered at y = % and passing through the origin
onto the straight line v = k.



2 Cauchy’s Theorem

2.1 Complex Integration

We shall now confront the problem of defining an integral over a single complex
variable z when the z-plane is, in fact, a two-dimensional continuum. There are in-
finitely many ways of integrating between two values of z and, at this juncture, we have
no way of knowing whether they will or should yield the same number. The solution,
suggested by the correspondence between complex numbers and two-dimensional
vectors, is to define an integral along a particular path or contour joining the two
points in question.

We shall require that all contours be simple curves. Thus, a contour joining the
points a and b, and consisting of k smooth arcs, can be specified by two piecewise
smooth real functions x(t), y(t) of the real variable t such that

z=z(t) = x(t) +iy(t), to<t<ty (2.1.1)

with z(tp) = a and z(t;) = b. So defined, a contour is rectifiable with a length

1/2

B> / () (2] o1

where the sum is over the contour’s constituent arcs.
Definition: Let C denote a contour with end-points a and b as shown in Figure 2.1
Sub-divide C into n segments by introducing the n+ 1 points a = zo, 21, 22,...,2n = b.
Then, introduce an additional set of points {3, (3, ..., {x taken along C in such a way
that ¢; lies between z;_; and z;. We now form the sum

In= ")z - 21-1) (213)
j=1

where f(z) is the function to be integrated. If this sum approaches a limit [ as n — oo
in such a way that

|Z]' - Z]'_1| —0 (214)

for all j, and if this limit is independent of the manner in which we have chosen the
points z; and {;, then I is said to be the contour integral of f(z) along C and is written
as

I= | f(2)dz. (2.1.5)
/

[ 52Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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Im:z

Figure 2.1: A contour of integration C joining the points a and b.

Separating f(z) and z into their real and imaginary parts, we can rewrite the sum
in (2.1.3) as

I =Z[u(§j, rlj)(xj - Xj—1) - V({j, 71]‘)()/]‘ - J/j—1) + i[V(%}, ﬂj)(Xj - Xj-1)+u(fj, le)()/j - Yj—l)]
j=1
(2.1.6)

where we have set {; = & + in;. The limiting procedure defined by (2.1.4) implies that
|X; = xj—1] — O and |y; — yj-1| — O for all j. Thus, (2.1.6) tells us that the integral I can
be expressed in terms of real line integrals:

= /(udx —vdy) + i/(vdx +udy). (2.1.7)
C C

This, in turn, can be transformed into a real definite (Riemann) integral with respect
to the parameter t. Using the parameterization (2.1.1) we can write (2.1.7) as

tic
_ dx _dy dx dy
I= / (um VE) dt+1/ <VE + uE> dt. (2.1.8)
to to
Since 4 G+ l?; = %, we may also write this as
/ (w+ i) % gt - / flz (t))dz(t) 2.19)

This allows us to use the theory of real integral calculus to determine the condi-
tions under which I will exist. Since C is a simple curve it is sufficient to demand that
f(z) be continuous on C. This ensures that the points at which the constituent arcs of
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C join, which are points of discontinuity for the derivatives % and %, will cause no
trouble.

There are a number of properties of the contour integral that follow from (2.1.9) by
virtue of the corresponding properties of real definite integrals. For example,
(i) theintegral is linear with respect to the integrand,

/[afl(z) + Bf2(2)ldz = a/fl(z)dz +/3/f2(z)dz, (2.1.10)
C C C
(ii) the integral is additive with respect to the contour,
f(2)dz = | f(z)dz+ | f(z)dz, (2.1.11)
C1+/Cz C[ Z

where C; + C, denotes the simple curve consisting of C; followed by C-,
(iii) reversing the orientation of the path replaces the integral by its negative,

f(z)dz = - / f(z)dz, (2.1.12)

Cla—b) C(b—a)

(iv) the following inequalities hold,
/ f2)| < / I£(2)| |dz| < max [f(2)] - L(C), @113)
C C

where L(C) is the length of C.

This last result is known as the Darboux Inequality and will prove to be very useful.
To derive it one invokes the generalized triangle inequality,

n

Il <> IFG] - |2 = 21| < max|[f(2)] - > [z - 2j4]

j=1 j=1

plus the definition of L(C) given in equation (2.1.2). Then, on taking the limit n — oo,
one immediately obtains (2.1.13).

Examples: Before presenting general theorems on the integration of functions of a
complex variable, we shall work out a few examples using the rather limited set of
tools currently at our disposal. We start with the integral

I= /coszdz

c

which we wish to evaluate for two contours possessing the same end-points, z = 0 and
z =1 +i. The particular contours we shall use are shown in Figure 2.2.
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Figure 2.2: Two contours of integration.

Since cos z = cosh y cos x — i sinh y sin x, equation (2.1.7) yields

I= / [cosh y cos xdx + sinh y sin xdy] + i / [~ sinh y sin xdx + cosh y cos xdy].
c c

Along the contour C; x = y. Therefore,
1 1
I = /Coszdz =(1+1) / cosh x cos xdx + (1 - i)/sinhxsinxdx.
C 0 0
Integrating by parts, we have
1 1

- / sinh x sin xdx

0
1

+/coshxcosxdx.
0

1
/ cosh x cos xdx = cosh x sin x

0
0

1
1

/ sinh x sin xdx = — sinh x sin x

0
0

Thus,

1

I = %(1 + i)[cosh x sin x + sinh x cos x|
0

=cosh1sin1 +isinh1cos1 = sin(1 +i).

- %(1 - i)[sinh x cos x + cosh x sin x|

49

0

The contour C, consists of two smooth arcs. Along the first of them y = 0 and

dy = 0 while along the second, x = 1 and dx = 0. Thus,
1 1 1

P =/coszdz=/cosxdx+/sinhysin 1dy+i/coshycos 1dy.
C 0 0 0
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Integrating, we have

1

+coshy
0

1
sinl +isinhy
0

1

cos1
0

I, =sinx

=cosh1sin1 +isinh1cos1 =sin(1 + i).

We see that I has the same value for the two paths followed. In fact, we have ob-
tained the same value that results from using indefinite integration as would be sug-
gested by the rules of real variable calculus:

1+i
L=5-= /coszdz =sinz
0

1+i
=sin(1 +i).
0

Both of these observations, the path-independence of the integral and the appli-
cability of the “fundamental theorem of calculus”, are explained by Cauchy’s The-
orem. As we shall see, they must obtain in any simply connected domain in which
the integrand is holomorphic and, in the present case, that means everywhere in the
finite plane.

Notice that the path-independence of the integral of cos z implies that if we had
integrated around a closed contour, C; +(—C;) for example, the result would have been
zero. This should be contrasted with our next example which involves the function z".
Choosing the unit circle taken in the counterclockwise direction as the contour, we

can set z = e'?, - < 6 < 7. This means the contour integral is

n

I= /z*dz = /e'igieiede = 27i.

C -

Since z" = % on this particular contour, we have also evaluated

/ldz = 2mi.
z
C

As we shall see, Cauchy’s Theorem provides an explanation of this result too. Be-
cause z" is not an analytic function, its integrals are path dependent everywhere in the
complex plane. Consequently, its integral around a closed contour is non-zero and, in
fact, each closed contour yields a different non-zero value. On the other hand, 1 is an
analytic function with a single singularity at z = 0. Its closed contour integrals only
admit two values 27 if the contour encloses z = 0; 0 if it does not.

As a final example we shall evaluate

I=/(z—zo)"dz, n=0,+1,+2,...
C
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with C being a circle taken in the counterclockwise direction about z = zy with an
arbitrary radius r. On the contour we can set z = z + re’, —m < 6 < m. Thus,

n s
I= /rneineireiede _ l-rn+1 / ei(n+1)9de
- -
or,
=] 2 n=-1 (2.1.14)
0, n=0,1,%2,+3,...

Ifitis feasible to use indefinite integration to evaluate contour integrals of analytic
functions, we should be able to reproduce this result for I by applying the formula

/ f(z2)dz = F(b) - F(a), (2.1.15)
C

where F(z) is an antiderivative (indefinite integral) of f(z), dﬁ(j) = f(z), and a and b
are the end-points of the contour C. An antiderivative of f(z) = (z — zo)" is

In(z - zo), n=-1
F(z) = 2.1.1
@ {n}l(z—zo)"”, n#-1 (2.1.16)

Therefore, integrating f(z) around a closed contour for the case n # —1, we obtain
the value zero because the antiderivative is single valued and the end-points coincide.
This value arises without regard to whether z; is contained within the contour C. Thus,
for any closed contour C we have

/(Z—ZO)"dZ=0, n=0,1,+2,3,:--
C

For n = -1, the antiderivative is multivalued with a branch point at z,. Therefore, we
must distinguish between contours that enclose z, and those that do not. A closed
contour that encircles zo must cross from one sheet of the Riemann surface for In(z -
Zp) to an adjacent one. Since we are integrating in a counterclockwise direction, this
means that the argument of z will increase by 2 as we proceed from the end-point z =
a on the initial sheet to z = b on the sheet above. Therefore, rather than having a = b,
we now have |a| = |b| and arg(b) — arg(a) = 27 and so, F(b) — F(a) = 2mi in (2.1.15).
Notice that this result is quite independent of the detailed nature of the contour; it
need only be closed and contain zo. If, on the other hand, z, is not contained within
C, the contour must return to its starting point on the initial sheet, no matter how the
branch cut from z = z to z = oo is chosen. Since the end-points once more coincide,
the value of the integral is zero. Thus, in summary, we have for any closed contour C

/ 1 dz — 2mi, 2z inside C
Z-2p 0, zgoutside C

c
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The ease with which we have generalized the results in (2.1.14) by means of indef-
inite integration underlines the importance of finding out precisely when we can or
cannot make use of it. The answer is provided by Cauchy’s Theorem which, in a very
real sense, is the basis of the entire theory of analytic functions.

2.2 Cauchy’s Theorem

2.2.1 Statement and Proof

Cauchy’s Theorem: If f(z) is holomorphic in a simply connected, bounded domain
D, then

/ f(z)dz=0 (2.2.1)
C

for every simple closed path C in D.

We shall run through an over-simplified proof that makes the theorem plausible as
well as renews the correspondence between complex numbers and vectors in a plane.
It is implicitly based on Green’s Theorem in two dimensions,

0 oP
/(de+ Qdy) = // (a—g - a—y) dxdy,
C S

or equivalently, on Stokes’ Theorem,

/A-dl=/S/(V><A)-dS,

c

where S is the surface bounded by C.
From equation (2.1.7) we have

f(2)dz = [ (udx —vdy) +i [ (udy + vdx). (2.2.2)
[ree- [

Let us consider the first term on the right hand side and divide the area S into strips
parallel to the imaginary axis as shown in Figure 2.3. It then follows that

b b b
ule, yOldx = | ulx,y100ldx + [ ulx, y,()ldx = - [ (ulx, y2(0] - ulx, y:(x)dx.

/ / / /

Thus,
b Yz(X)a 5
u u
C/u[x,y(x)]dx= —/ a—ydydx = —/s a—ydxdy. (2.2.3)
a y,(x)
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Figure 2.3: A closed contour C containing surface area S which is divided into infinitesimal strips
that parallel the imaginary axis.

The other terms on the right hand side of (2.2.2) may be similarly transformed to give

ou ov ou ov
f(z)dz = K—a— - a—) +1i (a— - a—)] dxdy. (2.2.4)
c/ /S/ y X X y

However, the integrand of the surface integral vanishes by virtue of the Cauchy-
Riemann equations. Therefore,

C/f(z)dz =0.

The steps taken in the derivation of (2.2.3) are valid only if ‘3—; is a continuous
function of x and y. Hence, this particular proof requires an assumption that is not
given in the statement of the theorem; namely, that f(z) is continuous throughout the
domain D. However, Cauchy’s Theorem will enable us to establish that a holomorphic
function possesses continuous derivatives of all orders which suggests that such an
assumption must be superfluous. This was confirmed first by E. Goursat whose proof
of Cauchy’s Theorem can be found in, for example, Copson’s Theory of Functions of a
Complex Variable.

To continue with the story of Augustin Louis Cauchy, he was appointed to the French
Academy in 1816 after it had been purged following the restoration of the French monar-
chy. At the same time he was made professor at the Polytechnic and his lectures there
on algebraic analysis, calculus and the theory of curves were published as text books.
However, the revolution of 1830 meant that he had to go into exile. He returned to France
in 1837 but because he refused to take a loyalty oath he was denied a teaching appoint-
ment. It was not until 1851 and by special dispensation from the Emperor that he was
permitted to occupy a chair in mathematics without taking the oath of allegiance. Dur-
ing this period his productivity was extraordinary; from 1830 to his death in 1857, he
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published over 600 original papers and about 150 reports. Included in this prodigious
body of work was the foundation of complex analysis.

The most immediate consequences of Cauchy’s Theorem are sufficient to explain
the observations we made while evaluating the example integrals in the last Section.
We shall conclude the present Section with their description.

2.2.2 Path Independence

Let C; and C; be any two curves having the same end-points and lying in a simply con-
nected domain in which the function f(z) is holomorphic. We denote by (-C,) the con-
tour obtained from C, by reversing the direction of integration. Then, since C; + (-C>)
is a closed contour, we may apply Cauchy’s Theorem together with (2.1.11) and (2.1.12)

to obtain
0= / f(2)dz = C/ f2)dz + / f(2)dz = C/ f(2)dz - C/ f(2)dz.

C1+(=C) (=C2)

Hence,

/ f(2)dz = / f(2)dz. (2.2.5)

Since C; and C, are arbitrary, we have established that the integral of f(z) between
two points a and b is path independent in any simply connected domain that includes
a and b and excludes the singularities of f(z). Under such conditions we may denote

the integral by
b
/ f(2)dz
a

since the specification of a contour is irrelevant. Thus, in our example involving cos z
”

we need only have written 1flcos zdz for the integrals in question since any integral

of this function is path inde;))endent everywhere in the finite plane.

Path independence can also be established for integrals around closed contours
in multiply-connected domains. Suppose that we have a function f(z) that is holomor-
phic in a doubly connected domain like that shown in Figure 2.4. Nothing is assumed
about the behaviour of f(z) in the area interior to the inner boundary of the domain
but presumably it is singular at one or more points of this region. We introduce two
contours C; and C, connected by a narrow tube consisting of the straight lines L, and
L,. The exact location of these curves is arbitrary so long as they all lie fully within
the outer boundary and C; and C; both encircle the inner boundary of the domain. By
construction, f(z) is holomorphic at all points within and on the simple closed curve
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C =Cy+Ly+Cy+Ly. Thus, Cis contained in a simply connected domain in which
f(z) is everywhere holomorphic and we can apply Cauchy’s Theorem to obtain

/+/+/+/f(z)dz=0. (2.2.6)

Ci L1 C L

Figure 2.4: (upper panel) C; and C; are connected by L; and L, to form a single closed contour;
(bottom panel) Ly and L, are removed leaving C; and C; as closed contours encircling the inner
boundary of the domain

However, the contributions from L, and L, cancel if we now let the separation between
them tend to zero. Therefore, in this limit, (2.2.6) becomes

/+/f(z)dz=0,

i G

with C; and C, being closed contours traversed in opposite directions. Reversing the
direction of one of them we finally obtain

/ f(z)dz = / f(z)dz. (2.2.7)
Cy C,

This is an important result and one that was anticipated in our example involving
the function f(z) = (z - zo)™. It shows that an integral has the same value for all
closed contours that contain the same singularities of its integrand. This means that
any contour can be arbitrarily deformed so long as we do not cross a singularity of the
integrand without changing the value of the integral. Hence, we need not specify a
contour very precisely, only its relationship to the singularities of the function being
integrated.
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A generalization of the argument leading to equation (2.2.7) shows that if our func-
tion f(z) has an n-fold connected domain of holomorphy then we can write

f(dz= | f(z)dz+ [ f(z)dz+...+ | f(z)dz (2.2.8)
[ e [rioee: [ e |

where each of the n — 1 “holes” in the domain is enclosed by one of the contours C;,
j=1,2,...n-1,and all are enclosed by the contour C. The integrals in (2.2.8) are all
taken in the same (counterclockwise) direction. Figure 2.5 shows an appropriate set of
contours for a four-fold connected domain.

Figure 2.5: A four-fold connected domain of holomorphy for the function f(2); [ f(z)dz = [, f(2)dz +
Jo, f@dz + [ f(2)dz.

2.2.3 The Fundamental Theorem of Calculus

Let f(z) be a function which is holomorphic in some simply connected domain D. It
then follows that the integral

F(z) = /f(()d(, for fixed zo in D, (2.2.9)

defines for all z in D a unique function which is independent of the path of integration
from zy to z. Since D is a domain, there must exist a neighbourhood N of z that lies
entirely within it. Let z + Az be a point in N and let us form the quotient

2 z z+Az
Fer 210 - L [roa- 4 [rods- 1 [ s

z+Az z+Az

e / ag+ A / [F(O) - fNdC. (2.2.10)
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By construction, the straight line joining z to z + Az must lie within D and so can be
used as a contour for the integrals in (2.2.10). The first integral on the right hand side
of the final equality is then easily evaluated by parameterizing this straight line and
yields

z+Az

/ dc = Az.

Thus, (2.2.10) can be rewritten as

z+Az
Fer9-FE) ) 2 [ 1) - fonas. (221

However, using the same straight line contour and the Darboux inequality we have

z+Az

- / [F(Q) - f(2)d¢ | < max [f() - £(2)]

z

which, because f(z) is continuous in D, tends to zero as Az approaches zero in any
direction. Therefore,

g = A, W =/@). (2212)

In other words,
z
F(z)=/f(()d(, zo and z in D,
Zo

is an antiderivative of f(z) and is itself holomorphic in D. Hence, for all paths in D
joining any two points a and b of D, we can write

b b a
/ f@)dz - / f@)dz - / f@)dz = F(b) - F(a). (2.213)

Thus, we have finally identified the circumstances under which we can employ indef-
inite integration to evaluate integrals. This is a practical boon of some importance
since recognizing functions as being the derivatives of other functions is the only gen-
erally applicable integration technique one ever learns.
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2.3 Further Consequences of Cauchy’s Theorem
2.3.1 Cauchy’s Integral

The most important of all the consequences of Cauchy’s Theorem is an integral repre-
sentation that is basic to the further development of the theory of analytic functions.
It also has a number of physical applications.

Theorem: Let f(z) be holomorphic in a simply connected domain D and let C be any
simple closed curve within D. If z is a point within C, then

flz) = Tm g(oz ag, (2.3.0)

the integration being taken in the counterclockwise direction.
Proof: Using one of the manipulations that helped us prove the fundamental theorem
of calculus we rewrite the integral in (2.3.1) in the form

f({) a¢ . [f)- f(Z)
( d( f()/( J Tz dc. (2.3.2)

We have already evaluated the first integral on the right hand side of (2.3.2). For any
closed contour encircling the point { = z,

/ (‘% Py (233)
C

Since the integrand of the second integral is holomorphic everywhere within C, except
possibly at { = z, we can use equation (2.2.7) to replace C by a small circle v about z
with radius r sufficiently small that it lies entirely within C. Thus,

M1 g /f(() 1@ gy _ /[f(wele) folde 25

where we have used the fact thaton~, { =z + rel, —m <0<

Since f(z) is continuous, we have |f({) — f(z)| < € whenever |{ - z| < §(¢). If we
choose the radius r to be less than 6(¢), then Darboux’s inequality applied to (2.3.4)
yields

) -f(2)
(-z

< 2me.

¢

~

Hence, by taking r small enough, this modulus can be made smaller than any preas-
signed number. On the other hand, the value of the integral must be independent of r.
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Figure 2.6: The contours used in equation (2.3.4).

Therefore,

fQ-f=) ,,

~

which, together with equations (2.3.3) and (2.3.4), dictates that (2.3.2) read

&d( = 2mif(z)

(-2
c

as required.

As well as being one of the most useful results in mathematical physics, Cauchy’s
Integral is one of the most remarkable. If a function is holomorphic within and on a
simple closed curve C, its value at every point within C is determined solely by its
values on that curve. By means of a simple extension, we see that this implies that a
function must be completely determined by its values at the boundary of its domain
of holomorphy and hence, by its singularities. We first encountered this idea in Sec-
tion 1.6 and will return to it often throughout the remainder of this Chapter.

A purely practical use of Cauchy’s Integral is in the evaluation of closed contour
integrals. Examples: Consider the function f(z) = if} and suppose that we wish to
integrate it around the circles |z - 1| = 3/2, |z| = 3/2, |z+ 1| = 3/2. As a first step, we
use partial fractions to write f(z) as

Z2+1[ 1 1
@) == [z—l_z+1]'

Next, we note that z? + 1 is holomorphic on and within all three of the proposed con-
tours. Thus, we may use (2.3.1) to evaluate the integrals

2 2
I+=/Z+1dz I_=/Z+1dz
z-1 z+1

C C
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for each C.

In the case of |z— 1| = 3/2, z = 1 isincluded, and z = -1 excluded by the contour.
Thus, I, = 2mi[z? + 1],-1 = 4mi by Cauchy’s Integral, I- = 0 by Cauchy’s Theorem, and
SO

2

z-+1 1 . .
=24 = 271i.
3 1dZ > T m

|z-1|=3/2

In the case of |z| = 3/2,z = 1 are both enclosed by the contour. Thus, I. =

27i[2% + 1]3=41 = 4mi, and so
2
zc+1
/ -1 dz = 0.

|z|=3/2

With |z + 1| = 3/2,z = 1 is now excluded and z = -1 included. Thus, I. = 0,
I- = 4miand
z2+1

z2-1
|z+1|=3/2

dz = -2mi.

Since Cauchy’s Integral plays such a central role in complex analysis, we shall
adopt the convention that every integration along a closed contour will be taken in
the counterclockwise direction or, such that the interior of the contour is always on
the left hand side.

2.3.2 Cauchy’s Derivative Formula

Our next theorem is almost as remarkable as the last and every bit as foreign to our
experience with functions of a real variable. It asserts that the existence of the deriva-
tive of a function in some simply connected domain necessarily implies the existence
of derivatives of all orders in that domain.

Theorem: If f(z) is holomorphic in a simply connected domain D, then all of its deriva-
tives exist and are themselves holomorphic in D. Moreover, if z is any point in D, then

oy 1 f)
f(Z)_ﬁ ((_Z)zd(
C

f”(Z)zi! f(()

2mi ((—z)3c
c

ey N f(§)
f(z) = H/md(
c

(2.3.5)
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where C is any simple closed curve in D which encloses z.
Proof: By definition,

f'@) = tim f(z+42) - f(2)

Az

and so, using Cauchy’s Integral (2.3.1), we have

f'@ = lim L/[&_f(()z]%(

=0 2mi (-z-4z (- z
lim L[ O
- Alzlglo 2ri | ((-z-A42)(( -2) .
c
Hence,
1 fQ 1 1
f'@- 2m ((—z)zd(_Alzlglon'/f(o {((—Z—AZ)((_Z)} %

f({)
Alz—>0 EAZ ((-z-42)({ -2)? ¢
c

The modulus of the integrand on the left hand side of this expression is

Q) _ Q) ) £
C-z-82)(-22| [(-z-2z||(-2 ({-z|-|z) |2

Replacing |{ - z| by its minimum value m, and |f({)| by its maximum value M for { on
C, we can apply the Darboux inequality to obtain

1 hm |Az \L =0
Ta (m - |Az|)m2

/ 1 Ji9)
f@- 55 ((-z)zd(‘ T
C

where L is the length of the contour. Thus, we have proved

1y 1 f)
f(Z)_ﬁ ((_Z)zd(
C

and, by using induction, one can readily establish that, in general,

(n) f($)
4 ”‘zm/(q B

The fact that the derivative of a holomorphic function is itself holomorphic is all
that one needs to prove a converse of Cauchy’s Theorem. It is called Morera’s Theo-
rem.
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Theorem: If f(z) is continuous in some simply connected domain D and if the integral

C/f(z)dz

vanishes for any closed contour C in D, then f(z) is holomorphic in D.

Proof: The vanishing of an integral along any closed path within a simply connected
domain is sufficient to establish the path independence of an integral between any
two points in the domain. Thus, as in the Fundamental Theorem of Calculus,

F(z) = /f(()d(, for fixed zo in D,

defines a unique function for all z in D. Moreover, since f(z) is continuous throughout
D, the proof of the Fundamental Theorem applies here as well since, of the various
properties possessed by holomorphic functions, only those of continuity and path in-
dependent integration were used in the proof of the Fundamental Theorem. Thus, F(z)
is an anti-derivative of f(z), 4 (Z) = f(2), for all z in D. This means that F(z) is holomor-
phic throughout D and, by the preceding theorem, so is its first derivative f(z).

2.3.3 The Maximum Modulus Principle

Our next theorem further illustrates the surprising properties possessed by analytic
functions. Although not as dramatic in appearance as are its predecessors, this the-
orem has a number of important applications a particular example of which can be
found in the derivation of the Method of Steepest Descents in Section 6.3.

Theorem: The modulus of an analytic function f(z) cannot have a local maximum
within the domain of holomorphy of the function.

Proof: Let z; be an arbitrary point in the function’s domain of holomorphy. By def-
inition, there must exist a neighbourhood of zo which also lies entirely within that
domain. Let C denote a circle, of radius r and centre at z = zy, lying within that neigh-
bourhood. Then, invoking Cauchy’s Integral, we have

f@ ,
f(zo) = Tm Z_ ZO
C

Using the Darboux Inequality, this implies that
(Z)

-2ar, for z on C.

|f(z0)] < —nmax

Since |z - zo| = r, this simplifies to

If(z0)| < max|f(z)|, for z on C.
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Thus, there exists at least one point on C such that |f(z)| > |f(zo)|. Since we may choose
r to be arbitrarily small, this means that in any neighbourhood of z,, no matter how
small, there always exists at least one point at which

f(2)| = If(z0)]. (2.3.6)

Hence, |f(z)| cannot have a local maximum at zo.
A number of corollaries follow almost immediately. By applying the theorem to
explf(z)] and explif (z)], we find that neither

‘ef(Z) =e

can have a local maximum in the domain of holomorphy of f(z). Since the real ex-
ponential function is monotonic, this implies that the real and imaginary parts of an
analytic function (which is to say, any harmonic function of two real variables) cannot
have local maxima in the function’s domain of holomorphy (harmonicity).

Similarly, applying the theorem to f( 5» we find that |f (2)], as well as Re f(z) and
Im f(z), cannot have a local minimum in the domain of holomorphy of f(z), except at
points z = zo where f(z9) = 0

Ref) nor  [elf?)] = /@

2.3.4 The Cauchy-Liouville Theorem

We conclude this Section with a theorem that places a limit on how well-behaved an
analytic function can be.

The theorem is named after Joseph Liouville as well as the ubiquitous Augustin-
Louis Cauchy. Liouville (1809-82) was born in St. Omer, France and studied engineering
at the Ecole Polytechnique and the Ecole des Ponts et Chausees. However, it was as a
mathematician and mathematical physicist that he made his mark. An individual of ex-
ceptional intellectual breadth, he made significant contributions in theoretical dynamics
and celestial mechanics, in the theory of differential equations, in algebra and algebraic
function theory and in number theory where he introduced new methods of investigating
transcendental numbers. Not surprisingly for someone with such extensive knowledge,
he founded the Journal de Mathematiques and edited it for almost 40 years. It continues
to be one of the leading French mathematical journals.

Theorem: A bounded entire function must be a constant.
Proof: Using the Derivative Formula (2.3.5), we set

ey L f§)
f(Z)—Tm- ((—Z)Z
C

¢

where, because f(z) is entire, C may be chosen to be a very large circle of radius R,
centred at z. Darboux’s inequality then yields

1 max \f(()l
2

If'(z)] < R < X g for {on G,
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where K is the assumed upper bound on |f(2)|, |f(z)| < K for all values of z. Thus, given
any value of z, we can make |f’(z)| smaller than any preassigned number € simply by
taking R sufficiently large. Therefore,

f@=0

for all values of z. This in turn implies that f(z) is a constant for, given any two points
z; and z,, the Fundamental Theorem of Calculus yields

_Faro
0= e

or, f(z2)=f(z1).

d{ = f(z2) - f(z1)

Two obvious corollaries of this theorem are that “not-constant” functions that are
bounded at infinity must have at least one singularity in the finite plane while those
that are entire must be singular at the point at infinity. Thus, the sine and cosine func-
tions are not unbounded by coincidence but rather, by virtue of their holomorphy.

2.4 Power Series Representations of Analytic Functions
2.4.1 Uniform Convergence

Absolute convergence is not sufficient to guarantee the legitimacy of some of the op-
erations that we shall want to perform on power series. Stated in the simplest terms,
this failure is due to the rate of convergence of an absolutely convergent series being
itself a function of z and, quite conceivably, a very sensitive one. Thus, for example,
the series resulting from term by term integration of an absolutely convergent series
may not converge at all, let alone to the integral of the sum function.

The problem is best illustrated by considering the geometric series

1
m_ =
E =1 S(z), |z <1,
m=0

whose circle of (absolute) convergence is |z| = 1. The error committed in approximat-
ing its sum function by the n'" partial sum of the series is

>

m=n+1

n+1

z
1-z|°

Rn(2) = |S(2) - Sn(2)| =

This becomes arbitrarily large for z sufficiently close to one. Consequently, the closer
we are to z = 1, the more terms must be included in the partial sum and hence, the
larger n must be, in order that the error R,(z) be less than some preassigned number.
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Figure 2.7: The geometric series > z™ converges absolutely in the open disc |z| < 1 and uniformly
m=0
in any closed disc |z| <r < 1.

In more mathematical language, if the only restriction on z is that it be confined to
|z| < 1 then, given any € > 0, one cannot find an N that depends only on ¢ such that
Rn(z) < e for all n > N(g). On the other hand, if we impose the further restriction that
z be confined to the closed disc |z| < r < 1, such an N can be found because we have
now specified exactly how close one can get to the dangerous point z = 1. Indeed,
choosing N so that R,(r) < € for all n > N(g) we also ensure that R,(z) < ¢ for all
n > N(e) and all z in |z| < r. Thus, the geometric series converges in a z-independent
or uniform manner in any closed disc with radius less than one.

Definition: Consider the series

oo

> fu(2) = fol2) + fi(2) + ...

m=0

Let F(2) be the sum and Sy (2) the n' partial sum of the series. If, given any € > 0, there
exists a number N(g), independent of z, such that

|F(z) - Sn(2)| < €

for all n > N(e) and all z in some region R of the complex plane, then the series is
uniformly convergent in R.

The following theorem generalizes our experience with the geometric series. It is
stated without proof.

Theorem: A power series > cm(z — z0)™, with non-zero radius of convergence R, is
m=0
uniformly convergent in every closed disc |z — zo| < r with r < R.

The importance of uniform convergence and hence of the preceding theorem is
made manifest throughout this Section. To begin with, consider the generic series of
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functions

> fn(2) = F@2)
m=0

which we will assume to be uniformly convergent in some region R. Let C be a simple
curve of length L that lies entirely in R. Then, provided that all integrals exist, we can
show that

[F@dz= [ S fa@dz= Y [ fulardz. @41)
C ¢ m=0 m=0

n
Setting Sn(2) = > fm(2), we can rewrite (2.4.1) as

m=0

F(z)dz= [ lim Sp(2)dz = lim | Sy(2)dz. (2.4.2)
o [t

C

In other words, we must prove that the order of the limit and the integration can be
reversed. Darboux’s Inequality makes the proof almost immediate since it yields

/[F(z)—Sn(z)]dz <max |F(z) - Su| - L, for z on C. (2.4.3)
c

Because, and only because the curve C lies in the region where the series that sums to
F(z) is uniformly convergent, we can make the right hand side of (2.4.3) smaller than
any preassigned number ¢ by taking n sufficiently large. Thus, the series on the right
and side of (2.4.1) converges to the integral on the left.

Uniform convergence also makes term by term differentiation permissable. In-
deed, the next theorem, due to Weierstrass, goes a step further and, in doing so,
supercedes the theorem in Section 1.4 which established that every power series de-
fines a holomorphic function within its circle of convergence.

Theorem: Let F(2) = f: fm(2). If each term fi,(2) of the series is holomorphic within a

m=0
domain D and if the series is uniformly convergent throughout every region R interior

to D, then F(z) is holomorphic within D and

oo

dF(z) ~— dfm(2)
I - Z e (2.4.4)

m=0

where the series on the right hand side of (2.4.4) is also uniformly convergent.
Proof: Since the functions f;;(z) are all holomorphic, we have

C/F(z)dz = ; C/fm(z)dz =0
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for any closed contour C in D and so, by Morera’s Theorem, (the proof that F(z) is
continuous is left to the reader), F(z) is holomophic in D.

Let z be an arbitrary point in D and C be a closed contour lying entirely in D and
encircling z. Integrating along C, we have

1 F(§) fm(() fm(()
2m ¢- z)2 2711/ d¢ = ZZm/

Thus, using the Derivative Formula (2.3.5), we find

dF(z) <= dfm(2)
dz _Z dz

m=0
as required. It now only remains to establish that the convergence of this series is uni-
form.
n
Let Su(z) = > fm(2) so that (2.4.4) can be rewritten in the form

m=0
dF(z) d
dz ~ dz
Using the Derivative Formula again, we have

[hm Sn(z)} lim dS"(Z).

nsee  dz

_ [FO) = Su(D] 4
Zm ((-2)2
C

dF(z) dSn(2)| _
dz dz

where we are free to choose C to be a circle with centre at the point z and radius R,
provided that R is sufficiently small that the circle lies entirely within D. Applying Dar-
boux’s Inequality, we have

, for { on C. (2.4.5)

‘dF(z) _ dSn(2) .

FQ) - 54(2)]
dz dz R

Since nli_1>13° Sn(z) = F(z) uniformly in any region interior to D and since R is finite, we
can make the right hand side of (2.4.5) smaller than any preassigned number € > 0 by
taking n larger than some number N(¢) that depends only on &. Therefore, the series
in (2.4.4) converges uniformly to dF Z)

2.4.2 Taylor’'s Theorem

The Weierstrass Theorem tells us that every power series with non-zero radius of con-
vergence defines a homomorphic function within its circle of convergence. The con-
verse is one of the key theorems of complex analysis. It is called Taylor’s Theorem.
Brook Taylor (1685-1731) was born in Edmonton, England and read mathematics
at St. John’s College, Cambridge. In 1715 he published a monograph entitled Methodus
Incrementorum which contained his theorem on power series expansions.
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Figure 2.8: The radius of convergence R of the Taylor Series for f(z) about z = zg is equal to the
distance from zg to the nearest singularity of f(z).

Theorem: Let f(z) be holomorphic in a simply connected domain D and z = z, be
any point in D. Let R be the radius of the largest circle with centre at zo and having its
interior in D. Then, there is a power series

i cm(z - zo)™ (2.4.6)
m=0

which converges uniformly to f(z) in every closed disc |z - zo| < r < R. Furthermore,
the coefficients of the series are given by

") _ 1 f@ .

m!  2mi | (z-zo)ml @47
C

m

where C is a simple closed curve in D enclosing z = zj. This series, the Taylor series
for f(z) about z = zo, is unique ; (it is the only power series representation of f(z) with
centre z = zg).
Proof: Let C; be the circle |z-zo| = R; where Ry < R. Since f(z) is holomorphic within
and on C;, we may invoke Cauchy’s Integral to write

f2) = = [ LD 4¢ (2.4.8)

2mi | (-z
Cy

where z is any point enclosed by C;. Recalling the properties of the geometric series,
we expand the denominator in (2.4.8) as

1 1 T ek
(-z ((-z0)-(z-20) (-2 1-z2 (—ZO;)((—ZO)'"' (2.4.9)
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zZ-2Zg
&)
that the series in (2.4.9) is uniformly convergent. Substituting (2.4.9) into (2.4.8) and

integrating term by term, we find

Since { is on C; and z within C;, we are guaranteed that < r < 1 and hence,

_ 1y m [ Q)
f(Z) = ﬁ ZO(Z - ZO) Wd(. (2.4.10)
m= &

However, we also know that

1 f(() d( _ 1 f(() d( _ if(m)(zo)
m!

ﬁ ({‘ — Zo)m+1 - ﬁ (( — Zo)m+1
Cy (o

where we have invoked path independence to replace C; by any closed contour Cin D
that encloses z = zg. Thus, (2.4.10) can be rewritten in the required form

m!

f(2) = i 7o), oy, 24.41)
m=0

The radius of convergence of this series is determined by how large we can make
the radius of C;. Thus, it is equal to the radius R of the largest circle with centre at
z = zp that has its interior entirely in D or, in other words, it is equal to the distance
from z = z, to the nearest singularity of f(z). For, if the radius R; > R, C; would either
pass through or encircle a singularity of f(z) and the Cauchy Integral would no longer
provide a representation of f(z).

To prove that the Taylor series is unique, suppose that f(z) can be represented

by some other power series, f(z) = > cm(z - zo)™ with ¢ # % M (z,) for at least
m=0
one value of m, in some neighbourhood of z = zy. Since it is uniformly convergent in

a closed neighbourhood of z = zy, we can perform term by term differentiation any
number of times. Doing so m times and setting z = zo, we obtain ¢, = % M (z,) for
arbitrary m, which completes the proof of the theorem.
Examples: While we have already encountered examples of Taylor series in Section
1.5, a few more are appropriate at this point if only to punctuate a steady stream of
theorems.
Consider the function f(z) = z* whose derivatives are f™(z) = (-1)"m!z ™1,
m =1, 2,... The only singularity of f(z) is at z = 0. Thus, it possesses a Taylor series
about any other point z = zo, with circle of convergence |z — zo| = |zo|. In particular, if
we choose z = 1 as the centre, the Taylor series is
N L ER Y
z m=0
which is valid forall zin |z - 1| < 1.
Next, consider the function f(z) = Ln(1 + z) which has branch points at z = -1
and z = oo. If we choose the branch cut to lie along the negative real axis, (actually,
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the only restriction we need to place on the choice of cut is that it not intersect the
unit circle except at the branch point z = —1), f(z) will be holomorphic within the unit
circle and so will possess a Taylor series representation about z = 0. The m™ derivative
is easily found to be

_ )™i(m - 1)

(m)
@ (1+z)m

Thus, the Taylor series with centre z = 0 is

W

= (Fpmem 22z
L"(1+Z)_ZT_Z ?+? +... (2.4.12)
m=1
Either by applying the ratio test or simply by noting that the nearest singularity to
z = 01is z = -1, we see that this representation of Ln(1 + z) is valid for all |z| < 1.
If we replace z by —z and multiply both sides of (2.4.12) by -1, we obtain

2 3

= M z¢ z
—Ln(l—z)=Z—=z+—+—+... (2.4.13)
—r m 2 3

This toois valid for all |z| < 1 and therefore corresponds to a cut joining the two branch
points of Ln(1 - z), z = 1 and z = oo, along the positive real axis.
Adding (2.4.12) and (2.4.13) yields a third series,

1+z = z2ml 2 2
Ln(l—z>_ZZZm—1_2<Z+?+?+"'>’
m=1
1+z

for all |z| < 1. By construction, this series defines the principal branch of In (ﬁ), for
|z| < 1, when the two branch points z = +1 are joined by a cut that passes through
the point at infinity. If the branch points were joined along the real axis segment
-1 < x < 1, Ln (££) would not possess a Taylor series about z = 0. However, as
we shall soon see, it would still be possible to provide it with another type of power
series representation, valid for |z| > 1 and with centre z = 0. This latter type of series,
expanded about a singular point, is called a Laurent series; we shall construct one
in the next example.

The rational function

z3+2z2 z+1

f(2) = 2z+1 =z12'<22+1>

is singular at z = 0 and z = —1 and therefore cannot be represented by a Taylor series
about either point. However, it factors into the product of an inverse power of z and a
function

2z+1
82) = z+1
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which is holomorphic within |z| < 1 and hence, can be expanded in a Taylor series
there. Thus, we can determine a power series expansion about z = 0 for f(z) which
will be valid for 0 < |z| < 1 but, unlike a Taylor series, it will contain both direct and
inverse powers of z.

By a simple partial fraction decomposition, we can write

8lz)=2- 1+z°

Replacing z by —z in the geometric series, we then have

gl2)=2-> ()", |z|<1

=1l+z-2°+2 —+...

Hence, f(z) has the representation

1 1
= + = -1+ + -,
f@) == z-2°

2 oo
=3 S, o<l <1,
m=1 m=0

Since this expression contains only powers of z, it is a power series about z = 0; it is
the Laurent series for f(z) in the annulus O < |z| < 1.

2.4.3 Laurent’s Theorem

As the last two examples intimate, it is often desirable and sometimes necessary to
expand a function about one of its singularities. Moreover, the second of these ex-
amples suggests that it should be possible to find an extension of Taylor’s Theorem
which will cover such an eventuality. The required theorem is due to Laurent and,
as its statement will make clear, it handles the problem by assuming nothing about
the behaviour of the function at the point that is chosen as the centre of the power
series. In fact, it replaces the very limiting condition that this point lie within a simply
connected domain of holomorphy of the function with one that requires merely that
it be the centre of an annulus that is contained within the domain of holomorphy, the
domain remaining unrestricted with respect to multiple connectedness.

Theorem: If f(z) is holomorphic in the annulus 0 < R; < |z - 29| < Ry < oo, then

oo

— = _ m - bm — _ m
fl2) = %am(z 20) +;7(z—zo)m =" cmlz-20)", (2.4.14)

with

am Zm/((f(o ¢, b= = [(¢-2™fQ)d{, m=0,1,2,...

z)ym+1 27i
C
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Figure 2.9: The contour I consists of the circles I'1, I'; and  connected by parallel straight line
segments.

or, equivalently,

1/ (() d{, m=0,%1,+2,..., (2.4.15)

m+1

where C is any contour lying within the annulus and enclosing the point z = z,. The
series is uniformly convergent in any closed annulus R; < R3 < |z - 20| < R4 < R».
Proof: Working within the {-plane, let us define circles I'y and I'; centred at { = zg
with radii p; and p; such that R; < p; < |z - 20| < p2 < R,. Next, we define a small
circle v centred at { = z and contained entirely within the annulus bounded by I'; and
I';. We now consider the closed contour I" constructed from I'y, I'; and ~ as shown in
Figure 2.9

The quotient ’g is holomorphic everywhere within and on I" and so, by Cauchy’s
Theorem, we have

f(§)
( Fo-d(=0. (2.4.16)

The parallel straight line segments of I" can lie arbitrarily close to each other and thus
give contributions which cancel. Therefore, (2.4.16) can be rewritten as

16) g - /f(o i /f(() dt=0 (24.17)

where, in compliance with our convention, all three integrals are taken in the coun-
terclockwise direction.
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From Cauchy’s Integral, we know that the integration around ~ yields 27if(z).
Therefore, (2.4.17) becomes

) = = [ L8 ¢ € 4¢. (24.18)

2ni | {-z 2m (z
I,

The first integral in (2.4.18) can be expanded in positive powers of (z - zo) exactly as
was done in the proof of Taylor’s Theorem. The result is

2m g(()z (= Zam(z zo)" (24.19)

where

1 J4(9)

i | T zoyi 9 (24.20)
T

m=

An expansion of the second integral can be obtained as follows. We set

m-1

1 -1 _ -1 1 _ -1 _Z<(—zo)
{-z (z-20)-({-20) (z-20) (1_%) (z-20) 2=<\z-z0

20

This sum is uniformly convergent for ’2:—20 < r < 1. Therefore, since |{ — zo| = p; and

p1 < |z - 20| < p2, we can integrate term by term to obtain

oo

9, b
2m ( Ld¢ '_;(z—zo)m .4.21)

where
bn = 5 / (¢ - 20" ). (24.2)

We now observe that the integrals in (2.4.20) and (2.4.22) are independent of the
path of integration provided that it lies in the annulus R1 < |{ - zo| < R, and en-
closes { = zo. Therefore, using equations (2.4.19) through to (2.4.22), we can rewrite
equation (2.4.18) as

oo

f@)=>" cmlz-zo)" 24.23)

m=—oo

where, forallm =0, £1, £2,...,

en--L [ SO 4 (2.4.24)

2mi | ({ - zo)m*L
C
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C being any contour that encloses z, and lies in the annular region of holomorphy of
f@.

The expansions in equations (2.4.19) to (2.4.21) all converge absolutely for all z
within the annulus p; < |z-zp| < p2, and uniformly for all z within the closed annulus
p1 <R3 < |z-2zo| < R4 < p2. However, p; and p, are arbitrary, subject to the condition
Ry < p1 < py < R,. Therefore, it follows that the Laurent series (2.4.23) converges
absolutely to f(z) in Ry < |z - zo| < R, and uniformly to f(z) in any closed annulus
interior to R; < |z — zo| < R;.

The Laurent series representation of a given function associated with a given an-
nulus is unique: there is exactly one series (2.4.14) that converges to f(z) in R < |z —
20| < R». If f(z) has more than one distinct annulus of holomorphy with centre at
z = 2o, it has a correspondingly distinct Laurent representation in each one of them.
This is best brought home by means of an example.

Examples: The function f(z) = cosec z is singular at the points z = ni,n =0, 1, 2, ....
Therefore, there is an infinity of distinct annuli with centre at z = 0 in which cosec z
is holomorphic, namely

nm<|zl<(n+m, n=0,1,2,....

Each annulus admits a unique and distinct Laurent series about z = 0, thus providing
cosec z with infinitely many such representations.

To illustrate the use of equations (2.4.14) and (2.4.15) in the determination of a
Laurent series, consider the function (z> - 1)’1/ 2. As we have seen, this has branch
points at z = +1. We can choose the cut between these two points to run along the real
axis segment —1 < x < 1 so that the function’s principal branch is

f@) = |z + 1 V2 |z -1 M2 20400 _p g, <.

This is holomorphic everywhere except on the cut. Therefore, it must possess a Lau-
rent representation in the annulus O < |z| < o given by

(-1 = Z amz™ + Z bmz™
m=0 m=1

with

: ) 1 m- _
m = 2mi %d(’ bm = ﬁ/( 1((’2 -1) 1/2d(
¢ C

where C is any contour in O < |{| < oo that encloses { = 0.

To evaluate the coefficients a, we choose C to be a circle of arbitrarily large radius.
It is then easily shown by means of an application of the Darboux Inequality that the
integral vanishes; thus, am, =0 forallm=0,1,2,....

For the evaluation of b, we choose the “dog bone” contour shown in Figure 2.10.
It consists of infinitesimally small circles centred at z = +1 and two parallel straight
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Im:z
h,

Figure 2.10: The “dogbone” contour used to evaluate the Laurent series coefficients for (z2 - 1)/2,

lines running just above and below the cut on the real axis. The contribution to by,
from the circles is vanishingly small as one can again show with the help of Darboux’s
Inequality. Thus, using the fact that the principal branch of (z? - 1)"/? assumes the

values (1 - x2)"Y/2e7/2 just above the cut, and (1 - x2)~*/2e*/2 just below it, we have
+1 . -1 +1
1 Xm—lem/z XM 1 —171/2 1 Xm—l
bm = 7(1){ = — 7(1)(
2mi ] V1-x2 Vi-x2 ) V1-x2
This vanishes for even values of m, while for odd values of m, we can write
1 o1 /2
- _ 1
B = 2 X dx-= 2 /sinmflgde - g(mil).z.
m) V1-x2 b/ 22m—1(m74|)
0
Thus, setting m = 2k + 1, we have
2 1/2 (2k)! 1 1 11 31 51
< Zsz(kl)zzzk+l‘E+§? 87 T1ez T Ll

Had we chosen the branch cut to lie along the real axis segments —eo < x < -1
and 1 < x < oo, (22 - 1)‘1/ 2 would not possess a Laurent series representation about
z = 0 but it would have a Taylor series that converges for |z| < 1. For completeness we
shall evaluate its coefficients as well.

With this choice of cut the principal branch is defined by

@) = |z+ 12|z -1 V2e 20400 0 < @, <2m,-m< O <.

It is holomorphic everywhere in the cut plane and so possesses the Taylor series

1)712 = > emZ™, 2l <1
m=0
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" - "l . | | -+ I 4 5
Figure 2.11: The “dogbone” contour used to evaluate the Taylor series coefficients for (z2 — 1)1/2,

with
((2 1) 1/2
Cm Zm/ Cogm a¢

where C is any contour in the cut plane that encloses { = 0. We shall choose another
dog bone contour as shown in Figure 2.11.

Once again the contributions from the infinitesimally small circles vanish. Thus,
since (z% — 1)"/2 assumes the values (x> - 1)"V/2 for 1 < x < o0,y = 0%, and F(x* -
1)"Y/2 for —eo < x < -1,y = 0, we have

76— 1y [ -1)1
Cm = Tm xm+1 X - Tm xm+1 dx
—oo -1
(X 1) 1/2 ~ L (X2 _ 1)—1/2 dx
Zm Coxmtl 2mi xm+l ’
+1
This vanishes if m is odd while, if m = 2k, it yields
2 [0 i 3 g ;2!
ke i = 22k(k!)2'
0
Thus, our final result is
12 _ (2K)! . 15 34,56
(z*-1) 12221{(”)2 =l|zH 52+ g2 ez |z] < 1.

2.4.4 Practical Methods for Generating Power Series

If one had to go through such a lengthy procedure as that used in the preceding ex-
amples, the task of determining power series representations would be rather daunt-
ing. Fortunately, there are a number of practical methods available that obviate direct
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application of Taylor’s or Laurent’s Theorem. These are best introduced by means of
examples which we will label according to the type of function that each addresses.
Examples:

1. Rational Functions: Every rational function f(z) = %, where P(z) and Q(z) are
polynomials, can be decomposed into a sum of a polynomial (if the degree of P is
greater than or equal to the degree of Q) and a finite number of partial fractions of the
form ﬁ, where a, b and ¢ are complex constants and n is an integer. The number
z = ¢ is aroot of the polynomial Q and thus is a singularity of the function f(z). Our

starting point then is to learn how to expand the fraction

1

bz-c’ b#0

g(z) =

about an arbitrary point z = zo.
If bzo — ¢ = 0, g(z) has only one expansion about z = zy: the Laurent series
1/b

g2) = 2= /b’ |z-c/b| > 0.

If bzp — ¢ # 0, we can employ a simple trick that was used in the proof of both
Taylor’s and Laurent’s Theorem. We write

1 1 1
bz-c  b(z-z0) +bzo-Cc (c—bzo)[% -1]
1
= . (2.4.25)
b(z - 20)[1 - 2]

The last two expressions in (2.4.25) are completely equivalent and allow us to use
the geometric series to obtain alternative power series representations about z = zg
with mutually exclusive domains of convergence. Specifically, we have

-1 s~ (blz-2z0)\"
g(z)_c—bzoz%<c—bzo>

m=

oo bm "
=—ZW(Z—ZO) , |z-2z0]l <|zo-c/b| (2.4.26)
m=0

and

oo

_ 1 C— bZo m
82 = b(z - z0) % (b(z - 20)>

oo B b m 1
- Z < bmflo) (z - zg)m+1’ |z = zo] > |20 — ¢/D|. (2.4.27)

Thus, inside the circle |z-zo| = |zo - c/b| there is a Taylor series representation (2.4.26)
for g(z) while outside the circle there is the Laurent series representation (2.4.27). The
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Laurent
series

Figure 2.12: The function g(z) = (bz - ¢)! is holomorphic within the disc |z - zo| < |20 - ¢/b| and the
annulus |z - zo| > |zo — ¢/b| and so possesses respectively, a Taylor and a Laurent expansion about
z = zg in these two domains.

common boundary of these two domains, the circle itself, is dictated by the location
of the singularity of g(z), z = ¢/b. (See Figure 2.12).

So much for partial fractions corresponding to simple roots. Higher order fractions
of the form

1
== . n=2
8(2) bz "
require little additional effort. We simply note that
1 1 (prtagtoa

(bz-c)n N (n-1)! b1 dzvl(bz-o) (2.4.28)

Thus, once we have found the uniformly convergent power series for ﬁ term by term
differentiation will do the rest.
As a concrete example, consider the function

2z +9z+15

f@) = 23 +22-8z-12
and suppose that we wish to find all of its power series representations about the point
z = 0. The denominator has a double root, z = -2, and a simple root, z = 3. Therefore,
drawing circles with center at the origin which pass through these two singularities,
we see that f(z) possesses three expansions about z = 0:
1. aTaylor series for |z] < 2,
2. alLlaurent series for 2 < |z| < 3, and
3. asecond Laurent series for |z| > 3.

To determine these three series we perform a partial fraction decomposition and write

flz)= 1t 2

:(z+2)2+z—3'
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Then, applying (2.4.26) and (2.4.27), we have

and,
1 (m
7v2 "2 e 1 <2
m=0
1 = (-2)"
Z+2=Z Zm+1’ |Z|>2
m=0

Invoking (2.4.28), we find

( 1)m+1 mel
(z+2)2 Z 2m+l o <2

1 -2)" 1
SR % )Z,ﬁi’;+ ) a2
m=0

Thus, the three series representations are

S LA

m=0

i, f(z) = Z(Z)Z%”) Z;ﬂl, 2<z|<3
m=0

iii. f(z)=2 2::0[3’" -(-2)"?m] Z,:ﬂ, |z > 3.

Notice that term by term differentiation provides a useful method whenever one seeks
a series for a function f(z) and one already knows the corresponding expansion for
F(z) where f(z) = c(f—Z"nF (2), ¢ = a constant, for some n.

2. Exponential, Trigonometric and Hyperbolic Functions: Because of the simplic-
ity of the differentiation rules that apply to these functions, determining Taylor series
for them is seldom a problem. However, their Laurent series are a very different matter.
One useful technique is to make use of the Cauchy product of two series,

oo oo o m o m
(Z am) . (Z bm> = Z Z akbm_k = Z Z am_kbk. (2.4.29)
m=0 m=0 m=0 k=0 m=0 k=0

As a concrete example we shall determine the Laurent series representation of cosec z
in the annulus O < |z| < 7.
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The function $2Z has the Taylor series
i 2 had m,2m
sinz z 1)z
—— —=1-—=— s <
z 3! ; 2m+1)! 2] < o0

and so is entire. Therefore, its inverse ;% is holomorphic within the disc |z| < 7 and
must possess a Taylor series there. Thus, we set

oo
z - 1 _ Z CmZm
sinz (~=1)mz2m g
> Gmior ™
m=0

Cross-multiplying, we then have

( 1 m Zm had m
(Z (Zm + 1)]) : (2;) Cmz > (2.4.30)

cm,kz"”k . (24.31)

SMS

— (2k 1)'

Since power series representations are unique, we can equate coefficients of like pow-
ers of z appearing on either side of equation (2.4.31). This yields the infinite set of
equations

co=1
c1=0
T+c2—0
%+c3=0
c c
5—?—3—2|+c4—0
%—%-FCs_O
—Co Co Cy _
Tt e 3tee=0
whose solutions are
1
CO_ly Cl—O,Cz—g, C3:0)
7 31
€= 3¢50 Cs 0, ¢ 5120° 7 o,.
Thus, we find that
z 22 7 4 31 6
= + z +.o.., |zl<m

sinz 1+Z 360° T 15120°
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and hence, that

1.1 7 5 31 5
cosecz—z+6z+36oz +7151202 +..., O<|zl<m. (2.4.32)

A second useful technique and in fact, one which is useful in dealing with any type
of function, is substitution. The next two examples will illustrate what is involved.

From the Laurent expansion (2.4.32) about z = O the substitution z — z + km,
k=21, £2,...immediately yields the local expansion of cosec z about any of its other
singularities:

C+km+ L @+knP+...,

_ (_1)k _
cosec(z + km) = (-1)" cosecz 360

1
(z+km) 6
0<|z+kn|<m.

Just as simple is the conversion of the Taylor series

3 5

sinhz=z+2 +Z +.. .y ]Z] < o0
3! 5!

into the Laurent series

1

1
33 +—5!Z5 +..., |z|>0

sinh 1.1 +
z z
under the substitutionz — 3 L. The simplicity of these examples is characteristic of all
applications of the substltutlon technique.
3. Logarithms: Because the derivatives of many logarithms are rational functions,
term by term integration is an obvious technique to use in determining their power
series expansions. We have already generated the Taylor series representation

oo _ 3 5
Lrl(1+z> (z+%+%+ > lz] < 1 (24.33)

which corresponds to a choice of branch cut running along the real axis segments
—oo < x < —1land 1 < x < oo, This is the only power series about z = 0 possessed by
Ln (%) when its branch points z = +1 are joined in this way. However, if one makes
the other obvious choice, a cut along the segment -1 < x < 1,y = 0, then Ln ({2%)
again possesses only one expansion about z = 0 but this time it is a Laurent series in
the annulus |z| > 1. To determine this series we note that

4 (ivzy_ 1, 1 _ 2

dz 1-z) 1+z 1-z 1-z2°
The power series expansions of -1
tion (2.4.27). We have

1:; in the annulus |z| > 1 are readily found from equa-

—~ (D)
=Z P and —— =—sz+1, lz| > 1
m=0
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and hence,

d 1+z 1 1 1 1
ELn(l—z)=‘22z2m+2=‘2[?2+27+z?+"1’ 2> 1.

m=0

Integrating term by term we then obtain

1+z 1 1 1 =1 1
Ln(l—z)=2[2+323+525+"'}+C=2;2m—122ml+c’ lz| > 1

where c is a constant of integration. Since

Ln(iti) =lnlij tilarg(z +1) ~arg(z -1 +71], -m<arglz£1) <n

we see that ¢ must be set equal to +i7 in order to obtain the correct value as |z| — oo.
Thus, absorbing the +im into the argument of the logarithm, we finally obtain

z+1 =1 1 1 1 1
_ = St ——+...), >1. (24.
Ln <z—1> 22 TR <z t3gtest > |z| (2.4.34)

2.5 Zeros and Singularities

As we have seen, if a function f(z) is holomorphic within a simply connected domain
D then it can be expanded in a Taylor series about any point z = zo of D and

f@=> cmlz-20", cm= ﬁ;Z—":nf(z) . (2.5.1)

m=0 Z=z9

Definition: If f(z) vanishes at z = zy, this point is called a zero of f(z). Moreover, f(z)
is said to have a zero of ordern at z = zj if

df(2)

n-1
f(zo0) = “dz = = d

dan
Z=Zg T e T dZn_lf(Z) Jon

=0, dzn

f(2) 222 # 0, (2.5.2)

z=2¢

that is, if the first n coefficients of the Taylor series (2.5.1) are all zero but the (n+ 1)
coefficient is non-zero.
Thus, if there is an nt" order zero at z = z, the Taylor series (2.5.1) assumes the

form
f(2) = cnlz = 20)" + Cpaa(z = 20)" ! +. ..

= (z-20" ) cnulz - 20)

k=0
=(z-20)"g(2), (2.5.3)
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where g(z) is holomorphic and non-zero at z = zg. Its holomorphy implies that g(z) is
continuous and hence, that it is non-vanishing in some neighbourhood |z - zp| < R
as well as at z = zo. Specifically, if g(zo) = x, then there must exist an R such that
|g(2) - g(z0)| < 5 for |z - zo| < R. Invoking a triangle inequality, we then have

@) > [{lg(z0)| - 1) - gz} > 5

for the same range |z - zo| < R and so g(z) certainly does not vanish there. Therefore,
f(2) itself must be non-vanishing in the deleted neighbourhood 0 < |z - zo| < R. This
establishes that the zeros of an analytic function are isolated. Thus, if the zeros
of an analytic function f(z) have a limit point z = z;, then either f(z) = 0 or f(z) is
singular (discontinuous) at z = z;.

Notice that the order of a zero can be determined by calculating

lim _fl@)

z—2zo (z - ZO)"
for successive values of n = 1, 2, 3, ...; the lowest n for which this is non-vanishing is
the order of the zero.
Definition: If a function f(z) has an isolated singularity at a point z = z, then there
must exist a finite deleted neighbourhood of that point, 0 < |z - zy| < R for some R, in
which f(z) is holomorphic.

Such a neighbourhood constitutes an annulus on which Laurent’s Theorem is ap-

plicable and so, for z in this neighbourhood, f(z) can be represented by a Laurent
expansion about z = zy:

- .S~ bm B
f(Z)—;am(z £ +;7(z—zo)r"’ 0<|z-zo| <R. (2.5.4)

The negative powers of (z — zo) in this expansion determine the character of the sin-
gularity at z = zy. There are two cases corresponding to two new definitions.

1. A Finite Number of Negative Powers: Suppose that b, = 0, m > n but b, # 0 for
some n. The series in (2.5.4) then becomes

bn + bn—l
(z-zo)" (z-zo)"!

_ bl - _ m
f(2) = EERER o % am(z - zo)™. (2.5.5)

The function f(z) is said to have a pole of order n at z = z;. The sum of negative
powers

bn n bn-1 +...+7b1
(z-zo)"  (z-zo)" ! (z - 20)

is called the principal part of f(z) at z = zo; it becomes infinite as z — z,.
The representation of f(z) in (2.5.5) can be rewritten as

f(2) = (z-20) "h(2) (2.5.6)
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where h(z) is holomorphic and non-zero at z = z,

h(z) = bn + bp1(z-20) +...+bi(z-2z0)" L + Zwam(z - zo)™™M,

m=0

Thus, the order of the pole can be determined by evaluating
lim (z - 20)"f(2)
zZ—2o

for successive values of n = 1, 2,...; the lowest n for which this limit exists is the
order of the pole.

2. Infinitely Many Negative Powers: When there is an infinite number of coefficients
b, that are non-zero, f(z) is said to have an isolated essential singularity at z = z.
Definition: A function f(z) is said to be meromorphic in a domain D if it has no sin-
gularities other than poles in D.

The difference between a pole and an essential singularity is reflected most dra-
matically in the behaviour exhibited by a function in the neighbourhood of each type
of singularity. From (2.5.6) it is clear that if f(z) has a pole at z = z, then |f(z)| — oo
as z — zp in any manner. Thus, in a small neighbourhood of a pole, a function must
be uniformly large. To see what may happen at an essential singularity, consider the
function

oo

1/z 1
et/ =%W’ |z| >0,
which has an isolated essential singularity at z = 0. If we let z — 0 along
1. the negative real axis, |e'/?| — 0,
2. the positive real axis, |el/ Z| — oo,
3. the imaginary axis, |e!/?| remains constant but arg(e'/?) — oo so that e
lates wildly.

Yz ggcil-

Thus, we cannot assign a specific value to e/? at z = 0 since it evidently takes on

every possible non-zero value in any neighbourhood of that point. As the next theorem
shows, this behaviour is characteristic of essential singularities.
Picard’s Theorem: If a function f(z) has an isolated essential singularity at z = zg
then, in an arbitrarily small neighbourhood of z = zy, f(z) assumes infinitely many
times every complex value, with at most one exceptional value.

The one exceptional value in the case of e'/% is zero.

This last theorem is named for the French mathematician Charles Emile Picard
(1856-1941) who was especially noted for his work in complex analysis and integral and
differential equations.

As we have seen already, a function which has an infinite sequence of zeros with
a limit point z = z; must either be singular at that point or be identically zero. We now
recognize that if the function is not identically zero then, since it also does not tend
uniformly to infinity as z — z;, the limit point is an isolated essential singularity.
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So far we have restricted our discussion to singularities in the finite plane. How-
ever, we can also use Laurent expansions to investigate the behaviour of functions at
infinity. The usual first step in any investigation of what happens at the point at infin-
ity is to make the substitution z = % followed by an examination of how the function
in question behaves as { — 0. Therefore, we say that f(z) is holomorphic, or has a
pole of order n, or has an essential singularity at z = oo according as f(1/{) has the
corresponding property at { = 0. Thus, if f(z) has a pole of order n at z = oo, then
f(1/¢) must have a Laurent expansion about { = 0 of the form

bz b 1
f(1/o—2amc + ( F Gt 0<Kl<g
for some R. Hence, f(z) admits the Laurent expansion
f(z)=Zg—x+blz+bzzz+...+bnz", R<|z| < oo (2.5.7)

m=0

about z = 0. Evidently, the principal part of f(z) at infinity is the polynomial
fp(2) = b1z + boz* + ...+ bpz".

Similarly, if f(z) has an isolated essential singularity at z = oo, it must have a
Laurent expansion about z = 0 of the form

f(2) = Z + Z bmz™, R<|z|<oo (2.5.8)
for some R, and the principal part at z = oo is the entire function

fo@) =3 buz".
m=0
Finally, if f(z) is holomorphic at z = oo its principal part there will be zero and it
will possess a Laurent expansion about z = 0 of the form

oo

f@=3 5%, R<lzl <o, (2559)

m=0

In each of the three cases (2.5.7) to (2.5.9), R is the distance from the origin to the
furthest finite singularity of the function.

Suppose now that we expand f(z) about a point z = zo located such that R < |zg| <
oo, Since, for each m,

1 (D" z£  (k+m-1)
zm (m-1)!(z- zo)m Z (z- Ozo)k k!
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which has no positive powers of (z - zp), and since the principal part of f(z) at z = oo,
fr(2), is always entire, the series must assume the form

- Am . m
f(2)=;)m+;ﬁm(2—zo) s Jzo| =R < |z—2zp| < o0 (2.5.10)

with Z Bm(z — z0)™ = fp(z) and Bim = O for all m > 1 if f(z) is holomorphic at z = oo,

Bm = O for allm > n, B, # 0if f(z) has a pole of order n at z = oo, B # O for an infinite
number of values of m if f(z) has an essential singularity at z = oo. In other words,
any Laurent expansion whose outer radius of convergence is infinite yields both the
nature of the singularity, if any, and the function’s principal part at z = oo.

Before we consider some examples it remains to point out that there are two prin-
cipal types of non-isolated singularities. The most obvious of these is a branch point,
every neighbourhood of which contains a segment of a cut where all branches of the
function are discontinuous. The second type is a non-isolated essential singularity
which is simply the limit point of an infinite sequence of isolated singularities (usually
poles).

Examples: It is fairly obvious from (2.5.10) that any polynomial of nth degree has a
pole of order n at z = oo. On the other hand, since the degree of its numerator is less
than the degree of its denominator, the rational function

1 3

R P YA CI) €

is holomorphic at z = oo. Its only singularities are a simple pole at z = 0 and a fifth
order pole at z = 2.

The location and nature of the singularities of the last function were easily de-
termined at a single glance. However, a function’s appearance can sometimes be de-
ceiving. For example, knowing that S‘nz is holomorphic at the origin, one might be
tempted to claim that

3 1 ) 3
fl2) = <Z—2 - E) sinz- — cosz

has a second order pole at z = 0. Such a claim would be erroneous. Using

sinz=z-2 +2 -+
31 5! )
1 22 4
C0SZ=1-Z7+ 77—+,
we see that f(z) possesses the Taylor series
24 4, 48 S D™ m(m+ 1) om
f(Z)——Z——Z +aZ - +. —4ZWZ , ‘Z‘(OO
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about z = 0. Thus, f(z) is an entire function with a second order zero at z = 0 and, of
course, an essential singularity at z = oo.

Next, consider the function sin 3 1 whose zeros z = nn, =+1,+2,..., have a limit
point at z = 0. Our earlier analysis suggests that z = 0 is an isolated essential singu-
larity of sin £ and we easily confirm this by noting that the function has the Laurent
expansion

smf Z( C” 1 lz| > 0.

2m + 1)! z2m+1’

The zeros of tan % are the same as those of sin % However, in this case z = 0 is not
only the limit point of a sequence of zeros, it is also the limit point of a sequence of
poles located at z = %, n = £1,+3, ... Therefore, for tan %, z = 0 is a non-isolated
essential singularity.

The assertion that “analytic functions are determined by their singularities”
should be becoming a familiar refrain. The next theorem provides an example of how
the “determination” occurs for a relatively simple class of functions.
Theorem: A function f(z) which is meromorphic throughout the extended plane is
necessarily a rational function.
Proof: Since f(z) has no singularities other than poles, and since an infinite num-
ber of poles implies the existence of a non-isolated essential singularity, it follows
that the poles must be finite in number. Suppose that these are located at the points
21,225 ..., 2m and oo,

The principal part of f(z) at z = z; may be written

by, - by, n
-z -z (z -z’

where n; is the order of the pole at z = z;, while the principal part at z = oo is of the
form

biz+ bzt +...+ baz".

Therefore, let us consider the function

D(z) - f(z) - Z[ b

by,
et —% | —[b1z+...+bpZ"].
(z - zp)m

Since D(z) has a Taylor expansion about every point in the extended plane, including
the points z1, z2,...,2zm and z = oo, it is a bounded, entire function. Thus, by Liou-
ville’s Theorem, D(z) = by, a constant. This means that f(z) has the partial fraction
representation

| b by,
f(z) = E { ko .+m +bo+biz+...+bpz"
k=1
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and so, is a rational function.

To complete this Section we now visit a second theorem on meromorphic func-
tions, one that involves their zeros as well as their poles.
Theorem: Let f(z) be meromorphic in a simply connected domain D and g(z) be any
function which is holomorphic in D. Further, let C be a closed contour in D which does
not pass through any of the poles or zeros of f(z). If f(z) has, within C, Z zeros at z = a;
oforderm;, j=1,2,...,Z,andP polesatz= byoforderny,k=1,2,...,P, then

2m
C

g(Z)];,(Z))dz Zm,g(a,) ang(bk) (2.5.11)

Proof: Let z; be either a zero or a pole of f(z) of order m; or ny, respectively. Then, in
the neighbourhood of this point, we can set

f@) =(z-z)"9(2)

where ¢(z) is holomorphic and non-zero at zy, and [} = my if z; is a zero, while [, = —-ny,
if z; is a pole. Differentiating, we have

f2) =L(z-2)" 0@2) + (z - 2)"¢'(2)
and therefore,

f@_ Lk 9@ _ Lk
flz) z-2z (p(z) Z-2zy

+ (a holomorphic function).

Since g(z) is holomorphic throughout D, Cauchy’s Integral and Cauchy’s Theorem
then yield

Zm/ (@) f’(z) = lfk/ 8e) dz = g(zlk (2.5.12)

2t | z -2z
Cx

for any closed contour C; which encircles z; alone of all the zeros and poles of f(z).
Let us now consider a curve C in D which encloses all such contours C. Since
g(z)f—(z) is singular only at the points z1, z,, . . . , Zn, we can use the generalized Cauchy

f(2)
Theorem, equation (2.2.8), to write

Z+P

f'@ f’(z)
/ (@) 76) dz=>Y / g(z) dz (2.5.13)

C k=1¢,

Thus, combining (2.5.12) and (2.5.13), we find

2m

P
el Pz - Z mg(a) - > mglby)
o 2 2
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as required.
An interesting special case obtains when g(z) = 1. Equation (2.5.11) then reads

f'@) ,
371 | 76 dz=M-N (2.5.14)
C

z P

where M = " m; is the number of zeros and N = ) ny is the number of poles of f(z)
j=1 k=1

inside C, zeros and poles being counted with their proper multiplicities. Since

f'(2)
fz)’

lnf (2) =

we can write this result in the form

F'@ 47~ aclinf(2)] = 27i(M - N)

f @)
where A denotes the variation of In f(z) around the contour C. Writing In z = In |[f ()| +
iarg(f(z)) and noting that In |[f(2)| is single-valued, we see that equation (2.5.14) in fact
states that

Aclarg(f(2))] = 2n(M - N) (2.5.15)

which means that as z describes the simple closed path C, the argument of f(z)
changes by an integer multiple of 277 according to the number of zeros and poles of
f(z) contained within C.

This result is known as the principle of the argument.



3 The Calculus of Residues

3.1 The Residue Theorem

A very important application of the theory of analytic functions involves the eval-
uation of real definite integrals. The key ingredients in the evaluation procedure are
the concept of a residue and an associated theorem. Thus, our first task is to familiar-
ize ourselves with both.

Definition: Let f(z) be holomorphic in some deleted neighbourhood of z = 25, 0 < |z -
20| < R say, and let C be any closed contour within this neighbourhood and enclosing
z = zo. Then, the integral

% / £(2)dz = Res[f(zo)] (3.1.1)
C

is independent of the choice of C and is called the residue of f(z) at z = z.
Since f(z) is holomorphic in 0 < |z - zo| < R, it must possess the Laurent series
representation

f(2) = i cm(z-20)", 0<|z-2zo| <R,
1 f§)

m= 2 (¢ - zo)m+1
C

ag (3.1.2)

where C is any closed contour in the annulus O < |{ — zo| < R that encloses { = z.
Comparing (3.1.1) and (3.1.2) we see that an equivalent definition of the residue of f(z)
atz =zgis

Res[f(zo)] = c-1. (3.1.3)

Equation (3.1.3) applies only to points in the finite plane. However, our first defi-
nition (3.1.1) can be applied at infinity as well, provided one does so with care. If f(z)
is holomorphic or has an isolated singularity at z = oo, it must be possible to define
a large circle C that encloses all the finite singularities of f(z). The circle C lies in an
annulus R < |z| < o in which f(z) is holomorphic and it encloses the point at infinity.
Thus, (3.1.1) may be used with this curve to define

Res[f(c0)] = 2;; / f@)dz (.14)
C

where the minus sign is due to an anticlockwise circuit with respect to z = oo being

a clockwise circuit with respect to the origin. Let us now apply the transformation

z = % to the integral in (3.1.4). Since this transformation again reverses the sense of

[ 52Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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the integration, and dz = %‘f, we obtain

Res[f(co)] = — / (s 1)‘” (3.1.5)

2mi

where C’ is a small circle about ¢ = 0. From Cauchy’s Integral we then have
_ -1
Res[f(eo)] = lim [M]  lim [~zf ()], (3.16)
{—0 ( Z—roo

provided this limit exists.

This formula brings out an interesting distinction between residues at infinity
and residues at points in the finite plane. If f(z) is holomorphic at z = zg, then
Res[f(zo)] = 0 by Cauchy’s Theorem. But if f(z) is holomorphic at infinity, then in
general Res[f(e0)] # 0. For example, the rational function f(z) = £ has Res[f(0)] = c
and Res[f(o0)] = —c even though it is clearly holomorphic at the latter point. Cauchy’s
Residue Theorem implies a relationship between a function’s residue at infinity and
its residues in the finite plane which in turn, determines whether the former will
vanish.

Theorem: If f(z) is holomorphic on and within a closed contour C except for a finite
number of isolated singularities at z = z4, z5, . .., zn inside C, then

/ f(2)dz = 2mi Xn: Res|[f(z)]. (3.1.7)
c k=1

Proof: The proof of this theorem involves little more than an application of the gener-
alized Cauchy Theorem.

As we did for our last theorem, we individually enclose each singularity z = z;
with a small circle Cy contained within C. Then, since f(z) is holomorphic within and
on the boundary of the (n + 1)-fold connected domain bounded by C, C4, ..., Cx, we
can apply equation (2.2.8) and write

/f(z)dz Z/f(z)dz

k=1¢,

Invoking the definition of a residue, equation (3.1.1), this immediately yields
n
/f(z)dz =2mi Z Res[f(z)]
- k=1

as required.
If a function’s singularities are all isolated, then it follows from (3.1.4) and (3.1.7)
that

Res[f(co)] = - > " Res[f(z)]
k
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where the sum is taken over all singular points in the finite plane. Thus, it is the func-
tion’s behaviour throughout the finite plane that determines whether its residue at
infinity will vanish.

An immediate application of the residue theorem is the evaluation of closed con-
tour integrals. Provided that the integrand possesses only isolated singularities within
(or alternatively, without) the contour, the evaluation is reduced to the considerably
less arduous task of calculating residues.

3.2 Calculating Residues

The basis of all residue calculus techniques is equation (3.1.3) which identifies the
residue of a function f(z) at the point z = zo with the coefficient of the first inverse
power of (z - zo) in the Laurent expansion of f(z) about z = zo. The most direct ap-
proach and the only one available when z = z; is an essential singularity is to use one
of the practical methods (see Section 2.4.4) available for generating power series and
determine the one coefficient we need. However, if z = zj is a pole of order n , there is
an alternative approach which is frequently but by no means invariably more conve-
nient. It is based on the fact that within the annulus of convergence, 0 < |z - z¢| < R,
of the Laurent expansion of f(z) about z = z,, we may set

f(2) = (z-20)"g(2) (3.2.1)

where g(z) is holomorphic within |z - z¢| < R and is non-zero at z = z,. Putting (3.2.1)
into the defining equation (3.1.1), we have

g({) _ 1 dn 1
(( Zo)" d¢ = (n-1)dzm 18(2)

Z=2Z)

Res|f(zo)] =

where we have used Cauchy’s Differentiation Formula (2.3.5) in the last step. Thus,
substituting for g(z) we obtain

1

Reslf(z0)] = lim o~ i

[(Z 20)"f(2)]. (3.2.2)
In the case of a simple pole (n = 1) this expression reduces to

Res[f(zo)] = zlig (z - z0)f (2) (3.2.3)

and, in the case of a function of the form f(z) = ﬁg with h(zo) = 0, ¥ 2 0 and
g(zo) # 0, (3.2.3) in turn reduces to

g(20)

Res|f(zo)] = W(zo)"

(3.2.4)
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Simple poles arising from simple zeros are sufficiently common that this last special
case will become memorized through use.
Examples: Consider the rational function

z°=-3z+5
(z-22(z+1)

By performing a partial fraction decomposition,

f(z) =

fl2) =

1 1
(z-2)2 z+1’
we can read off the values of the residues at z = 2 and z = —1. Since the second term is
holomorphic at z = 2, there can be no term involving the power (z—2)"! in the Laurent
expansion of f(z) about z = 2. Therefore, Res[f(2)] = 0. Similarly, since the first term
is holomorphic at z = -1, we have Res[f(-1)] = 1. These results can be verified by
using equation (3.2.2) . For example,
d [z2-3z+5] .. z°+2z-8 _

_-24»2 -

Res[f(2)] = 11 1 Zr1?

Next, suppose that we wish to calculate the residue of

eBz

(z+2)(z-1)

at z = 1 where it has a fourth-order pole. Use of (3.2.2) would involve the calculation
of the third derivative of (z“"+2) which, while not overly difficult, is sufficiently lengthy
to pose some risk of error. On the other hand, the Laurent series approach in this case
is relatively straightforward and hence, less likely to give rise to lost minus signs or
factors of two.
We need to expand both e3? and (z + 2)7! about z = 1. The exponential is entire
and has the m™ derivative
m
527 e32

flz) =

=3me3x| =3m63.
2=1 x=1

Therefore,

e’ =¢ Z W(z— D™, |z-1]| < oo.
m=0
The function (z + 2)! is holomorphic in |z - 1| < 3 and so admits the Taylor series
=3 Z

Now, to obtain the coefficient of (z - 1)"! in the Laurent expansion of f(z) = (z—&'w

about z = 1, we need only determine the coefficient of (z - 1)? in the product series

\»A

(z ™, |z-1] < 3.

3z

3z 3 m

©  _m ot k (_q\ym-k
e 5 _ |:e3z::n!(z_1)m:| |: Z( 1) (Z 1)m:| =%ZZ%( 1) (Z—l)m.
m=0

m-k
m=0 k=0 3
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Thus,

63323:32’“3 w_€e[3 3.1 1]_89;
3 (312073733 " 81°

Res[f(1)] = 5- T (-1)°>*

k=0
Suppose now that we wish to integrate

tanz
z

f(2) =
around the circle |z| = 2. Writing f(z) in the form

(sinz)/z
cosz

fz) =

we see that it is holomorphic at z = 0 but possesses first order poles at z = +71/2 arising
from the first order zeros of cos z at these two points. We can use equation (3.2.4) to
calculate the residues at the poles; we find

sin(mt/2)/(m/2) _ 2

d
4z C0SZ

Res|f(n/2)] =

Q|

z=11/2

Res[f(-71/2)] = -sin(-n/2)/(n/2) _ 2 _
4 cosz n

z=-11/2

Without further effort, the Residue Theorem gives us the following value for the inte-

gral in question:
[ 2z Zm[z E]=o.
z mon

|z|=2

A somewhat more difficult and more interesting problem is posed by the integral

1 .1
I= / = sin = coseczdz
z z
c

where C is the unit circle, |z| = 1. Both % and cosec z have first order poles at z = 0,
but sin % has an essential singularity there. Therefore, we have no choice in this case:
the Laurent series method of calculating residues is the only one that is applicable.

We require the expansions of cosec z and sin 1 about z = 0. These were found in
Section 2.2.4 and are

smf Z((l) L |z| >0

2m + 1)! z2m+1’

1 1
cosecz= =+ 2 + 7 3 5

216 %Z +mz +..., O0<lzl<m.
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Because of the presence of the % factor in the integrand, we now must find the coeffi-
cient of (z)° in the Cauchy product of these two series. This is easily accomplished and
yields the convergent series

1C1° 7 (D' 31 (-1)°

6 1! 360 3! 15120 5!
Therefore, our integral has the value

1sinlcoseczdz—zml— / + 31 -
zz - 6 31360 5!15120

|z1=1

The most important application of the Residue Theorem is in the evaluation of certain
types of real definite integrals.

3.3 Evaluating Definite Integrals

3.3.1 Angular Integrals

Integrals of the type

2
/f(cos 0, sin 0)do
0

can often be addressed successfully by making the substitution e = z. One then has

cos@=1 <z+1>, sin9=i. (z—l>, d9=£
2 z 21 z iz

and hence,

2

/f(cos 0,sin0)do = /F(z)dz

0 C
where C is the unit circle |z| = 1. Of particular interest are integrands f(cos 6, sin )
that are rational functions of cos 6 and sin 6. The corresponding functions F(z) will
themselves be rational functions of z and so the Residue Theorem can be applied to
give

2n
/f(cos 0, sin 6)do = /F(z)dz = 2mi Z Res[F(z)] (3.3.1)
A c

c

where the sum is taken over those poles of F(z) that lie inside the unit circle.
Example: Let us evaluate the integral

2

B sin’6
I:/mde, a>|b|>0
0



96 —— The Calculus of Residues

where the restriction on a and b is needed to prevent the integrand from becoming
undefined at any point on the interval of integration.
On making the recommended change of variable, the integral becomes

I (z2-1)? 1 (z - 1)2 G
2i2)? a+ L(z2+ 1) iz Zb 22 (22 + 22z + 1)
C
where C is the unit circle, |z| = 1. The integrand
2 1\2
F(z) = %
22 (22 + 3z +1)
hasadouble poleatz = 0and simple polesatz = ¢; and z = {; where {; = 3%+ Z—i -1

and { = 31—/ g—i — 1 are the roots of the quadratic z% + Z—Ifz +1 = 0. Since the product
(1{; must equal unity, only the root with the smallest absolute value can lie within the
unit circle. With a > |b| > 0, this is evidently {;. Thus, we need only find the residues
of F(z)atz={; and z = 0.

From equation (3.2.3) we have

o (2 1) (G-Gh? () = a
ReS[F((l)]—le)n(ll(Z (F(z) = M re-0) (G- Gi-G)=2y/37-1,

where we have made use of {1{> = 1 and hence, {;* = {>.
Then, using equation (3.2.2), we find

. d (22 - 1)?
Res[F(0)] = ;g% E[ZZF(Z)] = hm 1 Lzzbm}

or,
22+ 2z41)4z(z2 - 1) - (22 -1)? (2z+ 22
Res[F(0)] - lim (& * 22+ )42 - V)2 1722+ 5) 24
Z=0 (z2+ 3z +1) b

Thus, we finally obtain

_b __m|_2a a | _2n s
I—ﬁznges[F(z)]— b[ b+2 b2 1}—b2[a a? - b2].

3.3.2 Improper Integrals of Rational Functions

Real integrals with an infinite interval of integration are called improper and are de-
fined by the limiting procedure

oo 0 b
fx)dx = lirpoe fx)dx + lgrolo f(x)dx. (3.3.2)
[t [ i i |
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If both of these limits exist, we can set
oo R
/ f(x)dx = lim / f(x)dx. (3.3.3)
R—oo
—oo R

This is not an alternative definition of the improper integral; the limit in (3.3.3) may
exist even if the integral does not. For example,

R
x> R
lim [ xdx=1lim —| =0
R—oo R—oo 2 -R
-R

b oo

but blim J xdx is unbounded and therefore, sois [ xdx. However, since our interest
—ro0

0

—oco

is in the evaluation of integrals that are presumed to exist, we shall always be able to
invoke (3.3.3).

Theorem: Let f(z) satisfy the following conditions:

i  f(z)is meromorphic in the upper (lower) half-plane,

ii  f(z) has no poles on the real axis,

iii zf(z) — O uniformly as |z| — oo, for 0 < argz < n(-m < argz < 0),

iv 7 f(x)dx exists, where f(x) = lin%) flx +iy).
e y—
Then,

[ F0dx = 2mi 3 Reslf(2) (3.34)

( / fOdx = -27iy Res{f(Z)]) (3.3.5)

where > (Z) denotes the sum over all the poles of f(z) in the upper (lower) half-

plane.

Proof: As shown in Figure 3.1, we define a semicircular contour Cg, centre the origin
and radius R, with R being sufficiently large that Cy and the real axis segment —R <
x < R together enclose all the upper half-plane poles of f(z). Then, by the Residue
Theorem

R
[ £o0dx+ [ f@dz = 2mi 3 Reslf(a) (336)
-R Cr *
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Im =

-R

Figure 3.1: The contour used in the integration performed in equation (3.3.6).

From (iii) , we must have |zf(z)| < (R) for all points on Cg, where &(R) is a positive
number that depends only on R and tends to zero as R — oc. Thus,

f(2)dz| = | | f(Re®®)Re®idb]| < e(R) [ dO
Jroe- /

and, as R — oo, the integral around Cy tends to zero. Therefore, if (iv) is satisfied it
follows that

oo R
[ £00dx= Jim_ [ foodx - 2mi 3 Reslf ).

If the conditions in the statement of the theorem hold in the lower half-plane
rather than the upper, then the semi-circular contour must be chosen to lie in that
half-plane and equation (3.3.6) becomes

R
- [ foodx+ [ fardz - 2mi 3 Reslf . (337)
-R Cr -

The minus sign in front of the integral along the real axis is necessary to preserve a
counter-clockwise direction of integration. Thus, in the limit as R — oo, we obtain

/f(x)dx = -27i ) " Res[f(2)].

The condition xf(x) — 0 as |x| — o< is not in itself sufficient to guarantee the ex-

istence of [ f(x)dx. Thus, conditions (iii) and (iv) are both required in the statement

of the theorem.
A particular class of functions which satisfy all four conditions are the rational
functions f(z) = P(z)/Q(z) where
i the degree of Q exceeds that of P by at least 2, and
ii  Q has no real zeros.
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We shall illustrate the use of the theorem by evaluating two improper integrals whose
integrands are rational functions of this type.
Consider the integral

- [ e
0

which, because its integrand is an even function of x, can be rewritten as

1
N 5/ (2 +4)2(x2+9) dx

The numerator of R
z
@)= (z2+9)(z2 + 4)2

has degree 2, while its denominator has degree 6. In addition, the denominator has
simple zeros at z = +3i and second order zeros at z = +2i. Thus, the conditions of the
theorem are satisfied and so we need only calculate the residues of f(z) at its two poles
in the upper half- plane to evaluate I.

Using equation (3.2.3) , we have

z2? 3i
Reslf3D)] = —>31 (z+30)(@z2+4)? 50
while, from (3.2.2) ,
. d z?
Res[f(2i)] = 11m [m}
(z +9)(z+20)22z - 2%[22(z + 21)? + 2(z* + 9)(z + 2i)] _13i
z%Zl (22 + 9)2(z + 20)* 200°

Equation (3.3.4) then yields

3i 13i m
/f(x)dx "'[50 zoo} = 200°

Next, consider the integral

oo

1
I=/mdx, a>0.

0

We again take advantage of the evenness of the integrand to write

1 1
I_f/x‘wa“dx

—oo
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and then consider the analytic properties of the function f(z) = (z* + a*)™*. As
in the preceding example the degree of the denominator exceeds that of the nu-
merator by four and none of the zeros of the denominator are real. Indeed, the
zeros, which are poles of f(z), are all simple and are located at the points z =
ae™*, aeP™* qe>"*, ael’*, Of these, only the first two are in the upper half-plane.

The simple form of f(z) makes equation (3.2.4) the most convenient method for
calculating its residues. We find

. 1
Res[f(a)] = Zh_r)I}x 7%(24 s = i

where a denotes either ae™* or ae®®"/*. Thus, Res[f(ae™*)] = "’ZZZM = —el::: and
Res|[f(aeP™*)] = e::;/a = % which yields, from equation (3.3.4),

1 _ W[ ms ims] _ M M T
=3 [ o= [ -] = s =

3.3.3 Improper Integrals Involving Trigonometric Functions

Fourier transforms play an important role in the description of wave motion, from
acoustics through optics to quantum mechanics. Concomitant with this importance
is a need for proficiency in the evaluation of real improper integrals of the form

f(x)e™dx, f(x) cos kxdx, f(x) sin kxdx.
[revetan. [romminas |

Thus, a signal application of complex analysis follows from the recognition that if the
complex analogue of f(x), f(z), satisfies the conditions stated in the theorem proved
in the preceding subsection, the first of these integrals can be evaluated by means of
the formula

27ti 3" Res[f(2)el?], k>0
+

-2mi Y Res[f(2)e™], k<o0. (3.3.8)

/°° f(x)e™dx =

Separating both sides of this equation into their real and imaginary parts, we obtain
statements that address the other two integrals:

-2t 3" Im{Res[f(2)e*]}, k>0

/ f(x) cos kxdx = (3.3.9)

271 3" Im{Res[f(z)e**]}, k<O.
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and,

271 5" Re{Res[f(2)e’**]}, k>0

/ f(0) sin kxdx = (3.3.10)

-2 S Re{Res[f(z)e*]}, k<O.

The recognition referred to above is that if k > 0 and if z lies on a semi-circle Cp
in the upper half-plane, then |e¥?| = |e!*|e™™ = ™% < 1 and, hence |f(z)e’**| < |f(2)|
for all z on Cg. Similarly, if k < 0 and Cy, is in the lower half-plane, then we again
have [f(2)e™*?| = |f(z)|e” IV < |f(2)| for all z on Cg. Thus, using one or the other of
the contours of the preceding theorem according to the sign of k , the contribution
from integration along Cy goes to zero even faster than before as R — oo and equation
(3.3.8) results. Indeed, since et*? evidently acts as a “convergence factor”, one might
surmise that equation (3.3.8) applies to a wider class of functions than that defined by
the conditions of Section 3.3.2. A theorem known as Jordan’s Lemma confirms this
expectation.

Theorem: If Cy is a semi-circle in the upper (lower) half-plane, centre the origin and
radius R, and if f(z) satisfies the conditions

i  f(z) is meromorphic in the upper (lower) half-plane,

ii  f(z) — O uniformly as |z| — oo for 0 < argz < (-7 < arg z < 0),

then, [, e e**f(z)dz — 0 as R — oo where k is any real positive (negative) number.
Proof: By (ii) we have, for all points on Cg, |f(z)| < €(R) where £(R) is a positive num-
ber that depends only on R and tends to zero as R — oo. Now, for z on Cp,

ikz‘

ikR(cos 6+i sin 6) ‘ _ e—kR sin

e[ = e

Hence,

n R
/f(Z)eikZdZ - /f(Reie)eikRemiReiedg < E(R) / e—kR sin GRde
Cr 0 o

/2
= 2Re(R) / e kRsinb ¢

0

where the last step follows from the symmetry of sin 8 about 6 = 77/2. But, (sin 6)/0
decreases steadily from 1 to % as fincreases from O to 7. Thus,if0< 8 <n/2, sinf =
20 Hence
m* ’

/2

/ F2)e*dz| < 2Re(R) / e 2kROpi 4o _ ”"(R)

P ne(R)

[1 k ’

from which the theorem follows.
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We owe this theorem to Camille Jordan (1838-1922) whose Cours d’analyse was an
influential textbook for the French school of analysts. His fame rested much more on
his contributions to group theory than on those to analysis however. He was the leading
group theorist of his day, applying group theory to geometry and linear differential equa-
tions. Camille Jordan was born in Lyons and was rewarded for his accomplishments by
appointments as Professor at the Ecole Polytechnique and the College de France.

Jordan’s Lemma makes evident the proof of the following theorem.

Theorem: Let f(z) be subject to the following conditions:
i f(z) is meromorphic in the upper half-plane,

ii  f(z) has no poles on the real axis,

iii f(z) — O uniformly as |z| — oo, for 0 < argz < 7.

Then, for k > 0,
/f(x)e”‘xdx = 2mi Z Res[f(z)e™**]. (3.3.11)

If k < 0, and if f(z) is meromorphic in the lower half-plane and tends to zero uniformly
as |z| — oo for - < argz < 0, then

/f(x)eikxdx = -2mi Z Res|[f(z)e*]. (3.3.12)

A particular set of functions that evidently satisfy the conditions of this theorem
is the rational functions f(z) = P(z)/Q(z), where
i the degree of Q(z) exceeds that of P(z) by at least one, and
ii  Q(z) has no real zeros.

Example: Consider the integral

oo

I= cos kx dx, a>0.
X2 +a?

0

Invoking the evenness of its integrand, we can set

oo

1 cos kx
I= E/md"-

—co

The function f(z) = (2> + a®)~* has simple poles at z = +ai. Using equation (3.2.4) we
find the residues at these poles

eikz e:Fka
= Fi .
1 2a

Res[f(2)e*],..0 = lim
[f( )e ]Z__al z—tai 2Z
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Therefore, applying our new theorem, we have

1 r —nlm[-ie*/2a], k>0
I== =
! /f(x)coskxdx { +aIm[+ie**®/2a], k<O

or, [ = Zelkla,
Often, some care is needed when replacing cos kx or sin kx by the real or imaginary

part of e** in an application of (3.3.11) or (3.3.12). For example, although the improper
integral
/ smkxdx _1 / smkxdx
X 2 X
0 —co

is convergent, it cannot be equated to the imaginary part of

oo

ikx
/ € dx
X

—o0

because the pole at x = O renders the latter undefined. Fortunately, the analytic prop-
erties of S2¥ offer an alternative route to the successful evaluation of the integral.
Since % is entire, its integrals are independent of path everywhere in the finite
plane. In particular, we are free to deform the contour along the real axis to obtain
one that avoids the troublesome point z = 0. Any finite deformation will do and, as
shown in Figure 3.2, a semicircle with centre at z = 0 makes a convenient choice. De-
noting the resulting contour by C , we then have

oo R

I 1 [ sin kx dx - 1lim 1 [sin kx dx - 1lim 1 [sin kz dz.
2 X R—oo 2 X R—oo 2 z
—o0 -R c

With z = 0 thus avoided, we can now make use of sinkz = %(e** - e7**) to give us

Im z
A

.R\.T:

Figure 3.2: A contour along the real axis is deformed by insertion of a semicircle with centre at the
origin.



104 —— The Calculus of Residues

Figure 3.3: The closed contours used to evaluate I; and I, respectively.

ikz e—xkz

I=2 -1, wherel; = Rli_r)riofc €dzand I, = Rh_r}:o J &5—dz. Taking k to be posi-
tive, we can evaluate I; by closing the contour C with a semi-circle Cg, provided that
the latter lies in the upper half-plane. Similarly, I can be evaluated by closing with
a semi- circle in the lower half-plane. These choices are dictated by Jordan’s Lemma
which assures us that the contributions from both semi-circles go to zero as R — oo.
The closed contours are shown in Figure 3.3 which reveals that the simple pole at
z = 0 lies outside the one chosen for I; but inside that used for I,. Thus, succes-
sively using Cauchy’s Theorem and the Residue Theorem, we conclude that I; = 0
and I, = -2miRes [%} = —2mi, where the minus sign results from preserving a
counterclockwise directiglg of integration. Therefore,

oo

_ [sinkx, 1 N T
I:/ P dx-E(Zm)—z, k>0.
0

Since sin kx is an odd function of k , our final result is

/wsinkx /2, k>0
dx =
X -m/2, k<O.

0

Evidently, deforming the integration contour can be another valuable aid in the eval-
uation of real integrals. As we will see in Section 3.3.6, it can be useful even when the
residue theorem is not required.

3.3.4 Improper Integrals Involving Exponential Functions

With exponential or hyperbolic functions present in the integrand, life gets somewhat
more complicated due to an unsatisfactory behaviour of the integrands at infinity.
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Since these functions have an essential singularity at z = oo, the integrands have no
uniform limit as |z| — co. Consequently, one cannot make use of a semi-circular arc to
close the initial contour. Instead, one defines a rectangular contour that exploits the
periodicity of these functions. The following example demonstrates what is involved.
Example: The improper integral

oo

eax
I=| ———dx,-n<a<mn
cosh mx

—oo

can be shown to converge provided that a is confined to the range indicated. The func-
tion f(z) = e**/ cosh iz does not vanish uniformly as |z| — oo and, in fact, if z — o
along the imaginary axis, it does not vanish at all. Therefore, to evaluate I we shall
take advantage of cosh 71(z + 2i) = cosh riz. Thus,

ea(x+2i) ~ Zai[ e :|

coshm(x +2i) cosh 7rx
and so,
. R+2i
ea(x+21) e
— _dx= ——dz,Imz=2
cosh r(x + 2i) cosh iz
“R —R+2i
R
. edx
= [ — dx
cosh mx
R

for any R. This suggests that we use the contour shown in Figure 3.4, since we have
just established that the integrals along its two horizontal segments are related by a
multiplicative constant. Therefore, if we can prove that the integrals along the vertical
segments give vanishing contributions in the limit R — oo, (which is not an unreason-
able expectation given the convergence of I) , then we can evaluate I by means of a
simple application of the residue theorem.

The integrals along the vertical segments are given by

[ ea(tR+iy) id
=+ — .
v _/ cosh (R + iy)l y
0
Now,
| cosh 71(R + iy)|* = cosh®7R - sin’zty > cosh?7R - 1 = sinh®7R.

Thus,

| cosh (R + iy)| = sinh iR = %e”R(l - e Ry

and so, by Darboux’s Inequality,

4e—R(n$a)

[Iy| < 1_e2® 0
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A Im:z

R+2i C R +2i

1
(F¥)
NS

Figure 3.4: The contour used in the evaluation of f dx,-m<a<m.

cosh X

as R — oo, provided that - < a < 7.
Hence, applying the residue theorem to the integral around the closed contour
shown in Figure 3.4 and taking the limit as R — oo, we obtain

az
[-e]=2ni Res | —5
¢ ™ Z es {cosh nz] ’

poles within C

R
where the first term on the left hand side comes from Rlim J w57z dx and the second
*)OoiR
R+2i
from Rhm f Cosh —dz,Imz = 2. The singularities of Cosh — in the finite plane are
—0oo _ .
2i
simple poles located at the points z = 2”*1 = 0,1, +2,..., of which only two,
=1i/2 and z = 3i/2, lie inside the contour. The residues at these two poles are
ez e eai/2
Res [T] = di = . E)
cosnrnz z-i/2 I cosh rz i2 7Tl
az 3ai/2
Res [eT] = —.
coshnmz| .., i
Thus,
. aif2 3ai/2
I(1 - e**) = 2mi [e _ & }
i 7T
or,

zeaz/Z(l eal) 2eai/2
1- eZal 1 eZaz

and hence, our final result is

oo

e dx—seca nm<a<mn
cosh rix 2’ ’

—oco
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3.3.5 Integrals Involving Many-Valued Functions

If the integrand of an integral from O to oo contains a factor like x*, where a is not
an integer, then we are apparently faced with the added complication that its com-
plex analogue z* is a multi-valued function. However, the supposed complication can
often be turned to one’s advantage and the means of doing so is to choose the func-
tion’s branch cut so that it too runs along the real axis from 0 to oo. The reason for
this paradoxical choice is that any single valued branch of the function has a known
discontinuity across the cut and so integrals whose contours parallel the real axis im-
mediately above and below the cut are related by a simple multiplicative constant.
The next example illustrates how this can be very effectively exploited.

Example: Suppose that we wish to evaluate an integral of the form

oo

/x"“lf(x)dx, a # an integer,
0

where f(z) is a rational function which
i has no poles on the positive real axis, and
ii satisfies the condition zf(z) — 0 uniformly as |z] — 0 and as |z| — o~.

We start by considering the complex integral

I= / 2" 1f(z)dz (3.3.13)

c

where z%! denotes a specific branch corresponding to a choice of branch cut running

along the positive real axis and where C is a closed contour consisting of

i alarge circle Cg, centre the origin and radius R,

ii asmall circle C;, centre the origin and radius r, and

iii two parallel straight lines, L1 and L,, which join Cr and C; on either side of the
cut.

Although C looks rather dissimilar to the contours in Figures 2.10 and 2.11, it shares
the distinction of being a “dogbone” contour. However, its most important feature at
this point is that it does not cross the cut thus permitting a single valued definition of
the integrand in (3.3.13) .

The final result will be independent of our choice of branch for z4! and so we
choose the simplest to work with and set z*' = |z/*1e/@ 19 0 < § < 27. Thus,

just above the real axis, on L;, 2z*! = x%! while, just below the real axis, on L,,

Z0-1 = ya-12mi(a-1)
Application of Darboux’s Inequality to the integrals around Cg and C, establishes

that they vanish as R — oo and r — 0 because we have required that |zf(z)| — 0
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| ,Y'\ & L *a I{

¥ S

M P

Figure 3.5: The closed contour of integration for the integral in equation (3.3.13).

when both |z| — oo and |z| — 0. Therefore,

lim lim [ z*'f(2)dz = —/ezm(“"l)x“"lf(x)dx+/x“'lf(x)dx
R—o00r—0
C 0 0

where the first integral on the right is the contribution from L, and the second is the
contribution from L;. Together these integrals give

oo oo

[1 B eZni(a—l)} /x“’lf(x)dx _ —zisﬂ /Xa—lf(x)dx.

—ami
0 0

At the same time, the Residue Theorem gives

lim lim [ z*'f(z)dz = 2mi Z Res[z* 1f(2)].

R— oo r—0

pA all poles

Thus, we finally obtain
/ O > Res[z*'f(2)]. (3.3.14)
0 ST poles

dx. In order

X
x2+1

For a specific application of this result, consider the integral [ -
0

that z*/(z? + 1) — 0O as |z| — 0 and as |z| — oo, we must restrict a so that it is greater
than zero but less than two. Then, since (z* + 1)~! has simple poles at z = +i, we need

to calculate - -
Res [27} -z
2=

T
22+1 2z - i(ﬂ)'

z=+i

But the principal values of (+i)* are e!*/? and e>*¥"/2, respectively. Thus, we find

ys -1 —ina
x4 e i i m2cosan/2 m
—dx = —— [e’“”/2+e’3”‘”/2] = —.7/ = Z—cosecan/2, O0<a<2.
x2+1 2sinnta 2 sinam 2

0
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Example: Let us now consider the integral

Iz/f(z)lnzdz

where C is the same closed contour used in the preceding example (see Figure 3.5) ,

In z denotes the single valued branch In z = In |z|+i6, 0 < 6 < 27, and f(z) is a rational

function with

i no poles on the real axis, and

ii thedegree of its denominator polynomial exceeds that of its numerator by at least
two.

The first restriction on f(z) ensures that z = 0 is not a zero of its denominator and
hence, that zf(z) — O uniformly as z — 0. This is sufficient to ensure in turn that
the contribution from C, again vanishes in the limit r — 0. Similarly, the second re-
striction ensures that the contribution from Cy vanishes in the limit R — oo. Thus, we
have

lim lim / f(@)Inzdz = / f@)Inzdz + / f(@)Inzdz (3.3.15)

R—oor—
Ly Ly

while, from the Residue Theorem, we know that

hm hm / f(@)Inzdz = 2mi Z Res[f(z)Inz]. (3.3.16)

all poles

It may seem that we are on the threshold of deriving a formula for the evaluation

of improper integrals of the type [ f(x)Inxdx. However, since Inz = Inx on L; and
0

Inz = Inx + 2mi on L;, equation (3.3.15) becomes

R—oor—

lim lim /f(z) Inzdz = —Zni/f(x)dx
0
which, together with (3.3.16) , yields

/ fX)dx = - Res[f(z) Inz]. (3.3.17)

all poles

In other words, we have found a new method of evaluating integrals over the half
range (0, o) and, unlike our previous methods, it does not require the integrand to
be an even function of x.

We shall illustrate the use of (3.3.17) with the integral

. 1
I:/x3+ 3dx a> 0.
0
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The function f(z) = (z3+a>)~" has simple poles at z = z; where z; = ae'"/3+2k7/3) | -

0, 1, 2. The residues at these poles are

1 1 27 /3+4km/3)
Res[f(zy)] = == — , k=0,1,2.
¢ 322|,., 3a’
Thus,
2
Z Res[f(zy) In zi] =3%e’i2”/3(ln a+im/3) + 3%e”‘z"(ln a+imn)
k=0
+ ie"AlO”B(lna +i5m/3) = i—n[e"iz”B + 3+ 5¢"213]
3a? 9a?
_ -2V/3n
9a?

and we obtain

T 1 2V3n
/x3+a3 x= 9a2 ’ a>0.

0

While (3.3.17) is to some extent an unexpected bonus, it leaves us with the problem

of evaluating [ f(x)Inxdx unresolved. If we impose the additional constraints that
0

f(x) be an even function and possess no poles on the negative as well as the positive

real axis, this can be addressed by using as a contour a large semi-circle in the upper

half-plane indented at the origin. The branch cut associated with In z is then chosen
to lie in the lower half-plane. We leave as an exercise to use this construction to derive

/ £ Inxdx = mi Z Res[f(z)Inz] + %2 Z Res[f(2)]. (3.3.18)
0 + +

3.3.6 Deducing Integrals from Others

It is often possible to evaluate an integral merely by deforming its contour of integra-
tion until it coincides with a path on which the value of the integral has already been
determined, picking up 27mi times the residue of the integrand at any isolated singu-
larities encountered along the way. Our next two examples illustrate what is involved.

Examples: The improper integral I = [ eikx-ax’ dx, k, areal and a > 0 is named after

Carl Friedrich Gauss on whom we will elaborate later. It may be recognizable as the
2
Fourier transform of the Gaussian function e™®* . By setting

. 2 2
2 ikx = —alx- Y K
ax” +ikx = a<x 2a> ia’
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Gauss’s integral becomes the complex line integral,
co—ik/2a
[=ekl4a e dz, z=x-ik/2a,

—oco-ik/2a

whose integrand is e7%%" and whose contour of integration runs parallel to the real
2

axis and lies a distance k/2a below it. The value of the integral of e™** is well known

when the integration contour is the real axis; specifically,

/e"”‘zdx = \/E
a

—oo

Therefore, we shall attempt to evaluate I by integrating e"% around a rectangle with

vertices —R - iX, +R - iX, +R, —R and then taking the limit as R — oo.

Re:z

e - sz R - ik?2a

Figure 3.6: The contour used to evaluate Gauss’s Integral.

. — 2 . . .
Since e™% is entire, we obtain from Cauchy’s Theorem

oo -R R—ik/2a
2 2 2 2
ek /hay = / e dx + lim e %% dz+ lim e dz. (3.3.19)
R—oo R— oo
—oo -R-ik/2a R

But on the vertical segments of the contour,

‘/ e dz

which vanishes in the limit R — oo. Thus, (3.3.19) yields

Kk _ e jaaty K
2a 2a

2
smax’e ax

oo

[=eK/4a / e dx = ,/ge"kz/l‘“. (3.3.20)

—oo

For our second example we shall consider the class of integrals

I= /x‘“{ COSX ix, 0<a<1. (3.3.21)
SIn x
0
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These may be viewed as integrals of z*~! Re(e?) and z* ! Im(e*?) along the positive
real axis. Thus, we require a contour on which z* e assumes a simpler and more
familiar form. If we set z = iy, then z* 'e* becomes

iae 1 - . o . . A\ g1 -
el 1)"/2)/“ eV = —j (cos7 +isin 7) y*le?.

Thus, the integral of z* e’ along the positive imaginary axis is

oo oo

—i (cos & | isin n—a) eVy“tidy = (cos & | isin n—a) eVy“lay.
2 2 2 2
0 0

The integral on the right hand side is so well known it has been assigned a name,
Euler’s Integral of the second Kkind. It provides a definition of the gamma function
which is the continuous variable generalization of the factorial function,

oo

I'(z) = /e"’yz‘ldy,Rez >0
0

with
I'n)=n-1,n=1,2,....

Evaluation of this integral provides values of I'(a) for non-integer a. These can be
found in tabulated form in any standard compendium.

To evaluate I in (3.3.22), we shall integrate z* 'e%? around the first quadrant of a
circle of radius R and then let R — oo. However, since z = 0 is a branch point of z47!,
we must subtract from the interior of the contour the first quadrant of a small circle
of radius r and take the additional limit r — 0. The complete contour is shown in
Figure 3.7.

Im z
\

B
r R Re:z

Figure 3.7: The contour used to evaluate the integral equation (3.3.22).



Evaluating Definite Integrals =— 113

On Cr, z = re'? and we have

0 0
iz a- _rsi _ ~1)i6. i T
/elzza 1dZ _ /e rsm@ra 1e(11 1)10r616d9 <r® /d@ _ Era’
C /2 12

since [e7S"% < 1forallr > Oand 0 < 6 < m/2. It follows immediately that
Jo, €7z*dz - 0asr - 0,ifa> 0.

Ifa < 1,z — 0 uniformly as |z| — oo and so, by the same argument as was
used to prove Jordan’s Lemma, we have f Ca e?z%1dz - 0as R — oo.

Therefore, if 0 < a < 1, an application of Cauchy’s Theorem to the integral around
the closed contour in Figure 3.7 yields, in the limitas r —+ 0 and R — oo,

oo 0

/eixxa—ldx " / e—yya—lei(a—l)n/zidy =0,
0 oo
or,
X% L(cosx +isinx)dx = [ e¥y* ! (cos ™% +isin %) ay.
y 5 5 y
0 0
Thus, equating real and imaginary parts, we conclude that
/ x%1 cos xdx = I'(a) cos ?
0
/ x*1sinxdx = I'(a) sin %. (3.3.22)
0

3.3.7 Singularities on the Contour and Principal Value Integrals

An additional and rather serious type of integration impropriety is to have the inte-
gration path pass through a singularity of the integrand. In real variable analysis this
situation is addressed as follows.

Definition: If a function of a real variable f(x) increases without limit as x — ¢, a <
¢ < b, we define the improper integral of f(x) from a to b, to be

b c-¢ b
/f(x)dx = lim /f(x)dx + lim /f(x)dx, (3.3.23)
£—0 6§—0
a a c+6
provided that both limits exist.
Notice the analogy between this definition and that given by (3.3.2) for an im-
proper integral with an improper range of integration. The analogy continues with
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the definition of the Cauchy principal value integral,

b c-¢ b
p/f(x)dx=gi£1}) /f(x)dx+/f(x)dx . (3.3.24)

The principal value may exist even if the improper integral does not. However, if the
latter does exist then the two are equal.

As soon as we avail ourselves of the added flexibility of complex variables, the
simplicity of this picture becomes muddied by the introduction of alternative ways of
defining the improper integral. These correspond to the various ways available of de-
forming the contour of integration to avoid the singular point. Two obvious choices
are to stop the integration just in front of the singularity and then pass by it on a
semi-circle of vanishingly small radius in either the clockwise (upper half-plane) or
the counter-clockwise direction (lower half-plane).

Even with only these two choices of how to avoid a singular point, one faces a
multiplicity of possible definitions of an improper integral if its integrand has several
singular points on the contour. For example, in Section 3.3.3 we found that

oo

ikx

€ dx- Ee’lk‘a, a>o0.
x2 + a2 a

Suppose that we change the relative sign in the denominator so that this integral be-

comes

eikx
Iz/mdx. (3.3.25)

—co

Because the integrand now has simple poles at z = +a, there are four possible defini-
tions of this integral corresponding to the four indented contours shown in Figure 3.8.

Each of the four integrals may be evaluated by an application of the Residue The-
orem if we close the contour and make use of Jordan’s Lemma. However, to do the
latter we must close each contour in the upper half-plane if k > 0, and in the lower
half-plane if k < 0. Thus, these integrals may receive contributions from none, one or
both of the poles, depending on the sign of k.

The residues at the poles are

ikz eilka
Res {7} =+ .
2 _ 2
zZ-a |, ., 2a

Hence, the values of the integrals are

0, k>0
Io) = { sinka, k>0 (.3.26)
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(i) ' (i1)

(iii) ! - (iv)

Figure 3.8: Four ways of avoiding the poles of (z> - a?)™L.

Iy = =€l (33.27)
L = —Tmequ\a (3.3.28)
_2n .
o —“Isinka, k>0
I { o k<0, (3.3.29)

In addition to these four definitions of the improper integral I, we still have the
possibility of using the principal value o [ %dx, whose value we shall calculate

momentarily.

In the midst of so much ambiguity how can one attach a unique meaning to
such an integral when it arises in a physical problem? Fortunately, the physics of
the problem will always contain information that dictates how the singularities are
to be avoided and hence, lifts the ambiguity that is inherent to the mathematics. A
classic example that we will encounter when we discuss Green’s Functions involves
an integral almost identical to the I in (3.3.25) . We shall discover that causality, the
principle that cause must precede effect, is all that is required to make a unique choice
of definition for the integral.

When an improper integral has only simple poles on its contour of integration, its
principle value can be related in a very straight forward way to the values obtained by
indenting the contour to avoid the poles. To be specific, let us consider the integral

I= fx) dx
X — Xo

—oco

where there is no loss of generality in having chosen the real axis as contour but having
done so we now require that f(z) have no singularities there and that it be suitably
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behaved at infinity. If we indent the contour to avoid z = xo by means of a semi-circle
in the upper half-plane, (a clockwise semi-circle), I assumes the value

_ 7ng () / f) / f (Z) (3.3.30)

Xo+€

where C denotes a semi-circle with radius € and centre at z = xg.

In the limit € — 0, the first two terms in (3.3.30) yield the principal value of I while
the third term can be evaluated as follows. Since f(z) is holomorphic at z = xo, it can
be expanded in a Taylor series about this point. Thus,

@ o )(XO) m
Y e XOZ (& - x0)"dz
C

n

- / if (o) - lim i f (m:rfj‘(’)em / ie™d - —inf(xo) (3.3.31)

0 m= 0

where we have used the fact that on C z - xo = €e'®, dz = ice'?df, m > 6 = 0.
Hence, (3.3.30) becomes

n=g / Xf Ex)zo dx - intf(xo). (3.3.32)

Similarly, if we indent the contour below the pole by means of a counter-clockwise
semi- circle,

oo

/ dx + i71f (xo). (3.3.33)
Adding (3.3.32) and (3.3.33), we see that

fOo ;1

e dx = 500+ 1) (3.3.34)

—o0

which, after appropriate generalization, provides a means of defining principal value
integrals for contours other than the real axis. And returning to our last example, it
gives us

s eikx T .
merely by averaging either (3.3.26) and (3.3.29) or (3.3.27) and (3.3.28).
To obtain a further perspective on these issues, note that because f(z) is holomor-
phic in a neighbourhood of the real axis and well behaved at infinity, the indented
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Figure 3.9: The contour that defines I, and an equivalent contour obtained by stretching it out be-
low the axis.

contour used for Iy is completely equivalent to one which parallels the real axis a
distance € below it. These two alternatives are pictured in Figure 3.9. Hence, we may
write

oco—ig
I, = lim f@) 4y 2 e xo—ie
=0 Z - Xo
—oco—ig
_tim [ g (3.3.35)

e—0 X—Xo—ie

The second equality shows that lowering the contour to avoid the singularity is equiv-
alent to raising the singularity (to z = xo + i€) to avoid the contour.

Using this result together with the corresponding equation for I, , we can trans-
form (3.3.32) and (3.3.34) to read

oo

lim &dx = p/ f(X)O dx T inf(xo). (3.3.36)

e-0 ) X—XozxliE X—-X

On the purely practical side, the concept of a principal value integral can be used
to simplify the evaluation of integrals like Of Si%dx. The method involves a simple
extension of the theorems of Sections 3.3.2 and 3.3.3.

Suppose that f(z) has a simple pole at z = xo. In some neighbourhood of that point
we can set f(z) = (z—xo) ' g(z) where g(z) is holomorphic and non-zero at z = xo. Thus,
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if this is the only singularity on the real axis, we have

/ fdx| = / F()dx + lim / %dz o / F()dx - ing(xo)
—oo n —oo I —co

= @/f(x)dx—inReS[f(Xo)],

where the N signifies that we are using a contour along the real axis indented into the
upper half-plane to avoid z = xo. But, if zf(z) — O uniformly as |z| — o and f(z) is
meromorphic in the upper half-plane, we can use the Residue Theorem to find

/f(x)dx =2m’ZRes[f(z)].

N
Thus,

o / f(x)dx = miRes[f(xo)] + 2mi Z Res[f(2)]. (3.3.37a)
If meromorphy occurs in the lower rather than upper half-plane, this is replaced by
o / F0dx = miReslf(xo)] - 2711 S Res[f(z)]. (3.3.37b)

Generalizing, we see that if a function f(z) has the requisite behaviour at infinity,
is meromorphic in the appropriate half-plane, and has only simple poles on the real
axis, then

271i 3" Res[f(z)e'**], k=0

27i i Res[f(z)e*], k<o. (3.3.38)

o [ FO0e™ = mi S Reslf00e™] +
oo 0
where > denotes a sum over the poles on the real axis.
0
Example: As stated earlier, this result simplifies the evaluation of integrals like

({ X dx. We start by considering £ whose only singularity in the finite plane is

a simple pole at z = 0. The residue at this pole is unity and so, from (3.3.38) , we have

eix
—dx = mi.

By equating real and imaginary parts, this yields

oo

COSs X
o[ a0

—oo
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sin x
—Tdx=nm
BO/ X

Thus, since $2¥ is entire, we must have
X

oo oo

in in
p/m de=/51 X ix
X X

—co —oo

and so, with much less effort than before, we find

oo
sin x m
——dx==.
X 2
0

3.4 Summation of Series

The Residue Theorem can also be used to calculate the sums of certain infinite series.
The principle is simple. The function sin 71z has an infinite sequence of zeros at the
points z = 0, +1, +2, ... and so, cosec 71z and cot 71z each have an infinite sequence of
simple poles at the same points. Their residues are

1 _

Res[cosec r1z]-sn = ———— , n=0,1,2,....
mcosnz|,_,, T
Res[cot 11z],=sn = cosnz = 1, n=0,1,2,....
TCOSTZ lz=2n T
Thus, if f(2) is a meromorphic function whose poles, z = z;,j = 1, 2, ..., k, are distinct
from the zeros of sin 71z, and if C is a contour that encloses the points z = 1, I+1, ..., m,
then
m
Z f(n) = L / neotnzf(z)dz - n Z Res[cot 1zf(z)] (3.4.0)
2mi
n=1 c z; inside C
and,
- 1
Z(—l)"f(n) =55 /ncosec nzf(z)dz - n Z Res[cosec mzf(z)]. (3.4.2)
n=1 C z; inside C

If we can ensure that the contour integrals go to zero as n — oo, these two equations
can be used to sum the infinite series > f(n) and > (-1)"f(n), respectively. With this

n n
goal in mind, let us take f(z) to be a rational function, none of whose zeros or poles
are integers and such that |[f(z)| — 0 as |z| — oo. We then choose C to be the square
with vertices at z = (N + 1/2)(¢1 = i). This choice is based on the observation that

1
cos? 7ix + sinh® iy *
|cotmz| =

sin? ix + sinh® y
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so that on the vertical sides of the contour,

1
. 2 2
|cotmz| = ‘(smhny) = |tanhmy| <1,

1 +sinh? 7ty

while on the horizontal sides of the contour,

sinh®> m(N +1/2) + 1
|cotniz| = 5
sinh” 77(N + 1/2)

)2‘ = |coth (N + 1/2)

which tends to one as N — oo. Thus, | cot 7iz| is bounded on C for all N. We shall
denote its upper bound by M.

Next, we note that for N sufficiently large and z on C, f(z) admits an expansion of
the form

oo

fry=>"4n_ 21,2, .

zm  z 22

m=1
In addition, since
R [cotrrz} _ ii’ n=1,2,
mn
zZ=tn
and @ = L 1 m2_|z] < 1sothat
cot iz
Res[ } =0,
z=0
the integral

N
/ cotrrzdz = 2mi Z Res[cotnz] =0.
z z |,

C n=-N
Thus,
ai
/cotnzf(z)dz = /cot nz (f(z) - 7) dz.
C C
But, |z (f(2) - )| < e(N) where £(N) — 0 as N — eo. Therefore, invoking Darboux’s

Inequality, we have

/Zf(z) cotnz% < e(N)Mﬁ&N +1/2)

/

c

where we have used the fact that the minimum value of |z| on C is (N + 1/2) and that
the length of C is 8(N + 1/2). Thus, in the limit as N — oo, the integral vanishes and
(3.4.1) becomes

oo

k
Z f(n)=-n Z Res[cot zf(2)].=;. (3.4.3)

n=-oo j:l
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Evidently, the “background” integral continues to vanish when cot 71z is replaced
by cosec 71z and so, for the same set of rational functions f(z) we have

o k
Z D) =-n Z Res[cosec nzf(2)].=;. B.4.4)
n=-oo j=1
This rather clever technique for summing infinite series will resurface when we
use it to sum a partial wave expansion of a quantum mechanical scattering ampli-
tude. Such expansions are infinite series involving Legendre polynomials P;(x), with
the index [ being an angular momentum quantum number. Thus, this particular ap-
plication will introduce the idea of treating angular momentum as a complex variable,
an innovation that had a major impact on subatomic physics in the 1960’s.
We shall now consider a few applications that specifically involve equations
(3.4.3) and (3.4.4).

Examples: Tosum 5 ﬁ we need the function f(z) = (z+{)~% which has a double
n=-oo

pole at z = —{. The residue of 272 at z = —( is

(z+0)?
Res cotrz = lim d cot 1z = —mcosec? (.
(z+ ()2 B ¢ dz
Thus, (3.4.3) immediately gives us
i b —ncoseczrr( . (3.4.5)
= (n+{)?

Now consider the series Z n2+ 7 and Z (2+ 7 In both cases the relevant function

isf(z) = (22 + ()L 1t vamshes unlformly as |z| — oo and has simple poles at z = +i{
with residues Res|[f(zi{)] = Thus, from (3.4.3), we have

£
=~ 1 1 — 1 fcotin{ cot(-in)] m
n;7n2+(2_ﬁ+2;n2+(2— n[ 2 2 (cothn(
and so,
i% =3 cothm{ - 307 (3.4.6)
nZ+ (2 2 (

Notice that if we set { = %, this becomes a series expansion of the Langevin function
1 =  2x
COthX - ; = Z m. (3.4.7)
n=1
Similarly, starting from (3.4.4) we find

T
= — cosech i

20 20 ¢

i " _ Zi (-1)" 1 o [cosec in{  cosec(-in{)

nZ+ {2 _On2+(2_ﬁ_

Nn=-—oco
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and hence,

oo

Z {2 =3 (2 n{ cosech (. (3.4.8)

As a final application we shall determine the sum of the series that corresponds
to the simplest rational function satisfying our asymptotic constraint, f(z) = (z-¢)™*.

The seriesis > n%( and (3.4.3) immediately determines its sum to be
Nn=-o0

oo

Z (} - = mcotnd. (3.4.9)

Nn=-oco

Unlike the series in our previous examples, this one is not absolutely convergent. How-
ever, we can make it so by adding % to the n'™ term for each n # 0. The added quantities
cancel pair wise and so we obtain

meotn{ = % ni#o [(_% + ﬂ . (3.4.10)

If we now treat { as a variable, we can integrate this series term by term to obtain

In sn;:z / [ncotn{ (} ¢ = n_;#o/ [ %] ag
- % w[(1-5) e

or,
[ =]
. z z
sinniz = nz H (1 - H) en,
n=-oco,n#0

Combining factors which are symmetric with respect to n = 0, this becomes the simple
product

had 2
sinnz=nz[| <1 - %) (.4.11)

n=1

which is a complete factorization of the sine function in terms of its zeros.

3.5 Representation of Meromorphic Functions

In much of the preceding Section we represented constants with the symbol { even
though we have normally reserved it to represent a variable. We have done so because
if we now take it to be a variable , each of equations (3.4.5), (3.4.6), (3.4.8) and (3.4.10)
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becomes a partial fraction decomposition of a meromorphic function and thus, pro-
vides an explicit representation of that function in terms of its singularities. As such,
they are special cases of a result due to Mittag-Leffler who showed that any meromor-
phic function can be expressed as a sum of an entire function and a series of rational
functions. We shall prove a restricted version of that theorem.

Let f(z) be a function whose only singularities in the finite plane are simple poles

atz =z(k=1,2,...)where 0 < |z1| < |z2| < ... < |zn| £ .... Let C1,C2,C3,... bea
sequence of circles with centre at the origin such that
i  Cn encloses only the poles z1,z,,...,2zn and does not pass through any other

poles of f(z), and
ii theradius Ry of Cy tends to infinity with n.

Then, denoting the residue of f(z) at z = z; by r, we have

f)
2m ( p (3.5.1)
where z is any point other than { = z;, k = 1, 2, ..., n, within C,. Writing this equa-
tion for z = 0 and subtracting the result from (3.5.1), we obtain
n
_ 1 1 z f(§)
=10+ 3 A& e (352
_ &

Suppose now that the upper bound of |f(z)| on Cj is itself bounded by M as n — o.
Then, applying the Darboux Inequality to the integral in (3.5.2) we find

f(§) de < 2nR\M
((( z) Rn(Rn - |ZD

which goes to zero as R, — oo. Hence, since R, — oo as n — oo, (3.5.2) yields the
Mittag- Leffler representation

=10+ Yn L 2] (53

V4 z
=1 k k

One can show that this series is uniformly convergent in any finite region which does
not contain any of the poles of f(z).

Applying this theorem to f(z) = mcot 1z — %, we readily recover
1 - 1 1
meotnz =+ > [m + H]
n=-oo0,n#0

which we obtained earlier by treating z as a constant and summing the series. As a
more general application, let f(z) be an entire function which has only simple zeros,
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none of them being at the origin. Its logarithmic derivative -2 ZLnf(z) = ’}( Z)) is mero-
morphic, possesses simple poles at the simple zeros of f(z), and is easily shown to be

suitably bounded away from the poles. Thus, we can apply (3.5.3) to obtain

d o)«
"t f(0)+z[z EA ]

k=1

where we have used the fact that Res [’;((ZZ))] = ;:g =1forallk=1,2,....
Zk Z=Zy

Integrating term by term and then exponentiating, this yields

f@ =fe“ | [1 - ﬂ e”/* (3.5.4)

k=1

where ¢ = ff((oo)) and so is a constant.

The complete factorization of the sine function contained in equation (3.4.11) is
just a special case of this result. The corresponding factorization for the cosine is

oo

_ _ 2z 2z/k+1)m
cosz = k];[ {1 G+ Dn 1)71} e . (3.5.5)



4 Dispersion Representations

4.1 From Cauchy Integral Representation to Hilbert Transforms

A recurrent theme thus far is that an analytic function is completely determined
by its singularities. We have seen this principle manifested successively for constants
(Liouville’s Theorem), rational functions and most recently, meromorphic functions
with simple poles. In this Section we shall take another step by discovering how func-
tions with branch points can be represented in terms of their behaviour along the as-
sociated branch cuts. In so doing, we shall encounter a mathematical tool that has
been found to be very useful in several fields of modern physics.

Suppose that we have a function f(z) which is holomorphic throughout the com-
plex plane except for a cut extending from x, to oo along the positive real axis. Suppose
further that f(z) satisfies the conditions

f(2) =f(2),|f(2)] — 0as |z| — oo, and |(z - x0)f(2)] — 0 as |z - xo | — O.

The first of these conditions is sometimes referred to as a reality condition since, as
we shall see in Section 4.2, it implies that f(x) is real for x < xo.
The Cauchy Integral representation of f(z) at a point z not on the cut is
f(§)

flz) = ﬁ ﬁd( (4.1.0)

where C is a contour like that shown in Figure 4.1. The contribution to the integral
from the large circle in C goes to zero as the circle’s radius R — oo. Moreover, the
contribution from the small circle about z = xg vanishes as € — 0. Thus, in this double
limit we have

1 co+ig f(() co—ig f(()
f@) = lim 57 /qu_ / -2 %
1 f(¢'+1€) f(é'
_gl—%ﬁ .{ z+ie %" /

Since z is not on the cut, we can neglect the ti¢ in the denominators of the last two
integrals and write

flz) =

2711 £—>
Xo

o +ie) - f(é’ ie)]
m = dé. (4.1.2)

The numerator of the integrand in (4.1.2) is the discontinuity of f(z) across the
cut. Thus, all we need in order to compute f(z) at any point where it is holomorphic

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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Figure 4.1: The contour used to derive a dispersion representation for a function with a cut along the
real; axis segment xo < x < oo,

is a knowledge of its behaviour along its branch cut singularity. One of our initial
assumptions allows us to cast this relationship in a somewhat simpler form. Since
f'(2) = f(z"), we have

lim [f(x +i€) - f(x — ig)] = lim [fx +ig) - f (x + ig)]

= lir% 2iImf(x +ig) = 2iIm £, (x) (4.1.3)
e—
where we have defined
f,(x) = lim f(x+1i6). (4.1.4)
50
Inserting (4.1.3) into (4.1.2) gives us
1 [Imf, @)
f(Z) = E ﬁd{. (4.1.5)

This is an example of what physicists call a dispersion relation, a title which has
its origin in the theory of optical and X-ray dispersion at the turn of the (19") century.
In optics a dispersion relation is an integral relationship between the refractive (real)
and absorptive (imaginary) parts of the refractive index, the variable of integration
being the frequency of the incident radiation. Whether mindful of the historic and
scientific significance of the first such relationship, derived by Kramers and Kronig, or
appreciative of the virtues of a spare vocabulary, physicists apply the term “dispersion
relation” to any integral equation that links the real and imaginary parts of an analytic
function.

For reasons which we will explore at a later date the classical dispersion relations
were derived for functions for which one can only assume holomorphy in the upper
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A Im:z
R 3 N, .I'\III
(__ II Y . |
v \\ )II Vl'
;R>
Re =

Figure 4.2: The contour used to derive the dispersion relation for a function f(z) that is holomorphic
only forImz > 0.

half-plane, Im z > 0. Thus, in place of the contour of Figure 4.1, we must use a semicir-
cle like that shown in Figure 4.2. Again using Cauchy’s Integral Representation as our
starting point and taking the double limit as R — oo and € — 0, we obtain in place of
(4.1.2)

f+(§)

_ f(fﬂe)
f(2) = hm— 2m { z

02mi | &-z+ie

—o0

dé = d¢. (4.1.6)

We now let z approach the real axis from above so that (4.1.6) becomes

f.(&)
f+(X)_6 o+2m/é,’ xri6?

But, using equation (3.3.36), this can be rewritten in terms of a principal value integral:

1 f+(f) 1
f+( )_7 é’ Xd$+§f+(x)
or,
fulx )- 1 (RO de. 4.17)

&-x
Finally, we take the real and imaginary parts of this equation to obtain the classical
dispersion relations

Imf+(£)

Ref+(X) = — é« X

—oco

d¢ (4.1.8)
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oo

Imf,(x) = ¥ / R?C:Ef)dg. (4.1.9)

From the point of view of a mathematician these relations establish that the real and
imaginary parts of f, (x) are reciprocal Hilbert transforms.

David Hilbert (1862-1943) was a German mathematician who laid the foundations
for much of modern mathematics including algebraic geometry and algebraic number
theory. Over his lifetime, he made important contributions to the axiomatic foundations
of geometry, integral equations, the calculus of variations, theoretical physics (which he
thought was too difficult to be the domain of physicists alone), and mathematical logic.

In most applications Im f, (x) is known from experiment and Re f, (x) is then de-
termined by application of (4.1.8) . However, since x is typically a frequency or energy
variable, measurements can only be made for values of x > 0. In that event a crossing
symmetry such as f,(-x) = f, (x) has to be invoked to allow (4.1.8) and (4.1.9) to be
written

—oo

Ref,(x) = %p/ Wd£ (4.1.10)
0

and

_-2x_ [Refi®)
Imf.(0 = == o e

respectively, which should look familiar to readers who have been introduced to the
Kramers-Kronig relation for indices of refraction.

dé (4.1.11)

4.2 Adding Poles and Subtractions

Returning to functions whose analytic properties are known throughout the complex
plane, we shall generalize the dispersion representation of equation (4.1.5) to accom-
modate functions possessing poles as well as cuts. Suppose that we have a function
f(z) which, in addition to the properties that resulted in (4.1.5) , has simple poles at
the points z = z;, k = 1, 2, ..., n, none of which lie on the branch cut. Denoting the
residue of f(z) at z = z; by ry, equation (4.1.2) now becomes

" 1 [T, TR0
f(Z)Jr;zk—z_gg%ﬁ / (—zd(_/ (—zd(
Thus, (4.1.5) is replaced by
B o 1 T Imf,(¢)
f@=3"~ —kzk 1 R et (4.2.)

Xo
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Notice that the sum in this equation is that of the principal parts of f(z) at the poles
z = zy. One can show that this continues to be the case should any of the poles be of
higher order than one.

A further generalization of (4.1.5) we should consider obtains when f(z) does not
vanish but is polynomial bounded as |z| — oo. If the only constraint at infinity is that
If(z)/ z" | — O for some n > O, there is a variety of possible dispersion representations
for f(z) depending on what other information we have about the function. For exam-
ple, if we know the value of f(z) and its first (n — 1) derivatives at some point z = zo,
we can determine a dispersion representation for f(z)/(z - zo )" and from it deduce a
representation for f(z) itself. Should we lack such detailed information about f(z) at
a specific point but at least possess knowledge of its value at each of a set of n points,
Z1,...,2Zn, We can invoke (4.2.1) to obtain a dispersion representation for %
and hence, one for f(z) as well.

To illustrate what is involved, let us assume that f(z) possesses all the properties
that led us to the representation in (4.1.5) save one; instead of |f(z)| — 0 as |z| — oo,
we have [f(z)] — a non-zero constant. To compensate, we add one further piece of
information about f(z): its value at the point z = 0. We now have sufficient information
to apply (4.2.1) to the function f(z)/z which has a single simple pole at z = 0 with
residue f(0). Thus, we obtain

&) _f0), 1 [Imf.&)
z "z 1) §GE-2)

dg

or,

[ Imf,(§)
5(5

f(z) = f(0) + d{ (4.2.2)

This is called a subtracted dispersion relation because it can be obtained (notionally)
by assuming the unsubtracted dispersion relation (4.1.5),

oo

1 / LIAGH

n

subtracting from it its value at z = O,

£(0) - / Im{;“) daé,

Xo
and then combining the two integrals by means of

1 _12 z
§-z § &E-2)
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Subtracted dispersion relations are often used even when the asymptotic behaviour
of the function of interest does not make them mandatory. This is because the integral
in (4.2.2) is less sensitive to high values of ¢ than is its counterpart in (4.1.5) . Thus, the
error committed in omitting experimentally inaccessible values of Im £, (¢) at high ¢ is
decreased.

4.3 Mathematical Applications

The first application we shall consider is in the construction of functions once their

singularities are known.

Example: Suppose that we wish to find an explicit expression, preferably in closed

form, for the function f(z) that possesses the following properties:

1. itis holomorphic everywhere except for a branch cut along the real axis segments
—oo < x<-1land1 < x < oo and a simple pole of residue -1 at z = 0;

2. it goes uniformly to zero as |z| — oo;
it satisfies f*(z") = f(z) and so is real on the real axis segment -1 < x < 1;

4. its discontinuity across the cut is given by Imf,(x) = +(x? +1)™* for x > 1 and
Imf,(x) = -(x*>+1) ! forx < -1.

By means of an obvious generalization of (4.2.1) to deal with a cut running along two
real axis segments we can ascribe to this function the representation

NRLTAGIE

n &-z
1

Reslf(0)] | 1 [ Imf,(©)
z

T §-z

—co

-1 oo
1 1 1 1 1
S "_l EG-a ”1/ -2

=_i+’1ﬁ/&(£21+1) [siffiz] a5

Using partial fractions, we have

f(2) = dg+

X
1 1 X+z z
aé¢ = 1 + arcta
/(.{2+1)(§+z) §= B s D
and
X
1 1 X—-z z
= 1 - .
/(§2+1)($—Z)d§ 1 n\/m 71 arctan x
Thus,
1 -z 1 1 1 1-22

1 1
=4+ L - _=
f@ z+n22+1 nx2+1 1 z mz2+1 n 2
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The only limit that is placed on the diversity of applications of this sort is our
capacity to conjure up unique combinations of singular behaviour.

A further application of dispersion relations involves the evaluation of principal
value integrals. If we let z approach the cut on the real axis from above, (4.1.5) becomes

L[ ImA@ Lo 1 [Imf(E)

f+(x)=61Lrg+E f—x—i&dgzﬁp &-x d§+ilmf.(x)
or,
Ref.(x) = %p m;f%(j)d.f, X>Xq. (4.3.1)

Xo

A similar result obtains when this limiting procedure is applied to (4.1.2) :

oo

Ref,(x) = Z xiikzk + %p/ IH;{*E? dé, x>xo. (4.3.2)
k=1

Xo

Thus, integrals of the type p f %d{ ,X > ¢, g(x) continuous on ¢ < x < oo, can be
evaluated by identifying the hcarmonic conjugate of g(x, y), where g(x, 0) = g(x). The
process of identification involves intuition, guesswork, trial and error, or a combina-
tion of all three which means that the evaluation of an arbitrary integral of this type is
by no means a straightforward exercise. Fortunately, it is neither difficult nor particu-
larly time-consuming to generate a table of standard integrals to serve as an intuitive
guide. The next two examples will demonstrate just how easy is this latter task.

Examples: Consider the function f(z) = (gjl);al ,0 < a < 1 whose behaviour at the
branch points z = +1 and at infinity permits an unsubtracted dispersion representa-
tion and hence, use of (4.3.1). If we choose the branch cut to lie along the real axis
segment —1 < x < 1, the principal branch of this function ( the branch that is real for
real z not on the cut ) will be f(z) = 'i—;l elll@Do.-ab] _5 < g < gwherer. and g, are
defined as shown below. )

Just above the cut r, = lin}) 1-x)+y?=(1-x),r-=1+x,0, =m and g_ = 0*.
y—

Therefore,
f+(X) _ (1 - X)a;l in(a-1) _ _(1 - X)a;l ina
(1+x) 1+x)
Taking its real and imaginary parts and substituting them into (4.3.1), modified
for the finite length of the cut, we obtain the simple result

(1 _ X)a—l

/ a-&€*t 1
1+x)* "

P ——d& =mncotna

) a+&)* &-x
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Imz

Figure 4.3: The variables used to specify the branches of f(z) = (z - 1)*! /(z + 1)%.

As a final application, we consider the function f(z) = Ln(a‘Z) , a > 0 which has branch
points at z = a and z = oo and a simple poleat z = 0 w1th residue Ln a. In addition,
with its cut chosen to lie along the positive real axis, it has the requisite behaviour to
admit a dispersion representation and hence, application of (4.3.2).

With this choice of cut,

In(a-z)=In|a-z|+iargla-z), -m<argla-z)<m.

and so, just above the cut
1
f.(x) = ;1n|a—x\ - =

Therefore, (4.3.2) immediately yields

fln|a Ina 1 L x>a
x ngg & & x

T 1 1
ﬂ/f(f—x)dg:kl

or,




5 Analytic Continuation

5.1 Analytic Continuation

Our focus in the last chapter was on the construction of an analytic function from
a knowledge of its singularities. More often than not, however, we are confronted with
the inverse problem: given some knowledge of a function in a restricted region of its
domain of holomorphy, determine its singularities. This will be the focus of the present
chapter.

We have seen repeatedly that one need not know all that much about an analytic
function in order to determine its value everywhere in the complex plane or on its
Riemann surface. Cauchy’s Integral Representation can be viewed as the embodiment
of this property and thus far it has provided the key to exploiting it. We are now going
to find out what constitutes a minimal set of information for the determination of an
analytic function. The answer is one that is best exploited not by Cauchy’s Integral but
by one of its consequences, the Taylor series. In so doing, we shall also find out how
to use a representation of a function that is valid in one domain of the complex plane
to determine its values at points outside the domain or indeed, at any points where it
is holomorphic.

Our starting point is the following theorem which, despite its innocuous appear-
ance, is one of the most remarkable results of complex analysis.

Theorem: Let f, (z) and f,(z) be holomorphic in a domain D of the complex plane. If
the two functions coincide in any neighbourhood, however small, of a point z in D, or
even on a point set with an accumulation point in D, then they coincide throughout
D.

Proof: The function f; (z) - f,(z) is holomorphic throughout D and has a set of zeros
consisting of the points where f; (z) and f, (z) coincide, with an accumulation point in
D. We know that in any domain where it is holomorphic a function either has isolated
zeros or it is identically zero. Thus, f;(2) - f,(z) = O o, f,(2) = f,(2), for all zin D.

What this theorem establishes is that a holomorphic function is uniquely deter-
mined everywhere within its domain of holomorphy by its behaviour in the neigh-
bourhood of an arbitrary point of that domain. But how can one exploit this remark-
able property? Obviously not by means of a Cauchy Integral or dispersion representa-
tion or anything else of that ilk as we lack the necessary input information. However,
what we do have is precisely the information needed to determine a Taylor series rep-
resentation.

Suppose that we know the value of the function f(z) throughout a neighbourhood
of the point z = zo which is a point lying within the function’s domain of holomorphy,
D. This is sufficient to permit calculation of the coefficients

co = f(z0), 1 =f/(Zo), ey Cm = %f(m)(zo), cee

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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of the Taylor expansion of f(z) about z = z, . Hence, we can set
f@) = cmlz-z0)", (5.1.1)
m=0

for all values of z within a circle Cg, |z — z0 | = Ro - The quantity Ry, the radius of con-
vergence of the series, is equal to the distance from z, to the nearest singularity of f(z)
and so will normally be larger than the radius of the neighbourhood from which we
started. Thus, equation (5.1.1) provides us with an analytic continuation of f (z) which
means that it determines the behaviour of f(z) outside its initial domain of definition.
Moreover, our theorem guarantees that this analytic continuation is unique.

The disc in which (5.1.1) converges likely represents a small fraction of the domain
of holomorphy D and so may not include a particular point z = z;, that is of interest to
us. To analytically continue f(z) to such a distant point requires either a different rep-
resentation, with a much larger domain of validity, or a process involving the repeated
generation of Taylor series with overlapping circles of convergence. We shall consider
the second option first.

Figure 5.1: A function can be analytically continued along a curve C by means of repeated Taylor
expansions about appropriately chosen points of C.

From the definition of a domain we know that the points zo and z{, can be connected
by a simple curve C that lies entirely within D. As shown in Figure 5.1, let us take a
point z; on C such that |z; —zo| < Ro, that is, such that z; lies within the circle of
convergence (, of the Taylor series in (5.1.1) .

Since the series converges uniformly in every closed disc |z - zp | < 1 < Ry, it can
be differentiated term by term to determine all derivatives of f(z) at all points of such
a disc. In particular, since we may choose an r for which | z; —zo | < r < Ry, we can
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calculate
fz1) = Z cm(z1-20)" f'(21) = > emmlz1—20)" 7,
= m=1
(n) m-n
f (z1) = Zcm n'(m n)'( -zo)" ", .. (5.1.2)
But these are just the coefficients cg,%), m=0,1,...,n,...of the Taylor series expan-

sion of f(z) about the point z = z;. Hence, we can now set
f@) = Z cz-z)" (5.13)

which is valid for all z within a circle ¢; with centre at z = z; and radius R;.

Since f(z) is holomorphic at all points on C, R; must be non-zero and hence, it
must be possible to choose the point z = z; so that C; lies partly outside ¢, . There-
fore, (5.1.3) provides a unique analytic continuation of f(z) from ¢, to the somewhat
larger domain formed by the union of Cy and C; . On the segment of the curve C that
lies outside Co but within ¢; we now choose a new point z = z;. Then, using the uni-
formly convergent series in (5.1.3) to calculate the coefficients of the Taylor expansion
of f(z) about z = z,, we obtain a further analytic continuation of f(z). Repeating this
argument over and over, we proceed along C with overlapping circles Co, C1, C2, .- -
until one of the circles finally covers the point z = z;, thus enabling us to find the Tay-
lor expansion of f(z) about it as well. The behaviour of f(z) in the neighbourhood of
z = z; is then determined and our analytic continuation procedure is completed.

It is not possible to analytically continue through a singular point of f(z) since the
radii of the circles C; tend to zero as we approach it. However, it is possible to ana-
lytically continue around the singularity and in the process, determine its location;
(see Figure 5.2). Thus, in principle at least, this technique can be used to continue
a function throughout its domain of holomorphy, starting from an arbitrary point of
that domain and using all possible paths to form chains of overlapping circles. The
continuation will be complete when the domain’s natural boundaries, which are
just the singular points of the function, have all been encountered. This also applies
to mutivalued functions for if we analytically continue around a branch point on one
Riemann sheet, we will eventually generate values appropriate to an adjacent sheet.
Thus, continuing along all possible paths we will determine the behaviour of the func-
tion throughout its Riemann surface as well as the geometry of that surface.

As we have emphasized above, the only barrier this technique cannot surmount
is the natural boundary of the function’s domain of holomorphy. There are some func-
tions for which this is surprisingly limiting, at least in a geometrical sense. Consider
for example,

oo

2. 4. .8, 16 m
f@=1+2+2"+28+z +...=1+Zzz,
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Figure 5.2: Analytic continuation around a singular point.

whose circle of convergence is |z| = 1. It is readily shown that any value of z that
satisfies one of the equations

is a singularity of f(z). These values correspond to the points z = e/ 2" where k

and m are integers. On every arc of the unit circle there is an infinite number of such
points. Thus, it is impossible to continue f(z) outside its circle of convergence since it
is also the natural boundary of the function’s domain of holomorphy.

While conceptually powerful, the technique of successive Taylor expansion of a
function is impractical. Fortunately, there are many alternative and more immediate
methods to effect analytic continuations. Before we examine some of them, however,
we need to delve a little deeper into the implications of the theorem that introduced
this Section.

Suppose that we are given two analytic functions f; (z) and f, (z) whose functional
forms differ from each other and are valid only in the domains D, and D,, respec-
tively. Suppose further that D; and D, overlap and that in their intersection f; (z) and
f>(2) are identical. Then, our theorem tells us that the (unique) result of analytically
continuing f, (z) into D, must coincide with £, (z) and conversely the result of analytic
continuation of f,(z) into D; must be identical to f; (). In fact, f, (z) and f, (z) are just
local representations of the unique function

) fi®,z in D,
f@ _{ f,(2),z in D,

which is holomorphic throughout the combined domain p; U D5.
Since the application of analytic continuation to f; (z) yields f,(z) and vice versa,
one says that f; (z) and f, (z) are analytic continuations of each other.
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Example: Consider the functions

F@=Y 2 lel<la (5:14)
m=0
and
fz()_z G- b)m+1’ |Z—b|<|a—b| (5.1.5)

where, to ensure that the circle of convergence of f, (z) is not interior to that of f, (z), we
require that b/a not be real. Both series sum to the function (a - z)™ . Thus, although
f1(2) and f, () have different functional forms defined in different albeit overlapping
domains, they represent the same analytic function, f(z) = i Each is a unique an-
alytic continuation of the other but, in particular, f,(z) provides the means of analyt-
ically continuing f, (z) to any point outside the circle |z| = |a| simply by varying the
value of the parameter b. However, if this is our primary interest we are by no means
restricted to the use of power series representations to accomplish it. Indeed, the two
integral representations

oo

f5(2) = /e"t(“’z) dt, Rez<Rea
0

oo

f,(2) = —/et(‘”)dt, Rez > Rea
0

which converge to (a - z)™! in their respective domains of definition, provide a more
effective means of analytically continuing f; (z) outside its circle of convergence.

In this example we have a closed-form expression for f(z), namely (a-z)™*, which
is valid throughout the function’s domain of holomorphy. However, this is an excep-
tion rather than a norm. The functions that can be expressed in terms of a finite num-
ber of elementary functions make up a very limited subset of the totality of analytic
functions. We must get used to the idea that to know how a function behaves at widely
separated points one usually requires two or more representations of very diverse ap-
pearance. A perfect example is provided by a function called the gamma function and
denoted I'(z). Before introducing it, however, we need to complete our discussion of
analytic continuation.

We have required that two functions f; (z) and f, (z) have overlapping domains of
definition if they are to be analytic continuations of each other. As our next theorem
shows, this is unnecessarily restrictive.

Theorem: Let f,(z) and f,(z) be holomorphic in the simply connected domains D,
and D,, respectively and let p; and D, have in common as part of their boundaries a
simple curve C. Then, f;(z) and f,(z) are analytic continuations of each other if and
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Figure 5.3: The domains of definition of the two representations of f(z) = (a—z)~! given in equations
(5.1.4) and (5.1.5).

only if they tend uniformly to common values along C; that is, if and only if they are
continuous in the regions D; UC and D, UC, respectively and f, (z) = f,(z) for all z on
C.
Proof: That the condition is necessary is obvious. Therefore, we need only show that
it is sufficient.

Define the function f(z) as follows:

| fi) for z in D; or C
@ _{ le(Z) for z in p, or C.

We must now show that f(z) is holomorphic throughout the entire domain

D=piuUD,UC.

Let I" be any simple closed curve within p; U D, UC and consider the integral

/ f2)dz. (5.1.6)
r

If T lies entirely within either D; or D,, the integral vanishes by Cauchy’s Theorem.
If I' lies in both D, and D, then, as shown in Figure 5.4, we can introduce two simple
closed curves [, and [, separated by an infinitesimal distance so that they lie entirely
within p; and D,, respectively and follow a section of the boundary C in opposite
directions. We can thereby write (5.1.6) as the sum of two integrals,

/f(z)dz= f(z)dz+ | f(z)dz = fl(z)dz+/ f,(2)dz,
r I I I I
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Im A

]

\ 4

]

\ K4

Figure 5.4: A simple closed curve I' € D; U D, UC is separated at the boundary C into two simple
closed curves 1 and [>.

both of which vanish. Thus,

/Ff(z)dz =0

for any closed contour I" contained within the simply connected domain p; U D, UC
and so, by Morera’s Theorem, f(z) is holomorphic there. Therefore, f, (z) and f,(z) are
analytic continuations of each other.

We are now in a position to prove a theorem which not only generalizes a common
feature of the elementary functions but provides an analytic continuation technique
that plays a key role in most physical applications of dispersion representations. It is
known as the Schwarz reflection principle.

Theorem: Let f(z) be holomorphic in a domain D which has, as part of its boundary,
a segment C of the real axis and let D* be the mirror image of D with respect to that
axis. Then, if f(z) is continuous within the region D U C and assumes real values on
C, its analytic continuation into the domain D" exists and is given by f*(z") for all z in
D

Proof: Let I denote an arbitrary simple closed curve in D, described by the parametric
equation z = {(t), t; < t < t,. Since f(z) is holomorphic in D, we have

/ f(z)dz = / flEB]1 == d((t) dt = (5.1.7)

Let " be the image of I' in D", (Figure 5.5). Its parametric equation must then be z =
¢ "(t), t1 < t < t2, with increasing ¢ corresponding to a clockwise (counter-clockwise)
traversal of I if it produces a counter-clockwise (clockwise) circuit of I'. Thus, inte-
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grating the function g(z)

| 5@z / i40)

t

= f"(z") around [, we have

dt - / rieen? P - / flenePar

0

by equation (5.1.7) . Hence, we know from Morera’s Theorem that f *(z") is a holomor-
phic function of z throughout the simply connected domain D*. Moreover, since f(z)
is real on the real axis segment C, we have f"(z") = f(z) for all z on C. Therefore, ac-
cording to the preceding theorem, f(z) and f"(z") are analytic continuations of each
other and together define the unique function

f(z),z in D or C

f(z), zin D" or C

which is holomorphic throughout the domain D U p* UC.

Im z

) \

D* Q - “ Rez
v 7

| o

Figure 5.5: The domain D and its mirror image through the real axis D*.

It follows immediately from (5.1.8) that

=F'(z) forallzin DUD" UC.

(5.1.8)

(5.1.9)

Evidently, this relation must hold for any function that is holomorphic throughout a
domain intersected by the real axis and that assumes real values when its argument
is real. Thus, we now see why it was referred to as a reality condition in the preced-
ing Chapter. More importantly, we also see that our discovery in Chapter 1 that it is
satisfied by each of the single valued elementary functions was indicative of a general
consequence of their definition and not mere coincidence.
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5.2 The Gamma Function

In this Section we shall introduce a variety of functional forms attributable to the
gamma function which is one of the more frequently encountered functions of math-
ematical physics. This will illustrate just how small need be our reliance on Taylor
series representations to effect analytic continuations and offer further exposure to a
principal alternative, the use of integral representations.

The usual introduction to the gamma function is via Euler’s integral (of the second
kind) which, for real x > 0, gives

oo

I'(x) = /e"[ &Lt (5.2.1)

0

Whether the introduction is made in a physics or a calculus course, it will always be
pointed out that I'(x) is the continuous variable generalization of the factorial func-
tion, a fact that we can readily verify from equation (5.2.1) . Writing ! as 1 4  and

x dt
integrating by parts, we obtain

oo

oo —t
+/e—txdt.
o X

0

F(x)=%

The first term vanishes and so, using (5.2.1) to identify the second term, we have

I'(x+1)=xI'(x),x>0. (5.2.2)
Thus, since
rq) = /e“ dt=1, (5.2.3)
0

setting x equal to n, an integer, yields
I'(n+1)=n. (5.2.4)

This makes it clear that I'(x) provides a smooth interpolation between the points de-
fined by n!l,n=0,1, 2,...;explicit evaluation yields the curve shown in Figure 5.6.

The integral in (5.2.1) continues to converge when x is replaced by the complex
variable z provided that Re z > 0. Moreover, differentiating the function

oo

I'(z) = /e‘t #1dt, Rez>0 (5.2.5)
0

with respect to z, we obtain yet another integral that converges for Rez > 0. Thus,
(5.2.5) evidently defines an analytic function whose domain of holomorphy includes
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the right half-plane and hence, the positive real axis. Therefore, according to the the-
orem at the beginning of this Chapter, the integral in (5.2.5) is a representation for
Re z > 0 of the only analytic function that can assume the values given by (5.2.1) when
Imz = 0. Appropriately, we have denoted this function by I'(z). An alternative and
somewhat simpler way of stating this result is to say that (5.2.5) is the analytic contin-
uation of (5.2.1) from the positive real axis to the entire right half- plane.

A
30 L
25 .
20
15 |
10
S .

Il I2 I3 |4 )\

Figure 5.6: The dots indicate the discrete points defined by n! ; the corresponding curve is I'(x + 1).

With the help of the factorial property (5.2.2) we can use (5.2.5) to determine the nat-
ural boundary of the gamma function’s domain of holomorphy. This will determine
whether we need to seek an analytic continuation for Re z < 0 and if so, assist us with
the search.

The factorial property holds for complex as well as real values of the arguments. In
addition, we know that the integral representation of I'(z + 1) converges for Rez > -1
and hence, that the right hand side of

zZI(z)=T(z+1) (5.2.6)

is well-defined there. Thus, dividing through by z, we immediately obtain an analytic
continuation of (5.2.5) from the domain Rez > OtoRez > -1,

@)= 1resn-1 / et Fdt, 240 (5.27)
0
Evidently, Re z = 0 is not a natural boundary of I'(z). The sole source of the restric-

tion Re z > 0 that has been placed on the integral representation (5.2.5) is an isolated
singularity at z = 0. Taking the limit of (5.2.7) as z — 0 and recalling that I'(1) = 1, we
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find 1
I'(z) — Z

which identifies the singularity as a simple pole and the corresponding residue as
unity.
This procedure may be repeated as often as one likes to obtain

I'z+n+1)
z+n)(z+n-1)(z+n-2)...(2)

I'(z) = (5.2.8)
the right hand of which is holomorphic for Rez > —n except for simple poles at the
pointsz =0, -1,-2,..., —(n-1). Thus, we conclude that I'(z) is a meromorphic func-
tion and as such, can be continued anywhere in the left half-plane so long as we avoid
its simple poles at the negative integers and zero. This allows, for example, calculation
of its functional dependence on negative as well as positive real values of its argument
as shown for |x| < 5 in Figure 5.7.

To find the residue of I'(z) at z = —n, we simply take the limit of (5.2.8) as z — -n
and use I'(1) = 1. Thus,

1
e ey
and hence,
Res(r(-n)] = C1)°. (5.29)

Figure 5.7: I'(z), as determined by (5.2.5) and (5.2.8) , plotted for z = x, real.

An additional means of analytically continuing I'(z) into the left half-plane is provided
by the product I'(z)I'(1-z). The integral representation of I'(1-z) converges forRe z < 1
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and its singularities are simple poles located at the positive integers with correspond-

ing residues % Thus, I'(z)I'(1 - z) is a meromorphic function with simple poles at
z=n,n=0,t1,+2,...andresidues (-1)". But these are precisely the same singular-

ities and residues as are possessed by the function 77 cosec r1z. This suggests that
I'(z)I(1 - z) = mcosec niz (5.2.10)

which we confirm as follows.
From (5.2.5) we have, for0 < Rez < 1,

(I -2) = /e’“ uwldu / eVvidv=24 / R dx/ eV y @D gy

0 0 0 0

where we have introduced the dummy variables of integration u = x?> and v = y2.
Making a further change of integration variables via r* = x +y2, 8 = tan"*(y/x) this
becomes
oo /2 /2
r@ra-z) = 4/e”2 rdr/[cot@]zz’1 do=2 /[cotf)]zz’1 d9, O0<Rez<1.
) ) 0

With a final change of variable, cot 6 = ¢, our product becomes
s tZZ—l
Irr1-z)= Z/tledt =mcosecmz, O<Rez<1
0

where the last equality follows from an integral evaluation that we performed in Chap-
ter 3. By analytic continuation, this equality must hold wherever both sides are holo-
morphic. Thus,

I'(z2)[(1 - z) = mcosec iz for all finite z.

This equation permits easy calculation of I'(z) when z = 2% n = 0, +1, +2, .... Set-
ting z = 7 we have
2
1 T
[1‘ <§)} = 7T COSecC 7 Vi
and hence,
(1)

Thus, using (5.2.6) , we have

(2n-1)(2n-3)

I'n+1/2) = 3 3

r <1> _@n-nt — (5.2.11)

2 2"

31
22

(3 2"(-1)" V7
[en+1/2) = (12)(32>(Z) D0 - (n —)1)!! (5.2.12)

1
2 2 ct 22
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forn=1,2,3,....

Although we now have several ways of analytically continuing our initial integral
representation of I'(z), we have yet to find an alternative representation whose domain
of validity includes at least part of the left half-plane. A number of possibilities present
themselves.

For example, since
1 sinnmz
o
is entire, we know from Chapter 3 that it must admit an infinite product representation
which is valid everywhere in the finite plane. Indeed, according to equation (3.5.4) we
can write

Ir(1-z

1 _ 1 cz = z -z/n
erRral I1 (1 + H) e (5.2.13)

where ¢ = - £[InT'(z +1)]|__, or, since I'(z + 1) = zI'(z) and I'(1) = 1,

—ze (1 + %) eIn, (5.2.14)

n=1

1

I'(z)

To complete the specification of this representation we need only make a more
tractable identification of the constant c. Setting z = 1 in (5.2.13) , and using I'(2) =

I'(1) = 1, we find
-c _ - 1 -1/n
e = | | <1+n>e

n=1
or,

Czi[rlz_ln<l+rll>] = Jm [ii‘lnm} =7 (5.2.15)

n=1 n=1

where v = 0.57721566. .. is a natural number known as the Euler-Mascheroni con-
stant. Thus, we finally obtain the representation

% =zeV? ﬁ (1 + %) e 7 (5.2.16)

n=1

for all finite z.
This was originally derived by Euler in a somewhat different form. Using (5.2.15)
for v we can rewrite (5.2.16) as

1 _ : -zlnm - z
i ~2Am e T (1+5)

n=1

and thus obtain

1
I'(z) = lim m z

mbezz 1), zim) (5.2.17)
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This is called Euler’s formula for I'(z).

Although valid for all finite z, (5.2.16) is seldom used other than to calculate the
logarithmic derivative of I'(z),

_d 1 —~[1 1
Y(z) = Elnl"(z)——g—7+; [E—m} . (5.2.18)

The reason for this neglect is evident: neither (5.2.16) nor its alternative form (5.2.17)
admits readily to explicit evaluation for specific values of z. What we really need, if it
exists, is an integral representation of I'(z) that is valid for all finite z.

Our starting point in trying to find one is the integral representation that we al-
ready possess

I'(z) = /e’t t“1dt, Rez>O. (5.2.19)
0

Its integrand has branch points at t = 0 and t = oo; indeed, it is the behaviour of
the integrand in the neighbourhood of ¢ = 0 that prevents convergence for Rez < 0.
However, if we join these points by a branch cut running along the positive real axis,
we should be able to use the same integrand together with an integration contour that
runs just above and below the cut to generate an alternative representation for I'(z).
Therefore, let us consider

/ et tdt (5.2.20)
C

where C is the contour shown in Figure 5.8 and t*! is defined to be the branch

tz—l _ e(z—l)[ln|t\+iargt], 0< argt < 2.
Alm t
./}\ 4 »
\ ,"‘( Rer
T N /_/ O

Figure 5.8: The contour in the complex t plane used in the integral (5.2.20).
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With this choice of integration path we not only avoid two troublesome points,
we do not cross the cut that joins them. Moreover, at the end-points ¢t = oo * i€ the
integrand vanishes for all finite values of z. Thus, our integral converges to a single-
valued function of z for all z in the finite plane.

To find a relationship between the integral and I'(z) we shall temporarily restrict
the domain of z to the right half-plane, Re z > 0. The contribution of the semi-circular
arc about t = 0 then vanishes in the limit as € — 0 and so,

oo oo

/e—t tz—l dt = /e—t(ezm t)z—l e2nidt+/e—t tz—l dt = (1 _ eZHiZ)/e—t tz—l dt
c
0 0 0

or, using (5.2.19),
et ¥l dt = 2isinniz ™V I(2).
c
Both sides of this equation are entire functions of z. Therefore, although derived for
Rez > 0, it must hold for all finite z and thus provides the representation

_ 1 =t(_4\2-1 _ _
F(Z)_izisinrrz/ce ey ldt, 2#0,-1,-2,.... (5.2.21)

This is sometimes referred to as Hankel’s representation. With the help of (5.2.10) we
can invert it to obtain an integral representation of [I'(z) ]’1 that is valid for all finite z
without exceptions:

% - %ﬂ(l'z) - % /C e (=) dt. (5.2.22)

The utility of integral representations stems not only from their large domains of
validity but also from the fact that their integration contours can be deformed at will
so long as one never passes through singularities of their integrands. Thus, for exam-
ple, one can often render numerical evaluation very simple by an adroit matching of
the contour to the desired value(s) of the function’s argument. This will be illustrated
in the next Chapter in connection with evaluations for large values of |z|. A more im-
mediate demonstration of this versatility is provided by the simple task of evaluating
[Fz)]tatz=+n,n=0,1,2,....

When z assumes integer values the integrand in (5.2.22) becomes continuous
across the positive real axis and hence, the integration path can be compressed to
form a simple closed curve encircling t = 0. Evaluation of (5.2.22) then involves only a
simple application of either the Residue Theorem or Cauchy’s Theorem which vyield,

respectively
1 _| iy n>o
0 n<o0
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5.3 Integral Representations and Integral Transforms

Evidently, integral representations can play a very significant role in the definition and
continuation of analytic functions. We shall conclude this Chapter with some general
comments about them. And to start with, we shall determine the circumstances under
which an integral representation definition is valid.

Theorem: Let G(z, t) be a continuous function of both variables when z lies in a simply
connected domain D and ¢ lies on a simple curve C. Further, for each such value of ¢,
let G(z, t) be holomorphic within D. Then, the function

f(2) = /C 6(z, Ddt (5.3.)

is also holomorphic within D and its derivatives of all orders may be found by differ-

entiating under the integration sign, provided that

1. Cis of finite length, or

2. if Cisofinfinite length, the integral is uniformly convergent for z contained in any
closed region interior to D.

Proof: Let I denote any simple closed curve in D. Then,

/rf(z)dz=/r{/CG(z, t)dt} dz=/c{/r6(z, t)dz} dt=0

and hence, by Morera’s Theorem, f(z) is holomorphic in D. Here we have used the
fact that the order of integration of an iterated integral with a continuous integrand
can always be interchanged if it is uniformly convergent or finite. We have also used
the holomorphy of G(z, t) in D and Cauchy’s Theorem to obtain the final equality with
Zero.

Similarly, using Cauchy’s Differentiation Formula we have

dfz) _ 1 f(§) _ 1 G, ) _ [ 9G(z, 1)
dz _Zm/r((—Z)Zd(_/c{Zﬂi/r((—Z)zd}dt_/c oz 1"

The most frequently encountered integral representations are of the somewhat
specialized form known as integral transforms,

@) = /C K(z, Og(t)dt. (53.2)

The function K(z, t) is called the kernel of the transform while g(t) is known as the
spectral function. Each distinct type of transform corresponds to a specific choice of
kernel and of integration contour C and each has an “existence theorem” that deter-
mines the class of spectral functions g(t) and the domain of z for which the integral
converges.
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We were introduced to the Hilbert transform,

)

1 ()
z)== S dt,
f@-10 [ £
in the course of our discussion of dispersion relations in Section 4.1. Other transforms
that we will have occasion to discuss in subsequent Chapters include the Fourier trans-

form,

oo

F@) - 5 [ e g0t

and its two close relatives, the Laplace transform

C+ioo

1
f(2) = i / etzg(t)dt
Cc—ioo
and the Mellin transform ‘
C+loo
1 t
flz) = 55 / ' g(t)dt.
Cc—ico

As we shall see, transforms arise naturally in the solution of boundary value prob-
lems where the form of the differential equation together with the nature of the bound-
ary conditions determines more or less uniquely which type of transform to use.



6 Asymptotic Expansions

6.1 Asymptotic Series

Physical problems often require a reasonably detailed knowledge of how particu-
lar functions behave at infinity. For example, if a function has an essential singularity
at z = oo one may need a measure of how rapidly it blows up (or vanishes) as z — oo
along the real axis. Or, more detailed yet, one may actually have to evaluate the func-
tion for very large values of |z|. Recalling that few interesting functions are expressible
in terms of the so-called elementary ones, this might appear to be a rather tall order to
fill. Power series or infinite products are certainly unlikely to be helpful in most cases
and integral representations would seem to offer a computational nightmare. Fortu-
nately, the latter admit a property that obviates the need to explicitly evaluate them
and hence, makes them an ideal starting point after all.

With only a modicum of manipulative effort, one can usually contrive to have an
integral representation yield up an asymptotic expansion of the function it repre-
sents. In its simplest form an asymptotic expansion is a series in inverse powers of
z which, while not convergent, has partial sums that provide an arbitrarily good ap-
proximation, for sufficiently large |z|, of the function to which it corresponds. Thus,
by conveying detailed information about the function’s large |z| behaviour, it meets
our analytical needs to the letter.

The idea of approximating something by a divergent series may seem a little para-
doxical. Therefore, we shall assist both our intuition and our credulity by running
through a simple example.

Example: Consider the function of a real variable

oo

fx) = / % etdt, x>o0. (6.1.1)

X

By making the substitution u = t — x, we see that

_ [ e 1 4, 1
f(x)—/u+xdu<}/e du—X, x>0
0 0

which immediately provides us with an upper limit on the values assumed by f(x). To
get a better idea of what these values may be, we now integrate (6.1.1) by parts. After
n such integrations, we find

1 2 (1) (n-1)! et
‘ﬁ*ﬁ*"'*)xinﬁ_l)nn!/t"“dt' (6.1.2)

fx) =

> |-

X

[ 52Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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The form of this expression suggests that we examine the series

- -1)" m!
;um(x), un(o) = CLT, (613)

Applying the ratio test, we have

Uns1(X)

..n
= lim — —» o0
Un(x)

n—oo X

lim
n—oo

for fixed x. Thus, the series is divergent for all finite values of x.

n
This is not the set-back it might seem. Letting S,,(x) = > um(x), we find the dif-

m=0
ference
et [ dt !
F00 — 00| = Rax) = (n + 1)!/%2dt <n+ 1)!/t'T2 - T 614
X X

In other words the error committed in approximating f(x) by S,(x) is guaranteed to
be less than M Thus, for fixed n, we can always find an x sufficiently large to make
this error less than any prescribed number € > 0. So, even though divergent, the se-
ries (6.1.3) has partial sums which provide an arbitrarily good approximation for f(x),
provided only that we restrict ourselves to sufficiently large values of x. Such a series
is called an asymptotic series and its relationship to f(x) is expressed formally by
rewriting (6.1.2) to read

£0) ~ Z( D" mt (6.15)

Xm+1

The symbol ~ implies approximation rather than equality and in so doing takes cog-
nizance of the divergent character of the series.

Notice that for a given value of x there is a value of n, N say, for which the upper
bound on the error associated with the approximation is a minimum. Consequently,
N!/ xN*! is a measure of the ultimate accuracy with which f(x) can be computed. To

estimate N we note that
nl  n"t

< (n-1)Inn-(n+1) Inx
xn+1 xn+1 ‘

=e

Differentiating the right hand side of this inequality with respect to n and equating
the result to zero, we find

Nlng +N=1 or, N~xel/ DV,

Thus, for x = 10, N = 5 which means that for this value of x, optimal accuracy is ob-
tained with just the first five terms in the series. The associated error is then < 0.00012.
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Definition: A series > ¢ z™™, which either converges for large values of |z| or di-
m=0
verges for all values of z, is said to be an asymptotic series for f(z),

f2) ~ i cmz ™, (6.1.6)
m=0

valid in a given range of values of arg z, if, for any positive integer n,

hm{ [f(z Zcmz ” (6.1.7)

for arg z in this range.

An asymptotic series will be convergent only if the function it represents is holo-
morphic at z = . Thus, more often than not, they are divergent series. As we have
seen, this does not adversely affect their ability to accurately represent functions for
large values of |z|. Since the difference between f(z) and the first (n + 1) terms of the
series (6.1.6),

C1 Cn

f(Z)—CO—?—---—an >
is of order 1/|z|™*!, such a series is often better suited for numerical computation than
a convergent representation would be. Some caution is necessary however. The ad-
dition of too many terms of a divergent series will render an approximation for fixed
z worse rather than better. Indeed, as we learned from our simple example, there is
always an optimum number of terms that gives rise to the best approximation for any
given value of z.

If a function f(z) possesses an asymptotic series

C2
D~cot L 2y, ,
f@) ~ ot + 23
the series coefficients are uniquely determined by the equations

lim f(z) = co
|z]| o0

lim z [f(z) - co] = c1

|z] oo
. C1
lim z? [f(z)—co——} =0
|z] —oo V4
. C1 Cn-1
lim z"[z—c —_—— - }=c
|z]| oo f( ) 0 z zn-1 "

(6.1.8)

This shows that a given function can only have one asymptotic series. However, knowl-
edge of an asymptotic series does not determine a corresponding function since differ-
ent functions can generate the same asymptotic series. For example, e'“andel/? +e7*
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have the same asymptotic series

1+i+ 1 + 1 +
1z 21z2 31z 77

valid in the range | arg z| < 7/2.

Many functions f(z) do not possess an asymptotic series; e is an obvious exam-
ple. However, even when this is the case, one can often find a second function ¢(z)
such that the quotient f(z)/¢(z) does possess a series,

f(z)/<p(z)~co+% +% o,

for some range of arg z. For such functions we shall write
f@~ 9@ cmz™ (6.1.9)
m=0

and we shall use the term asymptotic expansion to refer interchangably to both a
representation of this form as well as the more straightforward asymptotic series rep-
resentation of (6.1.6). The term c¢o ¢(z) in (6.1.9) is often called the dominant term of
the expansion.

Example: The exponential integral function

oo

e—t
Ei(x)=/Tdt, x>0

X

differs from the function (6.1.1) of our first example by a factor of e*. Thus, without
further effort we deduce that Ei(x) has the asymptotic expansion =
1)y Y(n-1) X Z (=1 m!
1 2 D" '(n 1)‘+...]~e—z(1) m!

5|1
Eix)~ve X |=-S+=+...+
) x x2 x3 xn X

Comparing this result with (6.1.9), we see that Ei(x) has 97 as its dominant term.
One can show that an asymptotic series can be added, multiplied and integrated
term by term. However, it is not permissable in general to perform term by term differ-
entiation.
To determine an asymptotic expansion one almost always proceeds from an in-
tegral representation of the function in which one is interested. This is due to two
exceptional results: Watson’s Lemma and the Method of Steepest Descents.

6.2 Watson’s Lemma

George Neville Watson (1886-1965) was noted for the application of complex analysis to
the theory of special functions. His collaboration while at Trinity College, Cambridge on
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the (1915) second edition of E. T. Whittaker’s A Course of Modern Analysis (1902) pro-
duced an instant classic, a text that to this day is known simply as “Whittaker and Wat-
son”. In 1922, he published a second classic text, Treatise on the Theory of Bessel Func-
tions, which is an exhaustive study of all aspects of Bessel functions including especially
their asymptotic expansions. Watson became Professor at the University of Birmingham
in 1918, where he remained until 1951.

Watson’s Lemma applies to functions f(z) that can be represented by convergent
integral transforms of the form

)

f2) = / e g(t)dt. 6.21)

0

Although this makes it somewhat exclusive, it still covers many of the cases which
occur in practice. All we require is that the spectral function g(t) be holomorphic, ex-
cept possibly for a branch-point at the origin, in the disc [¢| < T and admit the series
representation

gO=>cnt™ ™, Jtj<T<T (6.2.2)

m=1

for some p > 0. Also, let us suppose that when t is real and positive and ¢t > T, |g(t)| <
KeP',K > 0,b > 0. One can then show that term by term integration of the series
together with the result

/e’zr Pt ae = mi//e’” u™Pt qy = I"(m/p)’ (6.2.3)
zm/p zmlp
0 0
yields the asymptotic expansion
f@ ~> " cnI(m/p)z™" (6.24)
m=1

for |arg z| < m/2 - €, where ¢ is an arbitrary positive number.
Example: To illustrate the use of the lemma, let us return to the function featured in
the first example of the previous Section,

Irs x—t
£0o) = / et

X

Ifweletv = %(t - x), we can express f(x) as a transform of the appropriate type,

oo

o) = / e L gy,

v+1
0
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Moreover,

e Z Z( V™ v <1

m=0

Therefore, using (6.2.4), we immediately obtain the by now familiar asymptotic series

oo oo

f6) ~ 3 D)™ I x™ = 3 (-1)" m - D™

m=1 m=1

Similarly, the complimentary error function
erfc(x) = 1 - erf(x) = 2 / et dt
Vi
X

can be expressed as

oo oo

_i —-x? (£ -x?) _i —xzf -x2v -1/2
erfc(x)—ﬁe /e dt—\/ﬁe 5/e [1+v] 7 dv.

X 0

2778 16 128
(-

= ()™ m =3
_Z ST = 1! v vl < 1.

Thus, using (6.2.4), we have

1-v)y*=1

N\><

erfc(x) ~ — e

i y*1(2m - 3)”
T
m= zm

oo

) 1(2m 3)! e

M

The method of steepest descent (which is also known as the saddle point
method) provides a much more general technique for generating asymptotic expan-
sions. Such generality does not come about without some cost however; this method
is a good deal more complicated than is Watson’s Lemma.

6.3 The Method of Steepest Descent

Consider the integral

F(z) = / 70 g(f)dt (6.31)
C
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where f(t), g(t) and C have all been chosen so that the integrand is holomorphic in
some domain containing C and goes to zero at either end-point of C. It is entirely rea-
sonable to expect that the most significant contributions to F(z), for large values of
|z|, arise from those segments of C on which the real part of [zf(t)] is large and pos-
itive. However, we must be mindful of the fact that the imaginary part of [zf(t)] will
generally increase as |z| increases and that this will result in rapid oscillations of the
factor e!™# 0] and hence, in a complicated pattern of cancellations among the val-
ues assumed by the integrand. Such cancellations could make the evaluation of F(z)
a daunting if not impossible undertaking. However, we know that the integral is path
independent within the integrand’s domain of holomorphy. Therefore, we shall as-
sume that this domain permits deformation of the contour of integration C into a new
contour Co on which Im[zf(t)] is constant whenever Re[zf(t)] assumes its largest val-
ues. Our first task then is to define (.

Since we want Re[zf(t)] to be large, we shall require (, to pass through a point
t = to at which Re[zf(¢)] has a relative maximum and hence, at which

Fe= Y0 —o. (632

t=to

As we shall see, we now need only demand that near ¢ = ¢

Im[zf ()] = Im[zf(¢o)] (6.3.3)

to complete our specification of C.

We have already proven (the maximum modulus principle) that neither the real
nor the imaginary part of a function can have an absolute maximum or minimum
within its domain of holomorphy. However, we have yet to determine what does hap-
pen to a holomorphic function at a point where its first derivative vanishes. To do so
now, let w(x, y) = u(x, y) +iv(x, y) be a holomorphic function whose derivative % =0
at some point z = zg = (xo, Yo). Clearly, the first partial derivatives of both u(x, y) and
v(x, y) vanish at (xo, ¥o). Moreover, since u(x, y) and v(x, y) are harmonic, vZu = 0
and v2 v = 0, we know that if, for example, "Z—Xlz‘ < 0 at (xo, Yo), then gz—; > 0 there.
In other words, if u(x, ¥o) has a maximum at x = xo, then u(xp, y) has a minimum at
y = Yo. Thus, although it is not an extremum of u(x, y) and v(x, y), (xo, ¥o) is a mini-
max or saddle point of these two functions.

A further consequence of the holomorphy of w(z) is that the curves u(x,y) =
constant and v(x, y) = constant are the level curves for a conformal mapping and
so are everywhere orthogonal. Thus, referring to Figure 6.1, we see that if we proceed
along a curve v(x,y) = constant, u(x, y) will vary at its maximum rate. The curves
AB and CD are the two curves passing through the saddle point that correspond to a
constant value of v(x, y). On one of them, CD, u(x, y) increases as rapidly as possible;
on the other, AB, u(x, y) decreases as rapidly as possible.

Returning to our integral, we now recognize that condition (6.3.2) implies that
t = to is a saddle point of Re[zf(t)], while (6.3.3) and the requirement that Re[zf(t)]



The Method of Steepest Descent =—— 157

Au(x.y)
& D

Figure 6.1: A saddle point

have a relative maximum at ¢t = ¢, uniquely identifies Cy as the counterpart of the
curve AB. With this choice for ¢y, e¥® goes to its end-point values by the steepest
route possible, that is, by the path of steepest descent. Moreover, most of the value
of the integral must come from the neighbourhood of t = ¢, since the modulus of
the integrand is at a maximum there while its phase is roughly constant. (The phase
is exactly constant if g(t) is real.) This becomes increasingly true as |z| — oo for the
maximum becomes larger and the descent to the end-point values becomes steeper
and steeper.

Assuming that we can deform our initial contour C to coincide with Cywithout en-
countering any of the singularities of f(t) or g(t), we may rewrite (6.3.1) as

F(z) = er(to)/ eZ[f(f)*f(to)] g(t)dt (6.3.4)
Co

where, by construction, z[f(t) - f(¢o)] is real and negative for all t on Cy except at t = ¢o

where it vanishes. This expression can be simplified in appearance by defining a real

function 7(t) via the identity

e[ () - f(to)] = - 7. (6.35)
We then have

F(Z) _ ezf([o)/ e*\z| Tz(t) g(t)dt

Co

A / e 7 T glt()] d;(:) dr, (6.3.6)
To

where [y is the image of ¢, in the T plane. We know that [, runs along the real axis
and passes through the origin T = 0. Moreover, while its end-points will vary from
case to case, this variation is no barrier to an asymptotic evaluation of (6.3.6). For, as
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|z| increases, the exponential in the integrand becomes sufficiently steep that the only
significant contribution to F(z) comes from a small segment of [, about 7 = 0. Thus,
at the risk of committing only a negligible error we may take the end-points of Iy to be
too and write

oo

F(z) ~ o7 ® / el g[t(r)]%dt. 637)

—co

To complete the asymptotic evaluation of F(z) we need now only express g(t) and
% as functions of 7. This is most appropriately done by means of power series expan-
sions about 7 = 0. Thus, leaving aside for the moment the problem of determining the
coefficients in the series

[t(T)]— = Z em ", (6.3.8)

we substitute it into (6.3.7) to obtain

F(z) ~ e7® Z Cm / e 177 g, (6.3.9)
m=0

—co

The standard integral

Im =

|
8\8
m\
i)
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h‘
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()

is known to assume the values

nla, m=0

) k-
Im = W \/n/a, m=2k=2,4,...
0, m=1,3,5,...

Thus, (6.3.9) can also be written as

F(Z) -~ ezf(to) \/T |:C +ZC2k (Zkz—kl)” |Zk:| (6310)

which brings us to within a single step of our long sought-after asymptotic expansion
for F(z). That last step is to extract the dependence on arg z from the coefficients ¢,y
to obtain a series in z rather than |z|. The result is

F(z) ~ &) \/> [a0+z ay, 2K- 1)”21](} (6.311)

where the coefficients

2k+1

ay=e ¥, k=0,1,2,... . (6.3.12)
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The explicit calculation of the coefficients a, is a tedious chore because it in-
volves expressing t — to as a power series in T by inversion of equation (6.3.5) and then
substituting into the power series expansion of g(t) about t = ¢o. The coefficient of the
leading term is the sole exception; it is readily determined as follows.

From (6.3.8) we know that

o {sm Rl - s (6313
Moreover, since f(to) = 0, we have
Ry
£~ F(to) = £t L
and so
7 = e (1) (L fo Yo (6.3.14)

2!

where, for notational simplicity, we have set arg z = 6. Thus, inverting this series we
find to lowest order that

V2t .

t—to=

and hence,

dt _ llm t- to - \/z (6.3.15)

dr| _, 0 T /eiG+0) fir(g)

Substitution into (6.3.13) then yields
V2g(to) or o - V2g(to)

Therefore, retaining only the dominant term in the asymptotic expansion (6.3.11), we

have
/ zf(to)

To determine higher order terms we rewrite (6.3.14) as

e 02 = fto) - f(O) = Z am(t - to)" (6.3.17)
m=2

(m)
where ap, = —f,n#, m>2.
Then, since we seek a power series for (¢ - to) about T = 0, we set

t-to=Y Bt (6.3.18)
m=0
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and substitute this series into the right hand side of (6.3.17). Using
oo n oo
(Z B, r"”) = m ™" (6.3.19)
k=0 m=0
m
where Yo = B3, Ym = 'n%% kz_:l[k(n +1) = m] By Ym-k, m > 1, this yields

e 7% =y T2 [BE+2 B, By T+ (B2 +2 B, By) T2 +2(B, By + B3 Bo) T

+(B3+2 B, B3 +2 By BT +.. ]

+as 1'3[/5’(3) +3 8, ﬁé T+3(62 Bo+B, /3(2)) 2
+ (ﬁi +6 B, B1Bo+3B; ﬁ(z))‘l’3 +...]

+ 0(4‘!’4[38 +4ﬁ1ﬁ3‘r+ (6/3%[3(2) +4ﬁzﬁg)12 +...]

+asT[By+5 B, Bo T+ -]

+as B+ . ]

T (6.3.20)

Thus, equating coefficients of like powers of T we obtain the following equations ex-
pressing f,, B, B,, . . . in terms of theay, m > 2:

e 0= ar [3(2)

0=2ap, o+ a5y

0= aZ(ﬂ% +2B,Bo) +3 a3 B, ﬁ(z) Ty ﬁg

0= 2028, By + B3 Bo) + 3 as(B1 By + B Bo) + 4 au By B+ ts B

Solving, we find

e—i@/z
Bo =
Va2
—_ %3 p
ﬁl_ Zazﬁo
__50(§ ay 3
ﬁz__Sa% 205 ) Po
ﬁ—_—aj 30(30(4_&}[34
3= 0
ﬁ_'231a§_63a4a§ Ta, Tasas &g | s
‘71283 164 8@ 4a  2a|"°

(6.3.21)
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Substitution of these coefficients into (6.3.18) and term-wise differentiation finally
produces the power series about 7 = 0 for %. To obtain the corresponding series for
g(t) requires still more tedious effort since we must substitute powers of (6.3.18) into

oo

(m)
g0=>"% (!t")(t —to)"

m

m=0

and then collect coefficients of like powers of 7. Fortunately, many interesting func-
tions have integral representations with g(t) = 1. In such cases the coefficients ¢, of
equation (6.3.8) are given by

cm=(m+1)B,,m=0,1,2,.... (6.3.22)

Combining this result with (6.3.21) and then (6.3.12), we find that the first three of the
coefficients a,; in the asymptotic expansion (6.3.11) of F(z) are

ao=a£1/2
_3 spf5a3 a
a2 = Zaz 4(1% 26
5 5231 (Xg 63 CM(X% 7[1% 7a3a5 Qg
=2 2208 52 L%, L - % 32
ay > 2 |:64 ag 8 ag +4a%+2 (X% % (63 3)

where we recall that a, = —’% , m>=2.
Example: To illustrate the use of this formidable piece of mathematical machinery we
shall determine the asymptotic expansion of I'(z+1). From Euler’s definition, equation

(5.2.5), we have

F(z+1)=/e’“uzdu, Rez> -1
0

oo

:Zz+1/ez(lntft)dt, (6.3.24)

0

where we have set u = zt. Thus, in this case, f(t) = Int - t and g(t) = 1.

Differentiating f(t) and setting the result equal to zero, f'(to) = % -1 =0, wesee
that f(t) possesses only one saddle-point located at t = to = 1. Hence, there is a single
path of steepest descent which, becausef(to) = -1, is uniquely defined by

Im[zf(t)] = -Imz Relzf(t)] < —Rez.

We do not need a more detailed identification of the path because it is already clear
that the initial contour of integration, the positive real axis, can be deformed to lie
along it without encountering singularities of f(t). Thus, it only remains to evaluate
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a few derivatives of f(t) at t = to = 1 and thence, to calculate the asymptotic se-
ries coefficients ao, as, .. .. The first of these tasks is easily accomplished: f(’")(l) =
(-1)"'(m - 1)! and so, am = £, m > 2. Substituting into (6.3.23) we then find

m

1 1
aop = 21/2, a = 12 23/2, as = 364 25/2

Therefore, by equation (6.3.11), the asymptotic expansion of I'(z + 1) is

11 11

-~ +1/2 -z L, L4
I'z+1)~V2nz-"""e 1+122+28822+

(6.3.25)
which is known as Stirling’s approximation.

Born in Scotland in 1692, James Stirling was a contemporary of and correspondent
with such notable mathematicians as Euler, DeMoivre and Newton. His most important
work is a treatise, Methodus Differentialis, published in London in 1730. It contains the
asymptotic formula for n! to which his name is attached. Stirling was believed to have Ja-
cobite sympathies which was an impediment to academic advancement in Hanoverian
Britain. Obliged to work as a mine manager, his mathematical output declined. Never-
theless, Euler secured his election to the Royal Academy of Berlin in 1746 just as Newton
had arranged for his election to the Royal Society in 1726. Stirling died in Edinburgh in
1770.

We shall have occasion to use the method of steepest descent several times in sub-
sequent Chapters, particularly when it comes time to discuss the properties of Bessel
functions. However, what really commends it to physicists are its direct applications
in modern physics. Important examples are the evaluation of partition functions in
statistical mechanics and of generating functionals in the path integral formalism of
quantum mechanics and quantum field theory.



7 Padé Approximants

7.1 From Power Series to Padé Sequences

It can often happen that one can calculate the coefficients ¢, up to any order m
in the power series

f2) = i cmz"™ (7.1.0)
m=0

for a function of interest without being able to determine an expression for the gen-
eral term and hence, without being able to determine the radius of convergence of the
series. If, as also happens rather frequently, one does not possess any other represen-
tation for the function, this can pose a serious problem. One has no way of locating
the singularities of f(z) and may not even be able to rule out the possibility of a sin-
gularity at z = O itself. Consequently, there is no way of knowing how rapidly the
series converges or even whether it converges at all for the values of z one is interested
in. A good illustration is provided by perturbation theory calculations of quantum
mechanical transition amplitudes. These are expressed as a power series in the “cou-
pling strength” g of the interaction responsible for the transition and one has a formal
mechanism for calculating the coefficients in the series up to any desired order. The
sum of the calculated terms is then evaluated by setting g equal to its physical value.
In the case of the electromagnetic interaction, for example, g is just the fine structure
constant a = e? /hc = 1/137. However, the reason why perturbation theory is used at
all in such problems is the impossibility of obtaining exact solutions and the barriers
to this often imply an ignorance of the analytic properties of the solutions as functions
of g. In other words, one has no a priori knowledge of how or even whether the series
converges at the physically relevant value of g. To make matters worse, bound and
resonant states manifest themselves as singularities of transition amplitudes. Thus, a
perturbation series would appear to be totally irrelevant if one’s principal aim is the
very important one of identifying such states. Fortunately, one can use a Taylor-like
series, whether convergent or not, to define sequences of Padé approximants which
provide much more versatile representations of the corresponding function than does
the power series which is their source.

Definition: The [L/M] Padé approximant to f(z) is the rational function

fuym@ = %, Qu(0) =1 (7.1.2)

where p;(z) and Qy(z) are polynomials of degree L and M respectively, such that
fiym(2) and f (2) have the same first L + M derivatives at z = 0; that is, such that

gL((Zz)) =3 enz" = 0 M) (7.13)
m=0

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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where O(z/*M*1) represents terms of order L + M + 1 and higher: O(z-*M*1) = g ZL+M+1

+bzZI*M+2 4 forsomea,b,....

Henri Padé (1863-1953) was born in Abbeville which is a town in the Picardy region
of northern France. He graduated with his Agrégation de Mathématiques from the Ecole
Normale Supérieure in Paris in 1886 and began a career teaching in secondary schools.
He also began a program of mathematical research, publishing his first paper in 1888
and commencing work on a doctoral thesis in 1890. Presented to the Sorbonne in1892,
Padé’s thesis provided the first systematic study of the representation of functions by
rational fractions or what we now call Padé approximants. In 1897 Padé received the
first of a series of university appointments culminating in that of Dean of the Faculty of
Science at the University of Bordeaux in 1906. In the meantime, in 1899, he published
another major work on Padé approximants and by 1908, when he left Bordeaux to be-
come a Rector of the French Academy, had written 41 papers of which 29 were on con-
tinued fractions and Padé approximants. He remained a Rector of the Academy, first at
Besancon then Dijon and finally Aix-Marseille, until he retired at age 70 in 1934.

A moment’s reflection suggests that the class of functions which can be usefully
approximated by rational functions is bound to be larger than the class which can
be approximated by polynomials. Rational functions have poles of their own and so
should be able to provide a representation even in the neighbourhood of singularities.
Thus, we are predisposed to expect that the domain of convergence of a sequence of
approximants f; ,,(z) is a good deal larger than that of the corresponding Taylor series.
This expectation will be confirmed; we shall find that Padé approximants provide a
method of analytically continuing functions whose definition is provided solely by
power series.

The coefficients of the polynomials P;(z) and Qy(z) are determined by equating
coefficients of like powers of z in

L+M

PL@) - Qu(@ > cmz™ = 0EM),  Qu(0) = 1. (7.1.4)

m=0

The full and unique solution for f; ,(2) is thus found to be

CL-M+1 CL-M+2 cee Cr+1
CL Cr+1 tee CL+M
L L L
k k k
E Cr-m2z E Cr-M+12~ E Ciz
k=M k=M-1 k=0
fum(2) = (7.1.5)
Cr-m+1 Cr-m+2 **° CL+1
Cr Cr+1 Cr+M
M M-1
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where ¢, = 0if k < 0 and the sums for which the lower limit is larger than the upper
limit are also to be replaced by 0. Such a formal and formidable expression does little
to inform one’s intuition. Therefore, we list below the approximants that correspond
toL, M < 2:

2
fojo=Cos fipp=Cotc1z, frpy=cotc1z+cC2z

2
¢, -Ci1C3 2

1760 C1C)—CoC3
for=—2_, f _fotTe f Cot—0 2+~ 72
’ ’
01Ty _az N 1- 2z 2 1- Gz
0 1 2
CoC3—-C1 ¢y
+[c1 +co ez
Fory = Co £ co+lci+co T 6
0/2 1- ¢ +C%*C250 2’ 1/2 14 0G0 ad-cac o
co 2 Z cZ-¢coc 2-¢coc
0 1~ CoC2 1~ CoC2
(c1cs-crc3 ci(ci ey —cac3)+co(cs —cr )] 2
Co+ |C1+Co Lfa=9S | 74 |y + 2 z
_ €;-C1C3 c3-C1C3 716)
fz/z - C1C4— 2-cc (7.1
1+ 1C€4-CC3 3 2C4 o
c3-cics c2-ci1c3

As this display presages, it is useful to group the approximants to a given function
in an infinite array known as a Padé table:

fo/o f0/1 fo/z f0/3
fio fin fi2 fiss
oo fon fora foz o 7.1.7)

The approximants f; ;,; with L fixed comprise a row of the table, while those with M
fixed form a column. The set {f};,,/} is called the diagonal sequence and together
with the paradiagonal sequences {fy,;,} with j fixed comprise the ones of most
interest. The table subsumes several more specialized types of approximations. For
example, the first column consists of the approximations provided by truncating the
power series. Of more interest in numerical analysis, the sequence consisting alter-
nately of members of the diagonal and first paradiagonal,

fojos frp00 fins Fopis fapas oo oo Fpmes Famsrymns Fagsrjmaens <o - o

corresponds to the approximations one would obtain by truncating the continued

fraction
f@)=ao+ a1z
0 ar z
1+
1+ az
ag z

1+...

1+

Mathematicians have yet to establish an extensive theoretical knowledge of the
convergence properties of Padé approximants. Numerical experimentation indicates
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that the theorems that have been proven offer a limited perspective of the represen-
tational potential of Padé sequences. Consequently, following the approach used by
Padé and by each successive generation of researchers, we shall examine by means
of specific examples how approximants imitate the analytic structure of the functions
they represent. Then, after a brief overview of the convergence theorems that have
been proven, we will engage in informed speculation on just how powerful a means
of analytic continuation Padé approximants really are.

7.2 Numerical Experiments

Let us commence our study of how approximants reconstruct the functions they rep-
resent by reminding ourselves that an [L/M] approximant is a meromorphic function
with L zeros and M poles where, for counting purposes, we are treating a zero (pole)
of order n as though it were n simple zeros (poles). Thus, other meromorphic func-
tions ought to pose a reasonably simple representational challenge. To confirm this,
we look first at the trivial case provided by other rational functions.

Example: Substituting the coefficients of the geometric series

f)=> 2"
m=0

into equation (7.1.5) we see that all Padé approximants except the sequence of trun-
cated series {f} , } exactly reproduce the function they are supposedly approximating;
that is, we have

fL/Mzi forall L>0, M>1.

This is not a coincidental result. One can readily show that if f(z) is a rational function
whose numerator is of degree I and denominator degree J, then

fim=fz) foral L>I, M>].

Example: A more demanding task is that of reproducing the poles and zeros of a func-
tion like tan z. Obviously, this is possible only in the limit that both L and M — oo.
However, we should be able to get an intuitive feel for what will happen in that limit
by calculating the first few approximants to tan z and identifying the location of their
poles and zeros. Our starting point is the Taylor series

1 3 2 5 17 7
= + — + — + — +...
tanz =z 3Z 152 3152

whose disc of convergence, |z| < 71/2, is determined by the location of the first two
poles, z = /2. For calculational convenience, we shall factor out the zero at z = 0
and treat the remainder as a series in z%:

1

tanz = zf(z*) where f(z°) =1+ 3 22 +12—5(z2 )+

17

213
315(z)+....
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Using equations (7.1.6) we then find
2

11
fo/l(z) 3_ 22: fl/l(z)—§ 22’
) _i630 45 2% - N 45
fon@) 42—1722 ’ fo/z(z)_45—1522—z“’
n 21-22°
2@ = 5155 45 25220

which are the only approximants we can calculate in this order. Their poles and zeros
are compared with those of tan z/z in Table 7.1.

Table 7.1: Zeros and Poles of Approximants of f(z) = tan z/z.

Function Zeros Poles
fonn n/a +1.732
fos2 n/a +1.601, +4.191i
fin +3.873 +1.581
fon +3.348, +7.497i +1.572
fi2 +3.240 +1.571, +6.522
tanz +3.142, +6.284, ... +1.571,4.712,...

z

The sequence consisting of the approximants f;,/,, 1, f1/, - - - @cquires poles and ze-
ros in the same alternating order as they occur for the original function. Specifically,
fon has only poles and no zeros. The poles, at z = +1.732, are within about 10% of
the first two poles of tan z/z, at z = +71/2. The next approximant in the sequence, f; /10
has poles at z = +1.581 and, in addition, has zeros at z = +3.873. In other words, we
have now reproduced z = +71/2 to within better than 1%, as well as the first two zeros
of tanz/z, z = +m, to within about 25%. Finally, f,,, locates these zeros to within less
than 3% and provides us with a first approximation to the location of the next pair of
poles at z = +371/2. Each successive approximant attempts to replicate the next pair
of poles or zeros in the same order as they are encountered with increasing values of
|z|. Moreover, each successive approximant replicates all previously located poles and
zeros with ever increasing accuracy. What is perhaps most impressive is that this de-
tailed picture of how tan z/z behaves for |z| > 7/2 has been generated from a very
restricted knowledge of how that function behaves for |z| < 77/2, namely, a few terms
of the function’s Taylor expansion about z = 0. Thus, this Padé sequence provides
a very powerful method of analytically continuing the Taylor expansion outside its
circle of convergence.

The other two approximants listed in Table 7.1 are also worthy of note. While £,
reproduces the poles at z = +71/2 with much greater accuracy than does f;;, it also
produces extraneous poles on the imaginary axis. Similarly, f,; has extraneous zeros
at z = =7.5i. These features are attributable to the structural inability of these par-
ticular approximants to mimic the alternating character of the poles and zeros of the
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function they represent. If we were to go to higher order, we would find that the ex-
traneous poles and zeros are very unstable with respect to position. This is because
they do not reflect specific analytic features possessed by the original function in the
finite plane but rather, its behaviour at infinity. In any case, this illustrates that there
is a tangible advantage to be gained from being selective in one’s choice of Padé se-
quence to represent a given function.

Example: To further illustrate the phenomenon of extraneous poles and zeros, let us
consider the approximants of e* which not only has no poles of its own, it also has no

zeros. The [1/1] approximant is
_2+z
fin = 52
with a zero on the negative real axis at z = —2 and a symmetrically placed pole on the
positive real axis at z = +2. The [2/2] approximant is

_12+6z+27
fop= 15642
with zeros at z = -3 + v/3i and poles at z = +3 * v/3i. Thus, we perceive an inter-
esting pattern emerging. The zeros all occur in the left half-plane with the poles in
mirror-image locations in the right half-plane. Moreover, on increasing the order of
the approximant, the poles and zeros have moved further away from the origin. This
pattern persists as one further increases the order. The poles occur either on the real
axis or on either side of it in conjugate pairs but in any case, moving ever further to
the right. The zeros cluster on or about the negative real axis and move further and
further to the left.

Recalling that | e” | increases without limit as |z| — oo along the positive real axis
and goes to zero as |z| — oo along the negative real axis, this pattern becomes under-
standable. The poles and zeros of the approximants are simulating the exponential
function’s essential singularity at z = oco.

This simulation evidently assists the convergence of the approximants. As one

can check, an approximant gives a much better approximation of the value of e in
the region between the poles and zeros than does the corresponding truncated Tay-
lor series. Even at z = -1, a point at which the Taylor series converges fairly rapidly,
the approximants improve on the accuracy of the approximation by one to two orders
of magnitude. This is shown in Table 7.2 where we see that the [M/M] approximants
increase their accuracy by two decimal places per unit increase in M, with the value
given by f, , being off by only one part in108,
Example: [solated essential singularities are not the only type of non-polar singularity
that can be simulated by Padé approximants. A function with branch points is neces-
sarily discontinuous across a cut or cuts joining the points. Simulating a discontinuity
of this sort might appear to be an overly ambitious task for a sequence of functions that
are continuous everywhere except for a finite set of poles. However, by clustering their
poles along the cut the Padé approximants produce a representation that, very often,
is convergent everywhere in the cut plane.
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Table 7.2: [M/M] Approximants of e? Evaluated at z = -1.

2M (_1)m

M Fuym % Deviation from e~! Z - % Deviation from e~!
m=0

1 0.33333333 9.39 0.5 35.9

2 0.36842105 0.147 0.375 1.94

3 0.36787564 1.03x 1073 0.36805555 4.79 x 102

4 0.36787945 2.45 %1076 0.36788194 6.79 x 107

Limit 0.367879441 - 0.367879441 -

The efficacy of the simulation is perhaps best appreciated by recalling the dispersion
representation for functions with branch points. For example, the function (1 +z )’1/ 2,
with branch points at z = -1 and z = oo, has the representation

(1+2z) Y%= (7.2.1)

1 7 dy

) -7
corresponding to a cut along the real axis segment —oo < y < -1. Using this as our
starting point, we can give (1 +z )’1/ 2 an approximate representation by simply evalu-
ating the integrand at a finite number of carefully selected points. Such an operation
is precisely that of replacing the cut by a finite number of simple poles each located at
the negative image of one of the pre-selected points and therefore, distributed along
the line segment where the cut used to be. Of course, a truly discontinuous function
results only in the limit as the number of such poles becomes infinite.

As we know, the choice of simple curve used as a cut joining the two branch points
is arbitrary. If the choice is different from the negative real axis, it would be reflected
in a corresponding change to the integration contour in (7.2.1) and hence, in the lo-
cation of the poles simulating the cut were we to continue to use the integral as the
basis of an approximate representation. However, there is no such flexibility with the
approximate representation obtained with Padé approximants. Since the location of
the branch cut has no effect on the value of (1 +z )‘1/ 2 and its derivatives at the origin,
the approximants necessarily make an independent but specific choice of the curve to
use in simulating the cut. The only question is whether this choice is predictable. The
answer is an unqualified yes only in the case of a class of functions that are named
after a mathematician called Stieltjes; they will be the subject of more detailed study
a little further on. For more general functions one must rely on systematic behaviour
observed in the course of numerical experimentation to justify any inference as to the
location of the simulated cuts.

G.A. Baker Jr. and his collaborators have experimented with a variety of functions
possessing two, three, or even four branch points. They found that the limit set of
poles of diagonal Padé approximants forms circular arcs each of which joins a pair of
branch points and, if extrapolated to form a complete circle, would pass through the
origin. As usual we include straight lines in our definition of circle and so, in the case
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of(1+z )’1/ 2. the poles of the [M/M] approximants conform to this rule by clustering
along the real axis segment —oo < x < -1.

Another interesting function studied by Baker et al. is
(1 +22)1?
flz) = 11z
It has branch points at z = +i. To conform with the empirical rule, its [M/M] approx-
imants should simulate a cut which runs from z = +i through z = co to z = -i. As
Figure 7.1 shows, this expectation is born out by actual calculation: one pole in the
limit set converges to z = —1 and the rest cluster along the imaginary axis segments
1<y<ooand-co<y<-1.

Im =z

Figure 7.1: The poles of the [M/M] approximants to f(z) = (1 + z2 )1/2 /(1 + z) simulate a cut along
the imaginary axis from z = +itoz = —i, passing through z = oo, as well as reproduce the polar
singularity at z = -1.

The behaviour of these approximants at infinity is rather interesting as it reveals how
cuts adversely affect convergence. From the calculated values displayed in Table 7.3
we see that the [M/M]approximants converge to v/2 + 1 according as M is even or odd.
Thus, this Padé sequence does not converge to anything at z = oo. The sequences
[2M/2M] and [2M + 1/2M + 1] converge separately but not to +1 which are the values
attained by the function (1 + z2 )1/ 2 /(1 + z) on alternate lips of the cut. This suggests
that one should not expect convergence of Padé approximants at points located on a
cut.

7.3 Stieltjes Functions

Thomas Jan Stieltjes (1856-1894) had little formal education, flunking out of the Poly-
technical School of Delft in 1876, due in large part to an all-consuming passion for math-
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Table 7.3: The [M/M] Approximants to (1 + 22 )1/2 /(1 + z) Evaluated at Infinity

[M/M]
0.333333
2.333333
0.411764
2.411764
0.414141
2.414141
0.414211
2.414211

Limit V21
Actual Value of Function +1

ONOUVEWNRE

ematics. In 1882, while employed as an assistant at the Leiden Observatory, Stieltjes be-
gan a correspondence with the distinguished mathematician Hermite. Over the remain-
ing 12 years of Stieltjes’ life, they exchanged 432 letters on his mathematical interests.
Hermite became both his mentor and his sponsor, helping Stieltjes obtain academic ap-
pointments in the Netherlands and in France. Stieltjes worked on almost all branches
of analysis, continued fractions and number theory but he is best remembered for the
Stieltjes function defined below.

Everything that has been empirically deduced about the behaviour of Padé ap-
proximants of functions with branch points can be rigorously proven to occur for
Stieltjes functions. These possess either a Taylor or an asymptotic series about z = 0
whose coefficients can be expressed in terms of a very particular type of integral.
Definition: A function f(z) which admits representation by a series of the form

f@ =) cm(-2)" (7.3.)
m=0

is a Stieltjes function if and only if

oo

o = / ™ de(t) (73.2)

0

where g(t) is a bounded non-decreasing function which takes on infinitely many val-
ues in the interval 0 < ¢ < oo,

The series itself is called a series of Stieltjes and need not be convergent. How-
ever, if it is, with radius of convergence R, then we can interchange the order of inte-
gration and summation in (7.3.1) to obtain

F@) - [ >tz dgo, (73.3)
0 m=0
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for |z| < R. We know that

1
—_ m =
E (-tz) 1+th0r|t:/:\<1
m=0

and that it diverges for |tz] > 1. Therefore, if (7.3.3) is to be meaningful, f(z) must
possess the following Stieltjes integral representation

1/R

f(z) = / gDt (7.3.4)

1+tz’

0

This provides an analytic continuation of f(z) outside the circle of convergence of
(7.3.1) and permits identification of the function’s singularities. Indeed, if we now
make the substitution t — x = —%, (7.3.4) assumes the more familiar features of a
dispersion representation for a real function (see equation (4.1.5):

-R
1 [ Imf,(

f@) = e dy (7.3.5)

Imf. (x) i = gg% Imf[-(t +ie)!] = —ﬂtdgi?). (7.3.6)

Thus, f(z) is a real function, f*(z") = f(z), and is holomorphic everywhere in the com-
plex plane except for a cut along the negative real axis from z = —R to infinity.

One can show that these two integral representations retain their validity even in
the limit of a divergent series of Stieltjes, R — 0, provided that the series coefficients

are such that -
Z(Cm )—1/(2m+1)
m=1

also diverges. This condition is roughly equivalent to requiring that | cm | < (2m)!. The
cut along the negative real axis then extends from z = O to infinity and (7.3.4) becomes

i '(t)dt
fiz)= | & (7.37)
/

1+tz°

As for the series, it too retains a representational role albeit only an asymptotic
one. In conformance with equation (6.1.7), we have

|;\iglo {z‘" {f(z) - ; Cm zm} } =0 (7.3.8)

for any positive integer n and arg z restricted to avoid the cut joining the branch points
atz=0and z = oo,
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Notice that the properties of g(t) necessarily imply that Im f, (x) < 0.

In summary, we can characterize all Stieltjes functions as satisfying the reality
condition f*(z*) = f(z), as possessing branch points at z = oo and a point on the
negative real axis z = - xp, Xo > 0 and, when these points are joined by a cut along
that axis, as having a negative definite, pure imaginary discontinuity across the cut.
Indeed, given a function with these properties, the choice of the negative real axis as
the location of its cut assures the existence of a Stieltjes integral representation since
we can write

oo

_ [ §Wat
f@- [£02 7.39)
0
with the weight function given by
t d
1 . . -
#(0-5(00) - . [ lim Imlf(-(r—ie) ) (7:3:10)
s e—=0 T
to

Differentiation of (7.3.9) then generates a series of Stieltjes about z = 0.

Baker’s empirical rule concerning the simulation of cuts by Padé approximants
can actually be proven to be the case for Stieltjes functions. The relevant theorem also
provides remarkably detailed information about the poles and zeros of successive ap-
proximants.

Theorem: If Y cm(-z)™ is a series of Stieltjes, the poles and zeros of the [M +
m=0
J/M],] > -1 Padé approximants obtained from the coefficients are on the nega-

tive real axis. Furthermore, the poles of successive approximants interlace and all the
residues are positive. The roots of the numerators (the zeros) also interlace those of
the corresponding denominators (the poles).

Example: Stieltjes functions are more common place than one might at first suspect.
Whether by means of an adroitly chosen transformation or by more immediate mea-
sures, a very wide class of analytic functions can be cast in a Stieltjes form. Among
those which are immediately recognizable as possessing properties typical of a Stielt-
jes function is the elementary function f(z) = %Ln(l +z). It admits the following series,
Stieltjes and dispersion representations:

2 3
1-2+5 -2 +-..., |z<1
1
d

1Ln(1+z)= thfz, —m<argz+1)<n
z

-1

f)%, —m<arg(z+1) <.

—o0

In conformance with the preceding theorem, the poles and zeros of the diagonal
approximants to this function alternate along the negative real axis to the left of z =
—1. As the order of the approximants increases, the spacing between successive poles
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and zeros decreases due to the interlacing effect called for by the theorem. Thus, the
picture that emerges of the limiting situation as M — oo is of an infinite sequence of
very closely spaced, alternating poles and zeros extending along the negative real axis
from z = -1 to infinity.

As we shall see, this single-minded behaviour of the poles and zeros offers the
entire cut complex plane as the domain of convergence for the diagonal approximants.
However, to illustrate how an alternative and, as it turns out, inappropriate choice
of Padé sequence can have a much more restricted domain of convergence, we shall
follow Baker’s lead and explore how the [4M/M] approximants to %Ln(l +z) behave.

Table 7.4: [4M/M] Approximants to %Ln(l +2)

zM 1 2 3 4 1in(1+2)
1.0 0.69242424  0.69314873 0.69314718 0.69314718 0.69314718
6.0 -0.80000000 2.1535393  -2.6374816 5.1116289  0.32431836
9.0  -4.3735294  28.911655 -176.68475 1091.7095  0.25584279

Table 74 compares the values of the first four of these approximants with the corre-
sponding values of % Ln(1 + z) at a series of points on the positive real axis. We see
that for z = 1.0 convergence to the exact value is almost immediate. For z = 4.0 (not
shown in the table) convergence is slower but it still takes place. However, for z = 6.0
and 9.0 the approximants are oscillating in sign and, in the latter case particularly,
diverging quite rapidly.

This startling change in behaviour is directly associated with the extraneous zeros
possessed by these approximants. Each approximant requires only M zeros to alter-
nate with the M poles along the cut. Since Stieltjes functions do not vanish anywhere
in the cut plane, this leaves 3M zeros with no role to play in the reconstruction of the
analytic properties of % Ln(1 + z). Plotting these zeros for the four approximants in
Table 74, (Figure 7.2), one finds that they form a pattern suggestive of a closed curve
surrounding a roughly heart-shaped region about the origin. Evidently, this curve will
only increase in definition with increasing M and so constitutes a natural boundary
for the approximants’ domain of convergence.

This example illustrates a general rule for the approximation of functions pos-

sessing branch points: to enjoy a maximal domain of convergence one should restrict
consideration to diagonal or para-diagonal Padé sequences.
Example: There has been speculation that the perturbation series obtained in quan-
tum electrodynamics is an asymptotic rather that a convergent series owing to a singu-
larity at a = 0, where a is the electromagnetic coupling strength; (the physical value of
ais e? /hc = 1/137). Thus, it may be useful to know something about the convergence
properties of Padé sequences derived from such series.
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al® *ae

*e

Figure 7.2: The extraneous zeros of the [4M/M] Padé approximants to [Ln(1 + z)]/z. These zeros
define the boundary of the domain of convergence of this sequence of approximants; (from Baker,
(1975)).

Based on the last example, we might expect favourable results, for diagonal sequences
at least, if the series are series of Stieltjes. This expectation is born out by both exper-
iment and theory. An interesting case in point is provided by the Stieltjes function

S

flz) = / £ _ar (7.3.11)

1+zt
0
which has branch points at z = 0 and . Its asymptotic expansion about z = 0 is the
divergent series

f@~1-ANz+NZ2 -GN +...= i(—1 )" ml 2™ (7.312)
m=0

which makes it a simplified analogue of the electrodynamics perturbation series since
the latter’s general term is expected to go like m! a™ for large values of m. Calculating
the [M/M] approximants to f(z), one finds that they do converge towards the exact
values defined by (7.3.11) and do so for all finite z in the cut plane. Although the rate of
convergence is rather slow, it is essentially unchanged as |z| increases. For example,
at z = 1.0 the [6/6] approximant has the value 0.5968 compared to an exact value
of 0.5963, while at infinity f, /6 = % compared to an exact limiting value of zero. (As
X — oo, f(x) — 0 and fy;,,(x) — 77)- In both cases the error is proportional to ;7.

This leap from a divergent series to a sequence that is convergent throughout the
cut plane is a little breathtaking. It is this feature, as well as the ability to locate and
identify singularities of functions defined by power series alone, that best exemplifies
the analytical power of Padé approximants.
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7.4 Convergence Theorems

As we have already noted, the theory of convergence of Padé sequences is still far from
complete. We need be aware of only a few highlights.

The earliest theorems to be proved apply to columns of the Padé Table. For exam-
ple, de Montessus de Ballore established in 1902 that, if f(z) is holomorphic through-
out the domain |z| < R, except for a finite number of poles of total multiplicity m, then
the sequence {f;,,(z)} converges uniformly to f(z) for |z| < p < R, except at the poles
of f(z). This theorem was generalized around 1930 to prove that the column sequences
{f1/msu(@)}, 4 > 1arealso uniformly convergent for |z| < p < R, provided that the sin-
gularities of f(z) on |z| = R are no worse than a multiple pole of order greater than u
or a branch point. Moreover, the u additional poles, not needed to represent the poles
of f(z) inside |z| < R, simulate the singularities on |z| = R with the first extra pole
representing the “strongest” of these singularities, the second the next strongest, and
SO on.

Since one can readily prove that [fL/M]'1 is the [M/L] approximant to f(z) if
f1/u(2) is an approximant to f(z), theorems concerning columns of the Padé Table and
poles in the z-plane translate directly into theorems concerning rows and zeros.

From this modest beginning we move on to a series of theorems established in
the 1960’s by Chisholm (1966) and Beardon (1968). These concern the convergence
of sequences {f}, 1(2)} when both L and M — <. If f(2) is meromorphic in a closed
disc |z| < R, the sequence {f},,/(z)} converges uniformly to f(z) in the double limit
L, M — oo provided that z is restricted to a second disc |z] < p < R from which small
neighbourhoods of the poles of f(z) and of any limit points of the poles of the approx-
imants have been removed. The radius p of the disc of convergence depends on the
ratio L/M and, in general, is less than R. However, equality with R can be guaranteed
if we are prepared to restrict ourselves to sequences for which L > kM where k is a
number > 1 that depends on both the value of R and the identity of f(z).

While helpful as an aid to our intuition, these theorems do little to meet our theo-
retical needs. For mathematicians and physicists alike, the diagonal and paradiagonal
sequences are much the most important elements of the Padé Table. This importance
stems in large part from certain properties which are uniquely associated with diag-
onal approximants. For example, they can be shown to be invariant under mappings
of the form w = 2%, a, c and d constants.

Thus, it suffices to establish convergence in a restricted domain since one can
immediately extend it in size by means of one of these mappings. Further, diagonal
approximants can be shown to be unitary in the sense that if f'(z) = f*(z), then
f;,/ v@) = [fyn(@ ]*. This is a critically important property in quantum mechanical
applications. So, what we really need are convergence theorems that apply specifically
to diagonal approximants and cover the full range of analytic functions.

The results of numerical experimentation suggest that the boundary of the do-
main of convergence of a diagonal sequence should be determined only by the loca-
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tion of the non-polar singularities of the function it represents. However, very little
progress has been made toward proving this assertion for more than a few special
cases which fortunately include Stieltjes functions.

To conclude this brief survey of Padé convergence theory, we state the theorem
that applies to Stieltje’s functions. Given our discussion of numerical experience with
approximants, it contains no surprises.

Theorem: Let > cm(-2z)™ be a series of Stieltjes. If the series is convergent with a
m=0
radius of convergence R, then any sequence of [M + J/M], ] > -1 Padé approximants

to the series converges in the cut plane (—oo < z < -R) to the function f(z) defined
by the series. If the series is divergent, then any sequence of [M + J/M], ] > -1 Padé
approximants converges to an analytic function in the cut plane (-oo < z < 0). If, in

addition, " (cm ) ™V diverges, then all the sequences tend to a common limit f(z)
m=0
which possesses a Stieltjes representation of the form given by (7.3.9) and (7.3.10) and

an asymptotic expansion about z = 0 given by the original series.
The proof of the various parts of this theorem is the subject of an entire chapter of
Baker’s 1975 monograph on Padé approximants.

7.5 Type Il Padé Approximants

As an alternative to defining Padé approximants by means of the value of a function
and its derivatives at a single point, one can build approximants that contain infor-
mation at two or more points. An especially useful case arises when we use only the
value of the function (and not of any of its derivatives) at an appropriate number of
points. These are called Padé approximants of the second type or type II.

Definition: Let z1, z», . . . zy be N complex numbers and f(z) be an analytic function
which takes the values f(z;) at these points. We define the [L/M] Padé approximant of
type Il to f(z) to be the ratio of two polynomials in z,P; (z) and Qy(z) with L+ M = N-1,
which takes the values f(z;) at z = z;,

_ P
fL/M(Z) - Qu(2)
fim(z) =f(z), i=1,...N. (7.5.1)

Type Il approximants provide an extension of the Lagrange or polynomial method
of interpolating between discrete points in the same way that their type I counterparts
extend the Taylor or polynomial approximation of functions known only in the neigh-
bourhood of z = 0. They are unique and one can prove (see, for example, J. Zinn-Justin,
Phys. Reports 1C, No. 3 (1971)) that they possess essentially the same properties as do
approximants of the first type, including convergence in the case of approximation of
Stieltjes functions.
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The interpolation provided by type II approximants is both more efficient and

more effective at analytic continuation outside the region of the points z; than that
given by a Lagrange polynomial approach. Once again this is due to the capacity of
Padé approximants to replicate the poles and simulate the non-polar singularities of
the functions they approximate.
Example: If one builds the type II Padé approximants to tan z using values corre-
sponding to z real and in the range —-71/2 < z < 71/2, one finds that the lowest orders
give the nearby poles and zeros of tan z and that by increasing the order (number of
points), more and more poles and zeros are successfully replicated. Moreover, this re-
mains true even if one contracts the range of z to —71/4 < z < /4 where tan z is well
away from any of its poles and so is a relatively slowly varying function (in fact, it
resembles a straight line there).

Another interesting application of type II approximants is in the summation of
numerical series. If we have

S= Z Um, (7.5.2)
m=0

N
we can treat the partial sums Sy = > um as functions of %,
m=0

Sv=f <%) say,
so that the sum of the series is
S = f(0). (7.5.3)

We can then compute S by extrapolating from f(1), f (3) ,f (3) , ... to f(0); that is to
say, by analytically continuing f(z) to z = 0.
Example: Consider the series
— 1
$=> 2
m=0

which is known to converge slowly. Using the first N+ M + 1 partial sums as input, we
can build the [N/M] type Il approximant to f(z) and thus get an estimate of f(0).
The first three partial sums are

Si=f1)=1 S,=f (%) =1.25 S3=f G) =1.361.

These yield the approximant estimates
fio0© =1 figy(0) = 1.5  fiy;1(0) = 1.65.

The exact value is f(0) = S = m? /6 = 1.645 . ... Thus, convergence has been acceler-
ated in a quite remarkable way; while the partial sums themselves give a very crude
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estimate of S, using the same information as input for the [1/1] Padé approximant
yields an estimate that is accurate to three significant figures.

We conclude with a reference to the use of type Il approximants in the solution of
algebraic equations. Suppose that we wish to solve the equation F(z) = 0. We begin by
determining the values F1, F,, F3 assumed by F at the three points z1, 2>, z3, respec-
tively. Next, we build the type II approximant, Fﬁ}”(z), which has the same values F;
forz = z;,i = 1, 2, 3. One can immediately read off the zero z, of Fﬁ}u which gives a
first estimate of a zero of F(z). Using the actual value F, = F(z,), we repeat the process
using F», F3, F4 and the points z;, z3, z4 as input and determine Fﬁ}l](z). Its zero is a
second estimate of the zero of F(z). Evidently, this can be repeated until we are satis-
fied with the degree of convergence of our estimates yielding, if it works, a remarkably
simple method of solving our original equation. The question of how well it works has
been addressed by Zinn-Justin who shows that the rate of convergence from a distance
is quite fast and that once we are close, it is exponential; if we are within an error € of
the zero at some point in the process, a further iteration will bring us within an error

£3. Thus, in two steps we can go from an error of 10% to one of 1 part in 107°,



8 Fourier Series and Transforms

8.1 Trigonometrical and Fourier Series

Definition: A function f(x) is said to be periodic if it is defined for all real x and if
there is some real number T such that f(x + T) = f(x). The number T is then called the
period of f(x).
Examples: The sine and cosine functions have period 2/ and along with constants,
which have arbitrary period, are the simplest periodic functions.

If it converges, a trigonometrical series of the form

% " Z(a,, COS NX + by, Sin nx) (8.1.1)
n=1
where ag, ai,...,an,..., b1, bn, ... are constants, has period 2 also. The rep-

resentation of a function f(x) by such series was first investigated by Fourier in the con-
text of heat conduction problems. Subsequently it was found that these series have an
important role to play in the theory of functions of a real variable which is the reason
for our interest in them.

Joseph Fourier (1768-1830) was a French mathematician and physicist whose early
career advancement resulted as much from his active participation in the French Rev-
olution and support of Napoleon Bonaparte as it did from the success of his research.
Nevertheless, he is remembered for initiating the study of Fourier series and for discov-
ering the law of conduction that is named after him. He is also generally acknowledged
to have discovered the greenhouse effect.

Suppose that the series (8.1.1) converges uniformly to the function f(x) :

fx) = % + Z(an CoSnx + ppsinnx), -m<x <. (8.1.2)
n=1

We may multiply by cos mx, where m is a positive integer, and integrate term by term

from -7 to 7 to obtain

g
a

/f(x) cos mxdx =70 /cos mxdx

-
n n

+>  |an / cos nx cos mxdx + by / sin nx cos mxdx
n=1 - -1
Since cos nxcos mx = % cos(n + m)x + % cos(n - m)x and sin nx cos mx = % sin(n +
m)x + 3 sin(n — m)x, we have the orthogonality relations

m

/ { 0 for n#m
€os nx cos mxdx =
mfor n=m

-

[ 52Tl © 2014 Leslie Copley
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n
/sin nxcosmxdx =0 for all m,n
-

n

/ 0 for m#0
cos mxdx =
2 for m=0

-

Applying these, we find

1
o =_ /f(x)dx and

n
am =% /f(x) cosmxdx, m=1,2,.... (8.1.3)
-1

Similarly, multiplying (8.1.2) by sin mx, integrating term by term and using the
orthogonality relation

n

. . 0 for n#m
sin nx sin mxdx = R
m for n=m

-

we find
s
bm = %/f(x) sinmxdx, m=1,2,.... (8.1.4)
-7

Equations (8.1.3) and (8.1.4) are called the Euler formulae for the coefficients and the
set of numbers {am, b, } which they determine are called the Fourier coefficients of
f().

There is no a priori reason for supposing that a given function can be expanded

in a uniformly convergent trigonometrical series. Therefore, the process we have just
carried out is not a proof that the coefficients of a trigonometrical series representation
of f(x) are necessarily those determined by the Euler formulae. So, instead of starting
with the series and the presumption that it has a certain property, we start from the
function, calculate its Fourier coefficients, and determine the properties of the series
that can be formed with them.
Definition: If we are given a function f(x) that is integrable over the interval - < x <
71, then the integrals in (8.1.3) and (8.1.4) that define its Fourier coefficients {am, by, }
exist. The trigonometrical series of the form (8.1.1) that is constructed using these co-
efficients is called the Fourier series of f(x).

The question which must be addressed now is whether the Fourier series of an
arbitrary function f(x) converges and if it does, whether its sum is f(x). Because the
sum of the series, if it exists, has period 277, we use only the values that f(x) assumes
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in the interval -1 < x < m; outside this interval we define it by means of periodicity,
f(x £ 2m) = f(x) , which gives us the periodic extension of f(x).
Examples: Consider the function x2 . Its Fourier coefficients are

m

1/xzdx=grr2
b1 3

-

ao

n
1/xzcosnxdx=(—1)”i2, n>o0
Jre n

-

Q
B
Il

n
bn = %/x2 sin nxdx = 0.

-

Note that the sine coefficients are all zero because x? is an even function of x ; similarly,
all cosine coefficients vanish for odd functions of x.
The corresponding Fourier series

fx) = n—z + i(—l)" A COS nx
3 o= n?2

is easily shown to be uniformly convergent for all values of x. As shown in Figure 8.1,
its sum function, f(x), reproduces the values assumed by x* on -7 < x < 7 and by its
periodic extension outside that interval.

Figure 8.1: The Fourier series representation ofx? .

Next we consider the discontinuous function

f(x)={ -1, x<0,
+

1, x>0.
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This is an odd function so there are no cosine terms in its Fourier series, a, = 0, n > 0.
As for the sine terms, the coefficients are

n

A = od
bn=2/sinnxdx={ ar> 1= o0dd,
n 0, n=even.

-1
The corresponding series
4 1 .
— = sinnx
n n%d n
converges to
- +1forO<x<m,
- -1for-m< x<0,and
- Oforx=-m,x=0,and x = +m.

In other words, the Fourier series representation of f(x) reproduces it throughout the
interval except at the point of discontinuity, x = 0, and at the end-points of the inter-
val which are points of discontinuity for the periodic extension of f(x). At these three
exceptional points, the series converges to the mean of the right- and left-hand limits
of (the periodic extension of) f(x). This behaviour at the points of discontinuity is a
general feature of Fourier series.

The points of discontinuity also result in the convergence being non-uniform in
any interval that includes one of them. This is exhibited in Figure 8.2 which shows
successive partial sums. Notice the overshoot on either side of the points of disconti-
nuity. This too is a general feature of Fourier series and is called Gibbs’ phenomenon.
The overshoot remains finite as more and more terms are added and tends to the value
0.18 in the limit of infinitely many terms.

Figure 8.2: The first three partial sums of the Fourier series representation of a step function.

Finally, it is interesting to note that if we set x = 71/2 in the Fourier series, we have

f(g):1=%(1—%+%—+...>
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or,

11 1 )"
35577 T T g

which is a series summation derived originally by Leibnitz using a geometrical argu-
ment.

8.2 The Convergence Question

There is a formal connection between Fourier series and Laurent series. Suppose that
f(z) is a single-valued analytic function, holomorphic in the annulus R; < |z| < R> .
Then

f@=3 ez,

where
1O

n= T
27Tl C(YHI

d¢

and we can choose C to be the circle |{| =7,R1 <7 <R .
Putting z = r e'?, we have

f(r ei@) = Z An einG,

Nn=—oo

where

g
_i ipy ,—ing
An = 2ﬂ/f(re Je " dg.
-

Combining terms pair wise for each value of |n|, we can rewrite the Laurent expansion
as the Fourier series

f(r e%) = a0+ Z {(An +A_p)cosnf+i(A,-A_,) sin ne} , (8.2.1)
n=1
where
n n
Ao = % /f(re“”)dqo, An+tAn= %/f(re""’)cos npde, (8.2.2)
- -

n
i(An—A-n) = %/f(rei"’)sinn(pd(p.
-1

It follows from Laurent’s Theorem that such a Fourier series converges uniformly to the
function it represents. However, in general, one wants to represent a much larger class
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of functions than would meet the requirements of Laurent’s Theorem. To see just how
large a class admits such representation, we need to introduce some new concepts.
The first of these is the concept of bounded variation.

Definition: Let f(x) be defined on a < x < b and let x4, X2, ..., xn, be a set of points
on that interval such that a < x; < x2 <... < xp < b, as shown in Figure 8.3. Then,
the sum

If(a@) - f(x1)| + [f(x1) = fF(x)| + ... + |[f(xn) - f(D)]

is called the variation of f(x) on the interval a < x < b for the set of subdivisions
X1, ..., Xxn . If the variation has an upper bound , M, independent of n, for all choices
of x1, x2, ..., xn, then f(x) is said to be of bounded variation on a < x < b.

Figure 8.3: A set of points is introduced on the interval a < x < b to define a corresponding varia-
tion of the function f(x).

Examples: Two functions which are not of bounded variation are f(x) = + and f(x) =
sin £ on any interval that encloses x = 0; see Figure 8.4. Examples of functions which
are of bounded variation include piecewise continuous functions with a finite number
of maxima and minima. A function f(x) is piecewise continuous on a finite interval
a < x < b if the interval can be divided into finitely many sub-intervals, in each of
which f(x) is continuous and has finite limits as x approaches either endpoint of the
sub-interval from the interior.

We can now state without proof the theorem that establishes the conditions for
point by point convergence of a Fourier series.
Fourier’s Theorem: Let f(x) be defined arbitrarily on -7 < x < 7 and defined for all

n
other x by its periodic extension, f(x + 271) = f(x). Also let f(x) be such that [ f(x)dx

exists, and if this be an improper integral, let it be absolutely convergent. The7;1, if xis
an interior point of any interval a < x < b in which f(x) is of bounded variation, the
Fourier series of f(x) converges at x to the sum 3 [f(x +0) + f(x — 0)]. Moreover, in every
closed subinterval in which f(x) is continuous, the convergence is uniform.
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Figure 8.4: Two functions which are not of bounded variation in any interval containing x = 0.

A proof of the theorem can be found in E. C. Titchmarsh, Theory of Functions, Oxford
University Press, New York, 1964.

As we noted with the example in the preceding Section, whenever f(x) has a finite
or step discontinuity the series will converge to the mean of its values on either side
of the point. In particular, if a < -mand b > 7, the Fourier series will converge to
%[f(—n +0)+f(m—0)] at x = +; thus, the series will not reproduce f(x) at these points
unless f(-m) = f(7).

While not terribly stringent, the conditions imposed on f(x) in this theorem can
be relaxed even more if we replace the requirement of pointwise convergence by
that of convergence in the mean which is a form of convergence that is perfectly
adequate for most physical applications. To introduce the concept, however, we need
an additional definition.

Definition: The integral

b
/ [f(x) - g(x)]* dx (8.2.3)

for two functions f(x) and g(x) defined and square integrable on a < x < b is called
the square deviation of f(x) and g(x).

Evidently, a square deviation is a measure of how well one function “fits” another
over the interval in question. We shall use it to meet our need for a more subtle form
of convergence.

Definition: A sequence of functions {f,(x)} is said to converge in the mean to a func-
tion f(x) on an interval a < x < b if the corresponding square deviation of f(x) and
f,(x) tends to zeroas n — oo :

b
lim / [F00 - £, (02 dx = 0. (8.2.4)
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Convergence in the mean does not imply that lim f,(x) = f(x) ateach pointofa < x <
n—oo

b. On the contrary, the limit of the sequence of functions may differ widely from f(x)
on a discrete set of points distributed over the integration interval and still produce a
zero square deviation.

We shall now make use of square deviation and convergence in the mean to fur-
ther our understanding of the representations of functions that are offered by trigono-
metrical series. Suppose that we have a square integrable function f(x) defined on
-1 < x < mmand that we want to approximate it by the partial sum

n
A .
Sp(x) = 70 + g,l (A cos kx + By sin kx) (8.2.5)

where the coefficients Ay, k=0,1,2,...,n,and By, k=1, 2,...,n, can be adjusted
to achieve an optimal fit. In fact, we shall now try to determine what set of values for
{A, By} will minimize the square deviation

Dy = / [F00) = $,00 1 dx. (8.2.6)

Straightforward application of the orthogonality of the functions {cos kx, sin kx}
yields

D= [IF0OT dx+ { 5 a3 -0 [ Fdx
+Z A} —2Ak/f(x)coskxdx
k=1 o

n s
+S B 2By / £00) sin kxdx
k=1 o
Using the Euler formulas for the Fourier coefficients of f(x), we can rewrite this as
k=1

ﬂ n
Dn = /[f(X)]2 dx + g{A(Z) -2Ao00ao} + HZ{Ai -2 Ay ay+ B -2 By by} -
-

But,
Az -2 Arax = (Ax-ax)*—a; and Bi-2Bibx=Br-br)*-bi.

Thus,

Dy = /[f(x)]2 dx-nd L a%+2[ai+bi]
i 2 1
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ﬂ{;(Ao—ao )’ +Z[(Ak_ak)2 +(Bk_bk)2]} .

k=1
The last line in this expression is positive-definite:

1 n

540 -ao )2+ ;[(Ak —ar)? +(Bx-bx)’1 >0

Therefore, the square deviation is minimized if the trigonometrical series coefficients
Ay and By, are chosen to be the Fourier coefficients of f(x) :

[Dn Tnin = / [fC))* dx -~ {; as+y lai+ bi]} : (8.2.7)
i k=1

Since D, > 0, we have

n

% ak+bk /[f ] dx.

k=1

This holds for any n and as n increases, the sequence on the left is monotonically
increasing but bounded by the integral on the right . Therefore, it possesses a limit as
n — oo and the limit satisfies

s
2 oo
1
D> lainil < 1 [0 dx (8.28)
k=1 -
which is known as Bessel’s inequality.
Suppose that we now require that the square deviation tend to zeroas n — oo :
Mm [Dn Jmin = O-
By definition, this would mean that the Fourier series

oo
a .
204 E [an cos nx + p, sin nx]

2
n=0

converges in the mean to f(x). It also means that the above inequality becomes the
equality

ag < 2 1 2
DY lai+bil - [1F00T dx (8:29)
k=1 -

which is known as Parseval’s equation.
Whenever Parseval’s equation holds for a certain class of functions f(x), we say
that the set of trigonometrical functions {cos nx, sin nx} is complete with respect to
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that class and Parseval’s equation is called the completeness relation. The question
that we now want to answer is what is the largest class of functions for which com-
pleteness has been established and hence, for which convergence in the mean of their
Fourier series is assured. The formal answer, known as the Riesz-Fischer Theorem,
makes use of a form of integration that differs somewhat from Riemann integration.
Called Lebesgue integration, it is defined for all bounded functions, including those
that may be discontinuous on an infinite but enumerable set of points in the interval
of integration, and even for some unbounded functions. Thus, the class of Lebesgue
integrable functions is much larger than the class of functions which are of bounded
variation or which are Riemann integrable. Nevertheless, when both the Lebesgue and
the Riemann integrals of a function exist, they yield identical results. Moreover, when
two functions are equal almost everywhere, that is to say everywhere except on an
enumerable set of points, they have the same Lebesgue integral. Therefore, in prac-
tice, we can usually proceed by using Riemann integration techniques without regard
to discontinuous or even, in some circumstances, unbounded behaviour provided that
it is restricted to an enumerable point set.

Theorem: The set of trigonometrical functions {cos nx, sin nx} is complete with re-
spect to those functions f(x) that are (Lebesgue) square integrable on the interval
-1 < x < mr and hence satisfy

/[f(x)]2 dx < oo,

Thus, the Fourier coefficients {an, b, } for all such functions satisfy Parseval’s equa-
tion and the corresponding Fourier series converge in the mean to the functions they
represent.

This completes our discussion of the “convergence question”.

8.3 Functions Having Arbitrary Period

Periodic functions in applications rarely have period 277 but the transition from period
27 to any period T can be effected by a simple change of scale. Suppose that f(t) has
period T. Then we can introduce a new variable x such that f(t), as a function of x,
has period 27 by setting x = Z—T"t. Hence, if f(t) has a Fourier series, it must be of the
form

2n

fy=f (l> = % + i(an COS NX + b, sin nx), (8.3.1)
n=1

with coefficients given by the Euler formulas:

n n
1 T 1 T
do = ﬂ/f (ﬁ) dx, an= E/f <E> cos nxdx,
-

-
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n
1 T\ .
bn = p /f (ﬂ) sin nxdx.
-

Since x = ZT”, we have dx = Z—}Td t and the interval of integration becomes

— I <t< I .
2 2
Consequently, the Fourier coefficients of the periodic function f(t) of period T must be
given by

a0 —% / FOdt

dn

Il
~l

-
~~
=

(=}

QU

~

by = = /f(t)sin%dt, n=1,2,3,.... (8.3.2)

Furthermore, the Fourier series (8.3.1) with x expressed in terms of t becomes

_ o - 2nmt . 2nmt
) = S5+ ; (an cos —— + by sin T ) . (8.3.3)

The interval of integration in (8.3.2) may be replaced by any interval of length T:
0 <t < T, for example.

Vit

Figure 8.5: Half-Wave Rectifier

Example: Suppose that we wish to Fourier analyze the outcome of passing a sinu-
soidal voltage V, sin wt through a half-wave rectifier that clips the negative portion of
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the wave. The rectified potential will continue to have period T = % but will have the
new functional form (see Figure 8.5)

V(e = 0 for - T/2<t<0,
Vosinwt for 0<t< T/2.

Since V = 0 when -T/2 < t < 0, we obtain from (8.3.2)

ap = Vo sin wtdt =

RS
o\g

2 Vo
n ’

and

lw

/[sin(l +n)wt + sin(1 - n)wt]dt

Vo sin wt cos nwtdt = @ Vo

Q
=
Il
ale
o\g

When n = 1, the integral on the right is zero, and when n = 2, 3, ..., we obtain

n=

_wVo [_ cos(1 +n)wt  cos(1 - n)wt} mlw
0

21 1+nw 1-nw
_ Vo (1-cos(1+m)m . 1-cos(1-n)
Y 1+n 1-n )

When n is odd, this is zero; for even n it gives

Vo 2 2 2 Vo
- Yo = =2
an 2n<1+n+1—n> (n-1)n+1)r’ n=2,4

In a similar fashion we find that »; = Vo /2 and p, = Oforn = 2, 3, ... . Consequently,

[/O 2 Vo 1 1
V() = L2 4 X0 _Z2Y0 (= 2 = .
(3] 04 sin wt (1 3cos cut+3 5cos4a)t+ >

In many applications the independent variable is distance x and the most intuitive
way to denote the period is to use 2L. In that case the formulas read

fx) = 70 + i [an cos X |} sin nLﬂ} , (8.3.4)

n=1

with

L L
1 nmx 1 . hmx
an =t /f(x) cos de’ bn=71 /f(x) sin de. (8.3.5)
L -L
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8.4 Half-Range Expansions - Fourier Sine and Cosine Series

We have already seen that certain types of functions have particularly simple Fourier
series. If f(t) is an even function, f(-t) = f(t), of period T then its Fourier sine coeffi-
cients p, = 0 for all n > 1 and its Fourier series is a Fourier cosine series

_ Qo = 2nmt
f(t) = 5t Z an€oS — (8.4.1)
n=1
with coefficients
T/2 T/2
a == [ fodt, an=2 [ fOcos 2 at, n=1,2,3,.... (8.4.2)
T T T
0 0

On the other hand, if f(¢) is odd, f(-t) = —f(t), its Fourier cosine coefficients a, = 0 for
all n and its Fourier series is a Fourier sine series,

= . 2nmt
f®)=  basin = (8.4.3)
n=1
with coefficients
T/2
4 . 2nmt
b= / fsin 22 at. (8.4.4)
0

Suppose that we have a function f(t) that is defined only on some finite interval
0 < t < 1. If we want to represent it by a Fourier series, we now have three distinct
representations to choose from:
— aFourier cosine series of period T = 27,
— aFourier sine series of period T = 21, or
— afull Fourier series of period T = .

As before, the latter series will converge to the periodic extension of f(t). The first
two , however, are half-range expansions that converge to periodic extensions of the
functions f, (t) and f, (¢) respectively, where

| fo, o<t<t
fl(t)_{f(—t), -T<t<0

and

B fH, o<t<r
fz(t)_{ —f(-t), -T<t<0

The first of these is called the symmetric extension and the second, the antisym-
metric extension of f(t). Thus, as shown in Figure 8.6, the Fourier cosine series

f(t)=%+zancosn7ﬂt, 0<t<T (8.4.5)
n=1
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with coefficients

T
an = %/f(t)cos ndet, n=0,1,2,..., (8.4.6)
0

converges to the periodic symmetric extension of f(t) of period T = 27, while the
Fourier sine series

= . nmt
f®)=3 basin——, O<t<t (8.4.7)
n=1
with coefficients
T
bn = %/f(t) sin ndet, n=1,2,..., (8.4.8)

0

converges to the periodic antisymmetric extension of f(t) of period T = 27. The
series (8.4.5) and (8.4.7) are called half-range expansions of f(t).

A
fin)
»
T
[y(1) A
) 2
T T
L) A
>

~
-

Figure 8.6: Periodic Extensions

Example: Consider the function f(¢) = £ + 1. Its full-range Fourier coefficients are

T
1 t 1 nrt
=1 == 4= 2t dt =
ao > dn T/(2T+2)cos Tdt 0,

-T
T

1 t 1\ . nmt, (-1)"!
bn‘?/(i*i)smT‘“‘T’

-T

and the Fourier series reads

N

1 1) . nat
t)==+ sin—, -T<(t<T.
CREDMS L E
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A
) 2
T T
A
>
T T
A
>
T T

Figure 8.7: The Fourier, Fourier Sine and Fourier Cosine Series for f(t) = % + %

The function’s half-range Fourier sine coefficients are

T
2 t 1\ . nmt 1-2cosnm
bn‘?/(zr 2>Sln7dt_T’
0

and its Fourier sine series reads

e _ _1\n
f(t)=2$sinn7m, o<t<r.

n=1

Finally, the half-range Fourier cosine coefficients are

T
a _3 a _2 L+1 cosn—mdt cosnm -1
0= 21 2 T n2m?2

and so the Fourier cosine series reads
3 2 1 nnt
f(t)=Z —ZZ—Z 0<t<T.
n=1,3

All three series are shown in Figure 8.7 .

8.5 Complex Form of Fourier Series

As we noted at the beginning of Section 8.2, Fourier series can also be expressed in a
complex form:
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fx) = % + Z[an COS X + by, sin nx]

n=1
_ao had einx + e—inx einx _ e—inx
‘7+; [a” 2 b
_ Qo = n—ibn inx An+tibn _—inx
= 5 + - |: 5 e + 5 e :|
or,
fO)=> " cne™ (8.5.1)
n=-oco
where
%, n=0
an -1
=y 5P nso (85.2)
A +ib
URLLITRYY

From the formulas for a, and p,, we find the corresponding Euler formula for cy:
n
_ i —inx
e = o / ) e ™ dx. (85.3)
-

Alternatively, this formula can be obtained by multiplying the series (8.5.1) by e ™,
integrating, and using the (orthogonality) relation

n

/einx e—imx dx = { O’ n#m
21, n=m.

-

For an arbitrary period 2L and interval -L < x < L, (8.5.1) and (8.5.3) become

0= cne'™ (8.5.4)
with
L
Cn = %/f(x) e I'T dx. (8.5.5)
L

Example: Fourier series have important applications in connection with differential
equations. As an introduction we shall confine ourselves to an example involving an



196 —— Fourier Series and Transforms

ordinary differential equation. Applications in connection with partial differential
equations will be considered in a subsequent chapter.

The forced oscillations of a body of mass m on a spring are governed by the equa-
tion

m=—= +r— +kx = f(t)

where k is the spring constant, r is the damping coefficient, and f(t) is the external
force. The general solution to this equation can be written (see Chapter 9) as the gen-
eral solution to the associated homogeneous equation

d>x dx

+r— +kx=0

mae Trar

plus a particular solution of the non-homogeneous equation. For the homogeneous
equation, substitution of the ansatz x = e?! results in the characteristic equation

(mp?+rp+k)e’t =0

with roots
-r+Vr2-4mk
p=—————.

All real physical systems have positive damping coefficients and so their homoge-
neous solutions are either damped sinusoidal functions or decaying exponentials:

c1e TP eos \/kIm - 12 [4m2t + 2 e P sin /k/em - 12 [4 m2t

or,
ciexp | TF r? —4mkt P e Vr? —4mkt
1EXP 2m 2€XP 2m )

To determine a particular nonhomogeneous solution, we note that substitution
of the ansatz
x(t) = X '

with an undetermined coefficient X gives
m(iw)? X e +r(iw)X e +kX &' = Ae'™",
o,
B A
-mw? +irw + k
and hence, leads immediately to the general solution

A

iwt
metro ke taxnrax®

x(t) =

where x1(t) and x;(t) are the homogeneous solutions noted above. The last two terms
are called “transients" and approach zero as time increases. Thus, the solution decays
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to a “steady state” sinusoidal response oscillating at the same frequency as the driving
term A e!“! . This oscillation never dies out as long as the driving force is applied; its
amplitude X is fixed.

Now let us suppose that the driving force f(t) is not sinusoidal but that it is peri-
odic. The steady state response of the system will again mirror the periodicity of the
imposed force and to find an explicit expression for it we simply assume Fourier ex-
pansions for f(t) and x(t) :

ft) = Z Ane™ and x(¢) = Z cne™ w=2m/T.
n=—oo n=-oo
Assuming further that the series for x(t) can be differentiated term by term the neces-
sary number of times, we can substitute these two series plus

oo

dx . inwt dZX . 2,2 inwt
E=mecne and W:Z(_n w?) cp e,
n=-oo

n=-co

into the differential equation. Then, invoking orthogonality, we can equate the coeffi-
cients with the same exponential e’ on both sides. The result is

(-n*w’ m+inwr+k)cn = An

or,
An/m

Cn = -
" (W} -n? w?) + 2Anwi

where w2 = k/m is the natural frequency of the oscillator and A = r/2m is the sys-
tem’s damping factor. It only remains to determine the Fourier coefficients for f(t) by

applying
T/2

A= [ Foea
-T/2
Thus, we obtain the steady state solution as a superposition of sinusoidal functions
with frequencies that are integral multiples of 271/ T, T being the period of the driving
force.

If the frequency of one of these functions is close to the natural frequency wg of the
system, a resonance effect occurs because of the near cancellation in the denominator
of cy; that function then becomes the dominant part of the system’s response to the
imposed force. To offer a concrete illustration of this, let m = 1 (kg), r = 0.02 (kg/sec),
and k = 25 (kg /sec?), so that the equation of motion becomes

2
ZTZ‘ + 0.02% +25x = f(D)

where f(t) is measured in kg - m/ sec? . Furthermore, let

t+mf2 for —m<t<O,
£(0) = /
~t+m/2 for O<t<m.
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with f(t + 27) = f(t). Representing f(t) by a Fourier series, we find

0 e n
An= L /(t+ n/2)e ™ dt + /(—t+ nf2)e™dt| = 1 /(—t+n/2)[e‘i”t+eint]dt
2 2n
—7 0 0
or,

n
1 1
An=— /(—t+ n/2) cos ntdt = ﬂ[l -(-1)",
0

and thus,

oo

_ 2 1 int
f(t) I Z — € .
n=-oo,n odd

From the preceding analysis we know that the oscillator’s response to this force
will be a displacement x(t) with Fourier coefficients

An/m

——— n=#x1,+3,%5,...
(w3 - n?) + 2Ani

Cn:

where w3 = k/m = 25,A = r/2m = 0.01. Thus,

2 (25-n%)-0.02ni
n?m (25 - n2)? +(0.02n)>’

which leads directly to

oo

x(t) = Z [an cos nt + b, sin nt]
n=1,3,5,...

where

4 25 - n? 0.08 1
=2 2 7 and b, = — 2 2"
n2 7 (25 - n2)? +(0.02n) n2 7 (25 - n2)? +(0.02n)

dn

The amplitude of each (complex) mode of oscillation is

1 2 1
|Cn\:§va%+b%=

nn V@5 -n2y +0.02n)2

Some numerical values are
|c1]=0.0265,|c3|=0.0044,|cs5|=0.2550,|c7| = 0.0006, | c9 | = 0.0001.

Thus, the cancellation in the denominator of | cs | results in the n = +5 modes domi-
nating and in fact, since as = 0, results in the sin 5¢ term dominating the Fourier series
for x(t). This means that the steady state response of the system is almost a pure sine
wave with frequency five times that of the driving force.
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8.6 Transition to Fourier Transforms

As we noted in the context of analytic continuation, integral representations of func-
tions are often more useful than series representations. Typically, they assume the
form of an integral transform (see Section 5.4)

ﬂn=AKmogoa

where the function K(z, {) is called the kernel of the representation. We noted further
that a commonly used kernel is named after Fourier, has the functional dependence
K(z,{) = i e ¢ and corresponds to a choice of contour C that runs along the entire
real axis, —eo < { < oo. The representation that results is

N Y (e
F@) - 5 [ st
The similarity in both name and form to the representation afforded by a complex
Fourier series suggests that there ought to be a connection and, at the heuristic level
at least, there is.
Our starting point is equations (8.5.4) and (8.5.5):

f00=>" e, -L<x<l,

n=—oo
L
_ % / £00 e dx. (8.6.1)
-L

If we now define
kn = %T and Ak =
these equations can be rewritten as

T
z = kn+1 _km

oo

fO) =" culica) €™ * Ak with

Nn=—oco

crlkn) = = /f(x)e Tkn X gy,

Then, taking the limit as L — oo, we have

C(k) = hm cr(k) = /f(x) e ™ dx and

£0o) = / (k) e dk
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which comprise a Fourier transform pair. By modern convention, the Fourier trans-
form pair is defined by replacing C(k) by F(k) = v2nC(-k); thus,

1 ik . . .
F(k)= — x) e"* dx which yields the representation
0= / () y p

£0o) = \/% / F(K) e ™ dk. 8.62)

The function F(k) is identified as the Fourier transform of f(x) and f(x) as the inverse
Fourier transform of F(k); symbolically, we write

F(k) = F{f()} and f(x) = F {F(k)}.

By construction, the representation of f(x) that this affords is intended to be valid for
all real x, —oo < X < oo, and periodicity is no longer a consideration.

Not surprisingly, each theorem on the convergence properties of Fourier series
has a Fourier transform counterpart. Thus, the pointwise convergence of (8.6.2) is ad-
dressed by the Fourier integral theorem.

Theorem: Let f(x) be absolutely integrable on —oco < x < oo. Then,

o+ 0+ flx-0) = - / dk / dg f(&) €D (8.6.3)

—o0

provided that f(&) is of bounded variation on an interval a < ¢ < b that includes the
point £ = x. Moreover, if the function is continuous on this interval, the integral on
the right hand side of (8.6.3) converges uniformly to f(x) fora < x < b.

Notice that this theorem does not reflect the striking symmetry between f(x) and
its Fourier transform F(k); the properties of F(k) are not even mentioned. While a
function and its Fourier coefficients are quite different mathematical objects, a func-
tion and its Fourier transform are objects of exactly the same type and so the reci-
procity implied by the equations in (8.6.2) is of considerable interest. It is addressed
by Plancherel’s theorem which, as the Fourier transform counterpart of Parseval’s
theorem, also addresses sufficient conditions for convergence in the mean.
Theorem: Let f(x) be (Lebesgue ) square integrable on —oco < x < oo, Then, the integral

L
Fk, L) = % / £00) e dx
1

converges in the mean as L — oo to a function F(k) which is itself square integrable
on —oo < k < oo, Furthermore, the integral

L
_ 1 —ikx
Fo 1) = o / F(k) e ™ di

L
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converges in the mean to f(x) and

/ IfF()|*dx = / |F(k)|*dk. (8.6.4)

8.7 Examples of Fourier Transforms

Example 1. Consider the function f(x) = . From equation (8.6.2) its Fourier

a
o a +x?
transform is given by

F(k) =

1kx
F / aZ+x2 +x2

This can be evaluated by means of the calculus of residues. The function f(z) =
ﬁ satisfies the conditions specified in the theorem of Section 3.3.3 and so equa-
tions (3.3.11) and (3.3.12) apply:

27ti 3" Res[f(z) €], k>0,

ikx - +
/f(x)e dx = -27i Y Res[f(2) e**], k<o0.

There are simple poles at z = tia and the residues there are

ikz ikz Fka
e
Res |:ﬁ:| = .3
as+z 2=tia zZztia

+2ia’

z=tia

—ka
m e, k>0
FUO:\/Z.{ e, k<o
or, F(k) = \/Z e7lMla,

Verifying that equation (8.6.3)) holds, we note that

Thus,

oo

]é /F(k) —ikx dk — f ka ikx dk+/e—ka—ikx dk
V2T

0

1 1
2[ —ix a+1x] az+x2 =f00

as required.

Notice that if the parameter a is small, f(x) will be sharply peaked about x =
0; F(k) on the other hand will be relatively spread out on either side of its maximum
which occurs at k = 0. If a is large, the converse obtains: f(x) is flattened while F(k) is
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sharply peaked. This contrast in behaviour between the members of a Fourier trans-
form pair is characteristic and is the mathematical basis for the Heisenberg uncer-
tainty principle in quantum mechanics. We shall see it recur even more dramatically
in each of the next two examples.

Example 2. Suppose that we now take f(x) to be a Gaussian probability function:
fx)=e" "2, a = constant > 0. Its Fourier transform is given by

1 ikx—a x*

F(k) = /e' x-ax’ gy
V2

which, apart from the normalization factor ﬁ, is just Gauss’s Integral which was

evaluated in Section 3.3.6. That result gives us

1 2
F(k) = —— e K /4a
(k) e

which is also a Gaussian but one with a dependence on a that is the inverse of that
enjoyed by f(x) .

In quantum mechanics it is the squared modulus of the transform pair that has
physical significance; (|f(x)|?dx and |F(k)|>dk are the probabilities that a particle or
system of particles can be localized with position x and wave number k, respectively).
The function |f(x)> = e ¢ ** decreases from its maximum of 1 at x = O to a value

of latx == \/1271 Thus , we take its “width” to be Ax = \/% . Similarly, the width of

IF(K)|? = 2 e7/2%is Ak = 2/2a and so,

Ax - Ak =42 0(1)

which, as indicated, is a number of order 1.
Another common transform pair is composed of the functions

f(x)={ ﬁ, —al2<x<al2

0, |x|>a/2.
and
7 [2 sinak/2
1 i ikx _ isma
F(k)——m/\/ae dx = -k
-al2

In this case we can take Ax and Ak to be the distances between the central zeros
of |f(x)|* and |F(k)|?, respectively. Since the zeros are the same as the central zeros of
f(x) and F(k), we find Ax = a and Ak = ‘:1—” and so recover the relation Ax - Ak > 0(1).
Because Ax and Ak can be identified with an uncertainty in assigning to x and k their
most probable values, this has come to be called the (Heisenberg) uncertainty relation.
Example 3. As a final example, we shall consider a fairly typical function of time

0, t<0
t =
@ { e Tsinwgt, t>0
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Physically, this function might represent the displacement of a damped harmonic os-
cillator, or the electric field in a radiated electromagnetic wave, or the current in an
antenna, just to name three possibilities.

The Fourier transform of f(t) is

1 /T iwt 1 1 1
F(w) = S t dt = - .
) \/Zn/e maote 227 |w+wo+i/T w-wo+i/T
0

Once f(t) is identified, we can use Parseval’s equation (Plancherel’s Theorem) to
deduce a complementary physical meaning for F(w). For example, if f(¢) is a radiated
electric field, the radiated power will be proportional to |f(¢)|*> and the total energy

radiated will be proportional to [ |f ()|*dt. But, according to Parseval’s equation ,

this is equal to [ |F(w)|*dw. Thus, to within a multiplicative constant, |F(w)|* must

be the energy raaoiated per unit frequency interval .

Suppose that T is very large so that wo T > 1. Then, as happened with the resonat-
ing harmonic oscillator of Section 8.5 where one frequency or term in the Fourier series
dominated over all the others, the “frequency spectrum” defined by F(w) is sharply
peaked about w = + wq . For example, near w = wo,

1 1

F(U = = . )
(@) 2V2m w - wo +ifT

and,
1 1

87 (w - wo)?+1/ T2

When w = wo =1/T, the radiated energy |F(w)|? is down by a factor of % from its
peak value. Thus, the width of the peak at half-maximum, which is a measure of the
uncertainty in the frequency of the radiation, is given by I' = 2/ T. On the other hand,
T is the time for the amplitude of the oscillator or of the radiated wave to “decay” by
a factor of e™! and so, is a measure of their mean lifetime which, in turn, is a measure
of the uncertainty in the time of oscillation or of emission of the radiation. Thus, we
recover another (classical) uncertainty relation:
2
T

Flw)|* =

At-Aw=T- % > 0(1).

8.8 The Dirac Delta Function and Transforms of Distributions

A reordering of the integrations that appear in the statement of the Fourier Integral
Theorem (equation (8.6.3)) gives rise to a very suggestive result. Assuming continuity
for f(x), (8.6.3) reads

oo

f(x) = % / dk / dé f(&) e (8.8.1)

—oo
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which, after reordering, yields

£00 = / de F(&) 6(¢ - x) (8:8.2)
where
8(£ - x) = % / dk e (8.8.3)

At this juncture we have no idea about the legitimacy of reversing the order of in-
tegration and, given that the improper integral in (8.8.3) is not defined in any conven-
tional sense, it does look a bit questionable. Nevertheless, let us ignore such niceties
for the time being and focus on the intriguing fact that, if it does exist, §(¢ - x) is the
continuous variable generalization of the Kronecker delta function

5(m,n)={ (1)’ :;:

That is to say, just as 6(m, n) picks out the n'? term from a summation over m,

fa= Y fublm,n),
Mm=—-co
6(¢ - x) selects and delivers the value at £ = x of the function that multiplies it in a
summation over the continuous variable &.

A function with this property is called a Dirac delta function and was introduced
by Paul Dirac in his landmark formulation of quantum mechanics that unified the
earlier Heisenberg and Schrodinger pictures of quantum phenomena.

It is clear from (8.8.3) that the delta function depends only on the difference ¢ -
x and not on ¢ and x individually. Moreover, equation (8.8.2) tells us that the delta
function is normalized for, setting f(x) = 1, we have

1- / 8(£ - x)dE. (8.8.4)

This immediately raises the question of what §(¢ - x) “looks like” when it is plotted.
From equation (8.8.2) we see that the function f(&¢) can be modified anywhere except
at the point ¢ = x without affecting the result of the integration. This implies that
6(¢ - x) must be zero everywhere except in an infinitesimal neighbourhood of ¢ = x.
Equation (8.8.4) then suggests that

1=1lim / 8(¢ - x)d&
£—0
X-&
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and hence, that §(¢§ - x) — oo as & — x. In other words, we can think of the delta
function as having the mathematically ill-defined properties

0 forall & #x

oo for & =x. (885)

6(§-x) = {
Evidently, neither this “equality” nor equation (8.8.2) from which it was deduced can
be used as a formal definition of the Dirac delta function. Nevertheless, they do offer
an intuitive appreciation of what a delta function is as well as some idea of how to
make use of them.
Another aid for our intuition and one that takes us closer to a formal definition of
the Dirac delta function is to think of it as the limit of a sequence of functions that are
strongly peaked about ¢ = x and satisfy the condition

lim [ 6,6 - 0F(©)dg = £00 (386)

for all suitably behaved functions f(x). Such sequences are called delta sequences.
For notational convenience, we are now going to reverse the roles of the symbols
¢ and x and set ¢ = 0. Equation (8.8.6) then becomes

lim [ ,09f00dx = £0 (387)

where {§,(x)} is a sequence of functions that are sharply peaked about x = 0.
Some examples of delta sequences are:

B 0 for |x| >1/n
L 6"(X)_{ n/2 for |x|<1/n

2.2

2. 0= e
Vis

Vv .
n
¥ 0l =g e
_sinnx 10T g g0
4. 6n(x) = X = E_fn e dk,
1 sin® nx
5. 5n(X)= nr 2

By definition these all satisfy condition (8.8.7). We shall verify this for the first and
third sequences. Notice that the fourth sequence links us back to the Fourier trans-
form (8.8.3) that initiated our interest in the delta function.

Using the mean value theorem, substitution of sequence #1 into the integral on
the left hand side of (8.8.7) yields

1/n
2 n

[ satoreadx = [ Sroadx =2 - Sree)

-1/n
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Figure 8.8: §-sequence #1

where -1/n < x;» < 1/n. Clearly, as n — oo, x;n — 0 and so,
lim / 5,00 ()dx = £(0)
n—roco

as required.
In the case of sequence #3, the relevant integral is

)

n
/ ml+ n2 Xzf(x)dx

—oo

which admits evaluation by residue calculus. Provided that the continuation of the
test function, f(z), is meromorphic in the upper half-plane and that |f(z)| is bounded
as |z| — oo, we can use equation (3.3.4) and write

)

| Rt W= 2mi S Resls, )

ml+

—oo

where > denotes the sum over all the poles of §,(z) and f(z) in the upper half-plane.

"

However, since lim §,(z) = 0if z # 0, the contributions to the sum from poles of f(z)
n—oo

will vanish in the limit. Thus,

oo

. n
nh_)m; nwf(x)d)(— lim ZmRes[ I n2 sz( )} .
or,
n 1

n—eo | 711+ n2x2 m2n2 L noe

f(x)dx—hmme( )E 1 —11mf< )=f(0)
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as required.
The latter sequence often appears in physical applications with n replaced by %
so that §,(x) assumes the form

e 1 1 1 1
8:(x) = ax2+e2  2mi [x “ie X+ ie] (8.8.8)
and the appropriate limit is now that as € — 0.

While it is helpful to think of the Dirac delta function, §(x), as being the limit of
any of these sequences, we cannot define it this way because the limits themselves
are undefined at x = 0. Nevertheless, the delta sequences do play a role in defining
the delta function not as a conventional function but as a member of a new class of
mathematical entities called generalized functions or distributions. These are all
defined in terms of sequences of conventional functions by means of a unique limiting
process that involves the integrals of these functions “against” an appropriately well-
behaved test function. In the case of §(x) this yields a definition that recognizes that
the fundamental property of the function is expressed by

/ 5OFGOdx = F(0). (8.8.9)

Definition: Any sequence of continuous functions g,(x) defines a distribution g(x)
if, for any function f(x) which is differentiable everywhere any number of times and
which is non-zero only on a bounded set, the limit

oo

lim, / €, ()f(0)dx = / S0f(x)dx (8.8.10)

—oco

exists.

The right hand side of this equation is not a Riemann integral but rather, it de-
notes the limit of a sequence of Riemann integrals.

Two distributions g(x) and h(x) are equal if the corresponding sequences satisfy

lim / 8,00f ()dx = Tim / ha(Of ) dx

for any “test function” f(x) that has the properties specified in the definition. Thus, for
example, the delta-sequences {§,(x)} all define the same distribution 6(x):

,}Lnlo / 5 (X)f(0)dx = / S00f(x)dx = f(0).

The principal result of the theory of distributions, from the perspective of a physicist,
is that they admit manipulation according to the same rules of calculus as apply to
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conventional functions. However, one must remember that they have significance or
meaning only as a multiplicative factor in an integrand.

Because of its peculiar properties, the Dirac delta function is an extremely useful
artifact of mathematical physics. In addition to arising in a very natural way from a
consideration of the representation of functions by means of Fourier series and trans-
forms, they offer a functional expression of the most common idealizations of physics:
that particles can be localized at points and rigid bodies can be so rigid that their
elastic collisions are mediated by instantaneous impulses. The charge density for a
collection of point charges and the force exerted by one perfectly rigid billiard ball
on another are necessarily delta functions of position and time, respectively. This, in
turn, leads to a central role for the delta function in the Green’s Function approach
to solving non- homogeneous boundary value problems as we shall see in Chapter 12.
Thus, for all these reasons, we shall digress with an exploration of what can be learned
about delta functions from an application of the §-calculus.

The §-calculus involves the treatment of §(x) and its derivatives as though they
were conventional functions albeit ones with the “unusual” properties

L [ 800f()dx = £(0), and

2. 6x) = { 000’ i;g with T(S(x)dx =1.

It is a shortcut method for obtaining identities that are all derivable by a rigorous but
much more onerous approach involving §-sequences and the limiting processes that
define distributions.

To begin with we shall “prove” that

d
6(x) = a9()() (8.8.11)
where @ is the step function
1, x>0
600 = { 0, x<0

Using a continuous but otherwise arbitrary test function f(x), we compose the integral
[ doGx)
/ a [ )dx

and proceed with integration by parts. We find immediately that

[ 42 00ax = ouoreo|” - [ 6007 codx = fteo)- [ £ o0ax = 110) = [ Gareod
oo oo 0 SY

which establishes the identity (8.8.11).
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Similarly, by integrating
/ 5 (Of ()dx

by parts, we find

/ &' (0f)dx = 8()f ()| - / S0Of (x)dx

and hence,
/w 8’ ()f(x)dx = —f'(0). (8.8.12)
More generally, )
/ a 5(X)f( )dx = (=1)" dx Sno). (8.8.13)

—oo

Next, we note that

oo

/ x6(OfG)dx = 0 and / %8/ (Of GOdx = F(0) = / SOFOOdx

—o0

for arbitrary continuous functions f(x), and deduce the identities

x6(x)=0 (8.8.14)
x8'(x) = 8(x). (8.8.15)

A further identity is
8(ax) = |7‘1“50(), a+0. (8.8.16)

To establish it, we use the usual continuous test function f(x) and evaluate

- T 8(O)fE/a)ide = LF(0), a>0
[ 8la)fx)dx =4 == f |a‘5(X)f
= [ 8(O)f(E/a)ide = -1f(0), a<0

Evidently, §(x) is an even function since, from (8.8.16), we have

6(-x) = 6(x). (8.8.17)
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This comes as no great surprise given that the §-sequences all consist of even func-
tions.
A useful extension of (8.8.16) is the identity

802 -a?) = %[S(X -a)+6(x+a)l, a>o0. (8.8.18)

Whereas the argument of the §-function on the left hand side of (8.8.16) is a linear
function of x, we now have a quadratic function as an argument. The derivation has
the usual starting point: we compose the integral f 6(x? — a®)f(x)dx for arbitrary con-

—o0

tinuous f(x). However, we now invoke the property that §(¢) = 0 except at & = 0 to

write
—a+é€

/6()( —a®)f(x)dx = / 502 —az)f(x)dx+/6(x —a?)f(x)dx

where O < € < 2a. Introducing the new variable of integration ¢ = x> — a2, we have

dx = déf[2\/é+a?, x>0
T\ -dé/2\/Eva’ ,x<0
and so,

-2¢ea

502 - a)f ()dx = / SOCVETa / SEOFVEva)— % ﬁ

= Z—a[f(—a) +f(a)]

= % /[6(X +a) + 6(x — a)lf(x)dx

as required.

This last identity can be extended to cover all cases of a §-function whose argu-
ment is a differentiable function with simple zeros. If g(x) is differentiable everywhere
and g(x,) = 0 with g’(xy) # 0 for a countable set of points x, then,

NESIEDS m&x ~ xn). (8.8.19)

The §-calculus can also be used to determine series and integral representations for
delta functions. For example, the Fourier coefficients of §(x) are p,, = 0(6(x) is an even
function) and

L

1 nrmx 1

= Z/5()()005 de- I
‘L
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Thus, the Fourier series representation of 6(x) is

1 1w nmx
6(x) = STHI cos ——. (8.8.20)

n=1

This is a divergent series, as one might expect, but it possesses the key property
L
[ seorcoax -
-L

as can be seen by multiplying the right hand side of (8.8.20) by an arbitrary continuous
function f(x) and integrating term by term from -L to L:

L oo L -
1 1 nmx ,  do
i/f(X)d)HZZ/f(x)cosde— = +Za”’
L n=1 ‘L =1
where an,n =0, 1, 2, ... are Fourier coefficients of f(x). If f(x) has the Fourier series

dp  ~— nmx . nax
fx) = 70 +; (clncosT +b,,smT) R

then -
% +3 an =f(0).
n=1

Following exactly the same steps we can determine various other series for the
delta function. For instance, if 0 < ¢ < L, the Fourier sine and cosine series for 6(x - &)
are

2~ nmé . nmax
S(x-¢&) = I sin —=> sin —— (8.8.21)
n=1
and
12« nmé nmx
8(x-¢&) = I+1 ; cos —* cos ——, (8.8.22)
respectively.

These are called the closure relations for the orthonormal (orthogonal and nor-
malized) sets {\/% sin %} and {\/% cos %} on the interval 0 < x < L. The inte-
gral representation

oo

S(x-§&) = % / =9 gk (8.8.23)

—oo
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that was our initial introduction to the delta function is also a closure relation. In this
case, the set of orthonormal functionsis < /5= etk } and their orthogonality and nor-

malization over the interval —oo < x < oo is expressed by

oo

% / e ax = 8(k - j) (8.8.24)
where, because k and j are continuous indices, the usual Kronecker delta function has
been replaced by a Dirac delta function.

Equation (8.8.23) (and (8.8.24)) can also be interpreted as stating that §(x - &)
and \/; e ¢ (and 6(k - j) and \/; e %) comprise Fourier transform pairs. The
trigonometrical exponential does not meet the integrability condition specified in ei-
ther Fourier’s Integral Theorem or Plancherel’s Theorem. Fortunately, however, this
is another apparent impediment that has been removed by appeal to distribution the-
ory. It has been proven that every distribution has a Fourier transform which is itself
a distribution. Thus, not only the trigonometrical functions but even polynomials can
have well-defined transforms through the expedient of treating them as distributions
or generalized functions.

We shall conclude this Section by noting that the concept of a delta function and
the 6- calculus can be extended to two or more dimensions via a corresponding exten-
sion of the concept of a distribution. Using an arbitrary continuous function of posi-
tion f(7¥) we have the defining equation

(7o) = /H FOSF 7o) d"r- (8.8.25)
all space

In terms of three dimensional Cartesian , spherical polar and cylindrical polar coordi-
nates this becomes

1

-1

2

f(io) = fx,y, 2)8(F - Fo)dxdydz

y B~

f(r, cos 0, p)8(F — 7o) r* drd(cos 8)dg

/

T

/]

0 -

flp, 9, 2)6(r - Fo)pdpdedz

°\8 O\z b~
—~— °T—

8

from which we deduce
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6(F - 7o) = 6(x - x0)8(y - ¥0)8(z - 20) = %50 —10)6(cos 6 — cos ,)8(p — ¥)
- %ﬁ(p ~ Po)B(p — P0)B(z - 20). (8.8.26)

An interesting representation of 6(r — rp) and one that should evoke memories of
Coulomb’s Law is

8(F-To) = —% v’ G) . (8.8.27)

To derive this relationship we shall locate the origin of our coordinate system at ¥ = 7y
and attempt to show that

[ v (1) i r = ~47f(0)
all space r

for an arbitrary but continuous function f(7). The integral over all space on the left
hand side of this equation can be set equal to the integral over a sphere of volume V
and surface S in the limit as the radius of the sphere R — oo. Before taking that limit,
however, let us apply the divergence theorem to the vector function f(7)V (1):

/Vﬁ- {f(fﬁ (%)} P :/S {f(fﬁ Gﬂ 5.
v o9 (3)] =909 () rov (3)
we have

/V OV (%) Pre /S [f(?ﬁ (%))} 5 /V VF@) - (%) 2.

But, V (%) = —%2; and - Vf(7¥) = 2f(7). Therefore,

Thus, since

1 2n
1
Vf(?)V2 (?) d’ r=_1_0/f(?)|r_R <——2> r* d cos Odg
R 1 2nm
—///[—%f(?)} drd cos 6dg
010
or,
1 2m 1 2n
/Vf(F)V2 (%) d3r=—//f(7)|r=Rdcosedgo+/ f(?)]:ﬁdcosed<p=—4nf(0),
210 10

as required.
We shall now return to the subject of Fourier transforms.
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8.9 Properties of Fourier Transforms

From the defining integral,
17 i
F{f(x)) = F(k) = — x) e dx, 8.9.1
{F00} = F) m/f() (8.91)

it follows that for real functions f(x)
F(-k) = F' (k). (8.9.2)

This is called the conjugation property and it has two immediate corollaries:
1. F(k)is real if f(x) is an even function,
2. F(k)isimaginary if f(x) is an odd function of x.

Multiplying f(x) by e”®* and then calculating the transform, we have
- 1 i(k+i
F{e ™ f(x)} = —/ x) "X gy - F(k + ia 8.9.3
{e f)} NeT &) ( ) (8.9.3)

which is called the attenuation property.
Similarly, a displacement of the argument of f(x) results in multiplication of F(k) by a
phase (rather than an attenuation) factor:

F{f - @)} = \/% / £(&) M6 gz = ek B(k) = ke 5F(x)). (8.9.4)

Next, let us assume that the transform of the derivative of f(x), F{f'(x)}, exists.
Then, integrating by parts, we have

1 [ o i _ 1 ikxw_lm ikx
m_/f(x)e dx = mf(x)e i m_/f(x)e dx.

The existence of its Fourier transform implies either that f(x) — 0 as x — +co or that
f(x) is a distribution. In both cases we lose the integrated term and obtain

F{' ()} = -ikF{f(x)}. (8.9.5)

This is called the differentiation property and it extends in an obvious way to higher
derivatives:

FU 0} = - 1 FUOO ). TV} = (<) F{F()}. (8.9.6)

As we shall see, this has immediate application in the solution of differential equa-
tions.
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The converse of the differentiation property arises when we transform the product
of f(x) and a power of x :

F{xf(x)} = 27171 /f(x)xe”‘" dx = % /f(x) (—i%) e dx = —i%&"{f(x)}, (8.9.7)

provided that we can interchange the order of integration and differentiation. This too
can be extended to read

00} = () L ipe). (89.8)

If F(k) = F{f(x)} and G(k) = F{g(x)}, then the product H(k) = F(k)G(k) is the
Fourier transform of the function

h00 = 5 [ Fsc-£)de. (399)

The integral in (8.9.9) is of a type that yields a convolution of the two functions in
the integrand and so this property is called the convolution theorem. Its proof is
straightforward:

oo

_ 1 i Cikx 4, 1 7 iké —ikx 31,.
srl{F(k)G(kn—m_/ FUIGK) & ™ dk = 5= / F(k)_/ (&) e dge ™ dk;

—oo

assuming that we can interchange the order of integrations, this becomes

oo oo

o _ 1 ~ik(x-§) _ 1 i _
5 F(G(R)} = / g / F(k) e 9 dkde m/ (O (x - £)de,

2

—o0 —o0

as stated .

8.10 Fourier Sine and Cosine Transforms

Suppose that we are given an even function of x, f(x) = f(-x). Its Fourier transform
then reduces to

F{f(x)} = F(k) = \/% /f(x) e dx = \/z/f(x) cos kxdx.
—o0 0

Evidently, F(k) is, in turn, an even function of k and so we also have

fx) =g HF)} = \/E/F(k) cos kxdk.
0
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Similarly, if f(x) is odd, f(-x) = —=f(x), then

F(k) = \/Zi/f(x) sin kxdx
0

and,

00 = HF(k)} = \/Z(—i)/f(x) sin kxdk.
0

This suggests that just as we had Fourier cosine and sine series for functions de-
fined on the (half-) interval 0 < x < 7, we can introduce Fourier cosine and sine
transforms for functions defined only on the (half-) interval 0 < x < oo :

FAFOO} = Folk) = \/g / £(0) cos kxdx (8.10.)
0
with
o 27
F R0} = \E / Fo (k) cos kxdk = f(x) (8.10.2)
0
and,
2 T .
FAFOO} = Fo(l) = \g / £00) sin kxdx (8.10.3)
0
with
G YR} = \/% / Fo () sin kxdx = £0). (8.104)
0
Note that
Fe{f(0} = F{FV 00}
and
F{f 0} = -iF {000}
where

@y ) fX), x>0
f(ﬂ_{f@@,x<o

is the symmetric extension of f(x) and

(=) _ f(X), x>0
f00 = { -f(-x), x<0
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is the antisymmetric extension of f(x). As a result, Fourier sine and cosine trans-
forms possess properties very similar to those of Fourier transforms. Some differences

warrant our attention however. For example,
TN .
V= k | f(x)sin kxdx.
0 0

FAf 00} = \/z/f’(x) cos kxdx = \/gf(x) cos kx
0

As before, we can assume that f(x) — 0 as x — oo (or we can treat it as a distribution)
and so obtain

Fe{f (0} = —\/gf(o) +kF{f(X)}. (8.10.5)

Similarly, integrating by parts twice and assuming that both f'(x) — 0 and f(x) — 0
as x — oo, we find

Fe{f" (0} = -\/%f’(o) - I FAFOO} (8.10.6)
The corresponding relationships for Fourier sine transforms are
Fs{f 0} = ~k FAF ()} (8.10.7)
and
Fs{f' (0} = \/%kf(o) - K Fs{f(0}. (8.10.8)

It should be noted that transforming derivatives of even order yields a transform
of the undifferentiated function and it is a transform of the same type. On the other
hand, transforms of derivatives of odd order result in a transform of the other type.
This has immediate consequences for the application of Fourier sine and cosine trans-
forms in the solution of differential equations: the equations must contain derivatives
of only even or only odd order to avoid mixing the two types of transform. Another
way in which these differentiation properties influence the application to differential
equations is the “boundary condition” information they require: a knowledge of f(0)
in the case of sine transforms and of f(0) for cosine transforms.

The interrelation between Fourier sine and cosine transforms surfaces again in
their convolution theorems. If F (k) = F.{f(x)}and G.(k) = F.{g(x)}, we have

FH{F() Gk} = \/% / Fc(k) G (k) cos kxdk
0

oo

= %/Fc(k)/g(f) cos k& cos kxdédk.
0

0
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But, cos kx cos k& = 3[cos k(x — &) + cos k(x + &)]. Thus, substituting and then inter-
changing the order of integration, we obtain

oo

FF0 G} = £ /

n

g(é) / Fc(k)[cos k(x — &) + cos k(x + &)ldkdé
0

0

.
= —— [ g@UF P~ &) + flx + O1de, (8.10.9)
NeT: 0/

where f(+) appears because (x — &) < 0 when x < & < oo.
The same operations performed on the Fourier sine transform requires use of

sin kx sin k¢ = %[cos k(x - &) — cos k(x + &)]

which leads to

oo

5 HFS (0 G ()} = L /

VA
0

g(&) / Fs(k)[cos k(x - &) - cos k(x + &)]dkd¥.
0

The sine transform F(k) is now paired with cosine functions and so does not become
inverted. Instead, we have to define a new function f (N)(x) = J. 1{ Fs(k)} in terms of
which the convolution theorem becomes

» 1 [ g )
Fs {Fs(k)Gs(k)}—mo/g(f)[f (x=-8-f7(x+¥8)Id¢. (8.10.10)

It only remains to explore applications of the three types of Fourier transforms, the
most important of which are in the solution of differential equations. However, before
we do so we shall introduce another and closely related integral transform, that of
Laplace.

8.11 Laplace Transforms

Definition: A function f(x) is said to be of exponential order ¢ if ¢ is the largest real
number such that | e f(x)| is bounded on 0 < x < oo. In other words, f(x) does not
increase faster than e’ as x — oo.

The Fourier transform of a function of non-zero exponential order will not exist
because |f(x)| will be unbounded (even in the sense of a polynomial bound) at either oo
or —oo depending on the sign of ¢ . Therefore, for such functions, we form the product

1, x>0

g(x) = f(x) e=* B(x), where ¢ >0 and 6(x) = { 0. x<0



Laplace Transforms =— 219

We are now assured of the convergence of the transform of this function and so define

_ -cx _ 1 7 —cx ikx
G(k) =F{f(x) e ™ 0(x)} = Tom O/f(x) e e dx
with
FHGk)} = L /W G(k) e ™ dk = f(x) e 6(x)
V2n. '

Let us introduce a new transform variable s = ¢ - ik, ds = —idk and set
F(s) = V2rG(k).

Then, equations (8.11.1) and (8.11.2) become

F(s) - / fO e dt = LI}
0

F(OO() = 2im / F(s)e*'ds = £ H{F(s)}

C—ioco

(8.11.1)

(8.11.2)

(8.11.3)

(8.11.4)

where, to conform with convention, we have replaced the symbol x for the indepen-
dent variable with the letter t. These are the defining equations for the Laplace trans-
form and its inverse. (The integral in (8.11.4) is often referred to as the Mellin inver-
sion integral.) Evidently, the Laplace transform offers a means of extending the appli-
cability of Fourier transforms to functions for which the Fourier integral is not defined.

As such, they are widely used in the solution of engineering problems.

Not surprisingly, the properties of Laplace transforms are close analogs of those

of Fourier transforms. Specifically, there is
— an attenuation property,

L{e"* f(t)} = F(s + a) where F(s) = L{f(D)};
- ashifting property,
Lif(t-a)b(t-a)} = e L{f(O)}, a>0;
~  the derivative property,
L{f (&)} = sL{f(O} - f(0)
which extends to

L (O) = sL{f' (O} - f(0) = s> L{f(O} - sf(0) - f'(0),

(8.11.5)

(8.11.6)

(8.11.7)

(8.11.8)
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and by induction to

L) = " L0} - Y P, (8.119)

k=1

and is readily established by a single integration by parts,

oo

/ e (Dt = ~Le O + / e U () dt
0]

0

oo

or s/e’“f(t)dt=f(0)+/e‘Stf’(t)dt;
0

0

— multiplication by a power of t property,

LU0} = £ (D)

{0} = (1" Lsip); (8.11.10)
— and the convolution theorem,
t
L£LTHF(s)G(s)} = / f(Dg(t - )dr (8.11.11)
0

if F(s) = £{f(0)} and G(s) = £{g(0)}.

The most important application of Laplace transforms is in the solution of dif-
ferential equations, especially linear differential equations. As with the use of Fourier
transforms, the method consists of transforming a given differential equation to yield a
subsidiary equation which, if the choice of method is appropriate, is an easier equa-
tion to solve. In fact, if the differential equation is linear, the subsidiary equation is
algebraic and so is solvable by purely algebraic techniques. The choice of Laplace
rather than some variety of Fourier transform hinges on the boundary conditions asso-
ciated with the differential equation. Specifically, Laplace transforms are appropriate
to boundaries at t = 0 and oo with a knowledge of the values of the solution and its first
derivative at the first of these. The final step in this method is to invert the transform
obtained as a solution of the subsidiary equation. For Laplace transforms this can be
done by using the Mellin inversion integral. More commonly, however, one makes use
of a knowledge of a few key Laplace transform pairs sufficient to invert any rational
function of s, or if the solution of the subsidiary equation is more complicated, one
consults a comprehensive table of Laplace transform pairs.

The inversion of a rational function proceeds as follows. Let the function be Y(s) =
P(s)/Q(s) where P(s) and Q(s) are polynomials with deg(P) > deg(Q). If Q(s) has n
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simplereal roots r;,i =1, 2, ..., n, we can express Y(s) in terms of the corresponding

partial fractions:
n

_ Ci
Y(s) = Z s + W(s)
i=1
where W(s) is the sum of partial fractions associated with all the other roots of Q(s).
The constants ¢; can be found by multiplying both sides of this equation by (s—r;) and
taking the limit as s — r;:

ci= lim(s - )Y(s) = 2V
Thus, using £{e"'!} = S —1r~ , we have
WO = £V ()} Z P (’1 e L W) (8.11.12)

Example: Suppose that we seek £* { 5355721_65 } . In terms of partial fractions, we
have
s+1 _ s+1 =ﬁ+ C + C3
s3+s2-6s s(s-2)(s+3) s s-2 s+3
where
1 1
=-pP0)/0'0)=z —— — - _ =
c1 = P(0)/Q'(0) 357325 6) 6
0 -PQIQQ) =2 =2
2 3-4+4-6 10
6= P(-3)/Q(3) = o ==
T 3.9-6-6 15
Therefore,
__ 1,3 e 2 e
YO=-5+75¢ "15¢

If Q(s) has a real root r of multiplicity m, Y(s) will have a partial fraction decom-
position of the form

Cm-1 C1
Y(s) = = r) (—r)m‘1+"'+s—

where W(s) again denotes the sum of the partial fractions associated with the other
roots of Q(s). To determine ¢, we multiply both sides of this equation by (s — r)™:

G(s)=(s-1)"Y(s)=cm+(S—1Ncmi+...+(s—1)"Lcy+(s—r)" W(s).

Setting s = r, we obtain
Cm = G(r)
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To determine c,,_1 we differentiate G(s),
G'(S)=Cm1+2(S—1) Cmz +eee +m(s =)L W(s) + (s — 7)™ W(s),
and set s = r to obtain
Cm-1 = G'(1).
Continuing in this fashion up to and including the (m - 1 )"’ derivative, we find

1

T G V).

6™ k)(r) 1=

1 .
Cm—z_jG (r)y---a Cx = (m k)'

k-1
Now, £t {S—lk } = h and so, by the attenuation property,
[/71 1 _ ei’t tk—l
(s-r)[ k-1

y(®) = £7H{Y(s)} = [ Cnt™ | Cmo1 > tootcatrcr| e+ LT H{W(s)}

Therefore,

(m-1)!  (m-2)!
rt G(m k)(r 71 ]
¢ Z k-Dim-l1 L ** {W(s)}. (8.11.13)
Example: Suppose that we wish to invert % This rational function has the

partial fraction decomposition

S+2 a a a
_as 2, @ b +b1

s5-2s4+s3  s3 ' s2 s (s—1)2 s-1

S+2
(s-1)

G”(O)
2!

To determine the p;, define H(s) = (s - 1)* Y(s) = 2. Then,

To determine the coefficients a;, we define G(s) = s> Y(s) =

5 - Then,

a3 =G(0)=2, a,=G'(0)=5, as= -8,

bz = H(l) = 3 and b1 = H/(l) = —8

Thus,
y(©) = £7HY(s)} = 22 +5¢t + 8 + (3t - 8).

If Q(s) has real coefficients, any complex roots it may have will occur in conjugate
pairs: r = a + iff and r'=a- iB. If P(s) also has real coefficients, the partial fractions
associated with these roots will have complex conjugate coefficients since

P(r) _ [P(r) } .
Q) QM '
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Thus, using e" = e*/[cos Bt + i sin t] and equation (8.11.12), we deduce for the case of
n pairs of simple complex roots that

T R
y(t) ZJZ:lje [Re<Q’(rj) cosﬁjt Im 00 smﬁt + £ {W(s)} (8.11.14)

where r; = a; +i B;is a member of the j™ pair.
For a pair of roots with multiplicity m, we invoke (8.11.13) rather than (8.11.12) and
obtain

y(t) = Z(k ol e“[Re ay cos Bt — Im ay sin Bt] + £ H{W(s)} (8.11.15)

where a; =

m 1), G (), G(s) = (s -r)" Y(s),and r = a + is.

Example: Consider the rational function Y(s) = m
s = -1+ 2i. Thus, setting r = a + i = -1 + 2i, we have

C) N
Q)" s+1° 0 2i

Its denominator has roots at

S -1+2i i
— =1+7
2

and
y(t) = e(2 cos 2t — sin 2¢).

8.12 Application: Solving Differential Equations

One of the most important applications of integral transfoms is in the solution of
boundary value problems. These are problems that seek the one solution of a given
differential equation that satisfies certain conditions at the boundaries of the interval
of variation of the independent variable. The conditions can involve specification of
the value of the solution, of its first derivative, or of some linear combination of the
two.

Because of the simple form assumed by their respective derivative properties,
(which is due to the exponential nature of their kernels), Fourier and Laplace trans-
forms are best suited to problems involving a differential equation with constant
coefficients. Such equations become transformed into subsidiary equations that
contain no derivatives and admit simple algebraic solutions. The latter are then sub-
jected to an inverse transformation to produce the solutions that are appropriate to
the problems in which the differential equations occur.

Since each transform requires a unique set of input or boundary condition infor-
mation, one must be careful in the selection of one to use in the solution of a particu-
lar problem. It is not sufficient that the problem involves a differential equation with
constant coefficients, it must have the correct range, [0, oo) or (-oo, o), for the inde-
pendent variable and must contain boundary conditions that match the input needs
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of either Laplace, Fourier sine, Fourier cosine or Fourier transforms. These are sum-
marized in the Table below (Table 8.1).

To illustrate these points we begin with the application of the Laplace transfor-
mation to the linear differential equation

y'(@®) +ay' () + by(t) = r(t)

where a and b are known constants and r(t) is a known function. Using the derivative
property, equations (8.11.7) and (8.11.8), we obtain the subsidiary equation

% Y(s) - sy(0) - y'(0) + a(sY(s) - y(0)) + bY(s) = R(s)

where Y(s) = £L{y(t)} and R(s) = £{r(t)}. Its solution is

@+®ﬂ®+y®) R(s)
Y(s) = s2+as+b 52 +as+b’

Table 8.1: Applicability Conditions of Integral Transforms

Transformation  Range of Independent Variable Boundary Conditions

Fourier —00 < X < 00 Y(2o0) = y/(200) = 0
Fourier sine 0<Xx<oo ¥(0) = c¢1, ¥(c0) = y’'(c0) = 0
Fourier cosine 0<Xx<oo y/(0) = ¢2,y(c0) = y’(c0) = 0

Laplace 0<t<oo y(0) = c1,¥’(0) = c2

The next and final step is to determine the inverse transform £ 1 {¥(s)} = y(t) and
thus obtain the solution of the differential equation. The inverse of the first term in our
expression for Y(s) is a solution of the corresponding homogeneous equation and is
called the complementary function. It matches the boundary conditions (or initial
conditions if ¢ is a time variable) y(0) = ¢; and y’(0) = ¢, that have to accompany
the differential equation if this method is to be useful. The inverse of the second term
yields a particular solution of the non-homogeneous equation corresponding to the
conditions y(O) y'(0) = 0. It is called a particular integral. Note that the first term
as well as ;- s+b are rational functions. They can be inverted by means of the tech-
niques identified at the end of the last Section. The second term can then be inverted
by application of the convolution theorem.

Examples: We shall start by paying a return visit to the forced, damped harmonic
oscillator

d*x dx B
m—dt2+r—dt+kX—f(t), 0<t<
or,
d> x dx 2. 1 T >k
ra AE+wOX— Hf(t) where A_ﬂ and wo—ﬁ.

If the initial conditions specify both x(0) and x’(0), x(0) = xo and x’(0) = v, for
example, it is appropriate to use Laplace transforms to solve for the motion of the
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oscillator. The solution of the resulting subsidiary equation is

X(s) = 2A X + Vo +S Xo N F(s)

= S) + S).
s2+2As+wd  s2+2As + Wl Xc(s) + Xp(s)

The first term can be expressed as

xo(s +A) + (vo +A xo)

XC(S) = (S+A)2 +(a)(2)—A2) .

Assuming that w§ > A, which is usually the case, this has the inverse transform

_ Vo+tAXo _ar .
xc(t)=xoeMcosot+¥e“sm0t, 0=/wi-212.

This is the complementary function, or solution of the homogeneous differential equa-
tion, that satisfies the initial conditions that have been imposed in this problem.
To invert X,(s), we note that

_ _ 1 1 .
L 1{F(5)}:f(t) and L 1{SZ+ZAS+LU(2)} =Ee AtSan’t,U=m.

Thus, using the convolution theorem, we can write

S2+2As + w}

t
xp(f) = £~ {L} = / % e M sin o(t - 7)f(1)dt
0

so that the complete solution to our problem reads

t
x(6) = xe(O+xp(6) = X0 €™ cos 0t+¥jxo e Msin ot+% / e "D sin o(t-1)f(1)dr.

0

To illustrate what happens at resonance, let us assume for simplicity that the
damping is negligible so that A ~ 0 and 0 = wq . Then, if f(t) = Ksinwq t, where
K is a constant, we have

t

. K . .
x(t) = xgcoswq t + Y0 sin wot+ /sm wo(t - 1) sinwp TdT.
wo m wo

0
But,
t t t
/sin Wo T Sin wo(t — 7)dT = sinwyg t/ sin wo T €os wo TdT — COS Wo t/sin2 wo TdT
0 0 0

1

= [sin wo t(1 - cos 2 wo t) - cos wo t(2 wo t — sin 2 wo t)]
4 wo

1 .
= ——(Sinwot—-wotcoswyt).
Zwo( 0 0 ot)
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This means that the last term in the particular integral

xp(t) = %(sin Wot — wo t cos wo t)
mw}
has an amplitude that increases linearly with ¢ corresponding to a resonant response
by the system. The resonance is due, of course, to the frequency of the applied force
coinciding with the natural frequency of the oscillator.

Suppose that instead of an harmonic force, the oscillator is subjected to an instan-
taneous impulse of magnitude I at time ¢ = ¢, . The force responsible for the impulse
must be expressible as f(t) = I6(t - to). Rather than use the convolution theorem, we
note that the transform of f(¢) is particularly simple: £{f(t)} = e . Thus,

I e*S to

X = i Tans w?’

But, according to equation (8.10.6), (the shifting property of Laplace transforms), the
inverse of this product is just £ 1{e® Xp(s)} - 6(t) with t replaced by t - to:

£7HXp(8)} = xp(8) = % e M) sin o (t — t0)O(t - to)-

Therefore, the motion of the oscillator is given by

_ A A I et .
x(t) = xo e M cos ot + W‘XO e Msinot + —oe AE0) sin g(t - to)O(¢ - to)

demonstrating explicitly that whatever motion is initiated at t = 0 ( by assignment of
values to xo and v) it is modified at t = to and thereafter by the motion caused by the
impulse.

Another example along the same line is provided by an LRC-series consisting of
an inductance L, resistance R and capacitance C connected in series to a switch and
an emf e(t). The switch is closed from t = O to t = T. We seek the current i(t) in the
circuit assuming that it is zero at t = 0 along with the charge g(t) on the capacitor:
i(0) = 0 and ¢(0) = 0.

The current is governed by Kirchoff’s Law which requires that

di(t) q(t)

LW + Ri(t) + - e(t)
where we shall assume
e(t)={ ey, O0<t<T
0, t>T.
dq(t)

Moreover , we know that i(t) = —=-—=.
Applying the Laplace transform to these two differential equations we obtain

LsI(s) - Li(0) + %Q(S) _E(s), I(s) = sQ(s) - q(0).
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Thus, using our initial conditions and solving for I(s), we find

I(s) = E(s) _1 SE(s)
Ls+R+1/(sC) Ls2+(R/L)s+1/(LC)
where
T
. 1-e*"
E(s) = eo/e stdt = eq
0
Therefore,

1-eT
L s2+(R/L)s +1/(LC)"

The shifting property of Laplace transforms (equation (8.11.6)) takes care of the
factor 5T in the numerator of the expression for I(s) and so all that remains is to find
the inverse of {s? +(R/L)s + 1/(LC) } . Three cases arise depending on the roots of
this quadratic and to classify them, we introduce the constants a = R/2L and w? =
1/LC - R? /4 L% . Then, if w? > 0, the roots of the quadratic are complex,

I(s) =

ot 1 _ L e tginwt
s2+(R/L)s+1/LC w

and
Y €0 -—at .. _ €0 _—a(t-T) o _ B
i(t) A wt WL ¢ sinw(t - T)O(t - T).

This is called the oscillatory case.
If 0 > w? = — %, the roots are real and, replacing w by i, we have

i(t) = ﬁ e * sinh Bt -

This is called the overdamped case.
Finally, if w? = 0, there is a double root and so

li e “Dsinh (¢ - TO(t - T).

i(f) = %te“” —%(t —T)e D gt 7).

This is called the critically damped case.

The next example involves a differential equation with variable coefficients and
reveals some of the limitations of the Laplace transform method of solution. The dif-
ferential equation is (Bessel’s equation of order zero)

xy"+y +xy=0

and the boundary conditions that we wish to impose are y(0) = 1, y'(0) =
If Y(s) = £{y(x)}, equation (8.11.10) tells us that £L{xy(x)} = - d ( ) . Notice that

if the coefficient of y(x) were x?, we would obtain the second derivatlve of Y(s) and the
subsidiary equation would be another second order differential equation thus doing
little to advance the solution of the equation we started with.
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Using the boundary conditions together with the derivative property, we also have

L{y'(0} =sY(s) -1
L{y"(x)} = s* Y(s) - s.

Thus, invoking (8.11.10) again, we obtain

» dY(s)

L{x2 y(x)} =-2sY(s)-s s

+1

and so the subsidiary equation is
—2sY(s)-s*Y'(s)+1+sY(s)-1-Y'(s) =0,

or
(s> +1)Y'(s) +sY(s)=0

The solution of this differential equation is easy to find:

InY(s) = - / SZLﬂds = —% In(s? +1) + cnst.

and so, Y(s) = where c is a constant.

s2+1
To find y(x), we expand Y(s) in inverse powers of s (a Laurent series valid for |s| >

1):
-1/2 oo n
Y(S)=§<1+l> =CZM 1

2 2 112 2n+1"°
s n=0 2 n(n_) s

Inverting term be term, we find
( rl Zn . . 1 ~ X2n
y() = CZ Zn( n!)? since L s+l [T (op)l”

But y(0) = 1. Therefore, ¢ = 1, and our solution becomes

b (_1 )Yl X 2n

yo) =y = (7)

= (n!)* \2
which is called the Bessel function of order zero and is conventionally denoted by
] o(x)-

As we shall see in the next Chapter, this differential equation has a second linearly
independent solution which has an essential singularity at x = 0. Since the Laplace
transform method requires well-defined values for both y(0) and y’(0), it is useless if
that is the solution we seek.

To furnish examples of the application of Fourier transforms to the solution of

differential equations, we return to the problem of an harmonic oscillator acted on by
an external force. Using the same notation as before, the equation of motion is

2
Z—t;( +2/\Z)t( +wdx = —f(t)
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where t is presumed now to have the range —co < t < oo. If we presume also that
x(t) — 0 ast — +oo so that it possesses a Fourier transform, we can transform the
differential equation to obtain the subsidiary equation

- 0 X() - 2AwiX() + R X(w) = %F(w)

where X(w) = F{x(t)} and F(w) = F{f()}. This has the solution

1 F(w)
X(w) = m (w2 - w?) - 2Awi

and so the solution of the original problem is

F(a)) e—iwt

1 T 1
t) = — dw.
X0 \/271/ m (w3 - w?) - 2Awi @

In most cases this integral can be evaluated by residue calculus. To illustrate how,
we shall take wo > A, which corresponds to a weakly damped oscillator, and assume

a force of the form
for NtI<T
t) = .
f® {0’ ot

We then have

T
_fo it 3, \Fsinwt
F(a))—m e dt=f, P
-T

oo

and so,
3 —iwt
x(t) = _fo_ / smwr e dw

w(w-w)(w-w,)

where w, =0 -Ai,w; =-0-2i,0 = /w}-A°.
Expressing sin wt in terms of exponentials and deforming the contour to avoid
introducing an extraneous singularity at w = 0, we can rewrite x(t) as

fO —-iw(t-1) fO / e—iw(t+r)

e
X0 = -t [LH ol —-ww=-w) ™" m2ni b @@ - w)w- o

where the subscript on the integral signs indicates that we are going below the real
axis in the neighbourhood of w = 0. We shall evaluate each term separately beginning
with the first.

If t - T > 0, we must close the contour of the first integral in the lower half plane
to be able to use the residue theorem. If ¢t — 7 < 0, we close in the upper half plane.

Thus, ' '
fO e w1(t-1) fO el w,(t-1)

— - = , t>T1
the first term = m wi(wy - wf) {" wr (w1 - w3)
_Jo

t<T.

mwlwz’
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Similarly, the second integral’s contour must be closed in the lower half-plane if
t + 7 > 0 and in the upper half-plane if ¢ + 7 < 0. Thus,

fO e—i w1 (t+7) fO e—i W, (t+7)

—_—— + P N

the second term = mwi(wi-w) mwy(w-w))
Jo
mauwi w;p ’

This provides us with three cases:
1. when t < -7, we have
=l L h L _g

mwi w> ma)lwz

which confirms that the damped oscillator is at rest until subjected to the external
force;
2. when -1 < t < 7, the displacement is
- wq(t+1) —i W, (t+7)
x(t)=—& 1 _fo_e fo_e
mw,w; m (l)1((l)1 -—w;) m wz(wl - 0)2)

fo __fo

- 2 2
mwg; muwg

—o(t+T1)

[coso(t+T) + % sino(t+1)]e

3. andwhent > T,itis

X(t) _ & e—iwl(t—r) ~ & e—iwz(t—r) ~ & e—iwl(t+r) & e—iwz(tﬂ)
mwi(wi-w;) Mwwi-w) Mmowi(wi-w) mw(wi-w,)

__Jo s[cos ot — 1) + % sin o(t - 7)] e A
0
_ o > [cos ot + 1) + A sina(t + 1)) e ",
m w} o

A rather special problem arises in the (physically unlikely) event that there is no
damping. The equation of motion of the oscillator becomes
x5 f(®)

S 2 +twox="12
dez 0 m

which, when solved by the Fourier transform procedure, yields a solution of the form

F(a))e iwt
X0 - - m / " dw

The poles arising from the zeros of the denominator are now on the real axis at w =
+ wo and so the integral is undefined until we specify how we propose to avoid them.

Additional physical information is needed to resolve this ambiguity. For example,
suppose that the oscillator is at rest until disturbed by a sharp blow delivered at ¢ = ¢ .
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Representing the external force by means of a §-function, f(t) = f, 6(t - to) where f, is
a constant, we have

2n

Flw) - V;ﬂ [ o8t e e = S e

and,

oo

fO 1 e—iw(tfto)
xo=To L / e
Now, when t — ¢¢ < 0, this expression should yield the value x(t) = 0, since otherwise
we would have motion occurring prior to the impulse in violation of our initial assump-
tion and of the principle of causality. Moreover, when t — ¢, < 0, Jordan’s Lemma
permits us to close the contour by means of a semi-circular arc of infinite radius in the
upper half-plane and evaluate the integral by means of the Residue Theorem. But the

residues at the two poles w = + wy of this integrand are

fo e wolt=to)
m 4mwo
and '
fO et wo(t-to)
m 4mwo

respectively. Thus, if one or both of the poles is included within the closed contour,
the result will not be zero. We conclude therefore that the integral must be defined by
deforming the contour along the real axis to pass above the poles w = + wg as shown in
the diagram below. (We note that this is the equivalent of adding a vanishingly small
damping force since the latter would shift the poles to w = + wg —i€.) In other words,
the mathematical ambiguity has been resolved by appeal to a fundamental physical
principle; we now have an unambiguous definition of the integral and thence, can
determine the oscillator’s motion to be (by closing in the lower half-plane for t-¢, > 0),

x(o - oSttty )
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As a final example, we shall solve the equation

a’x
Tﬁ_a X=f(t), 0<t<°°
. . dx(0) . .
subject to the boundary conditions a - b and x(oo) < oo, that is, x(t) is bounded

at infinity.

Since the range of the independent variable is restricted to t > 0, we can rule out
Fourier transforms as a possible means of solution. However, that still leaves us with
a choice between Fourier sine, Fourier cosine, and Laplace transforms. The fact that
we have only one boundary condition at t = 0 means that we lack an essential piece of
information for use of the latter. Moreover, we are given x(co) < oo which is not needed
for Laplace transforms but is needed for Fourier sine and cosine transforms. To decide

between these final two options, we note that sine transforms require a knowledge of
dx(0)

dt
this case is to apply Fourier cosine transforms.

x(0) while cosine transforms make use of . Thus, the clear choice of method in

Since Fc{x"(t)} = —\/%x’(o) - w? Xc(w) where X¢(w) = Fc{x(t)}, the differential

equation transforms to the subsidiary equation

—\/%b - @’ Xc(w) - & Xc(w) = Fe(w), Fe(w) = Fc{f(0)}

__ /2 b Fclw)
Xclw) = \/;a)2+a2 w?+a?’

1 .
The inverse transform of Tt a? is

[ cos wt coswt
x() = rard \/ﬁ rard

. 1, . . . .
Since T a? is a rational function with a denominator of degree 2 and numerator of

with solution

degree 0, we can evaluate this integral by using a standard formula of residue calculus
where, because t > 0, we select the version that sums over singularities in the upper
half-plane:

) 1 IR eiwt
Xl(t)— - 71\/77 m es{m}

This determines the inverse of the first term in our expression for X¢(w) as well as
of the factor multiplying F¢(w) in the second term. Thus, all we need to complete the
solution is to invoke the convolution theorem for Fourier cosine transforms. Thus,

_ _B -at _i El r —alt-T| —a(t+1)
x(t) = 2 € \/ﬂ\/;a /f(r)[e +e ldr
0

-at -at
=—-v2nIm € - = Te .
2ai 2«

w=ia
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_ _ge—at zi/f(_[_) —a|t 7| +e—a(t+r)]dT
0

where we have used the fact that e/l is the symmetric extension of e~
That completes the solution of the problem.
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9 Ordinary Linear Differential Equations

9.1 Introduction

The order and degree of a differential equation (DE) are determined by the deriva-
tive of highest order after the DE has been rationalized. For example, the DE

W+X %+xzy=0

3 2
is of third order and second degree since, when rationalized, it contains (%) :
d’y ? 2 &Y 2dy | 4o
(W) +2x yﬁ—x a+x y-=0.
Thus, a linear nth order DE has the general form

dn—l y

n
o W gy

i o+ al(x)% +ao(x)y =f(x) (9.1.1)

where f(x), ao(x), a1 (x), ..., an-1(x) are arbitrary functions of x. If f(x) = 0, the DE is
said to be homogeneous. Otherwise, it is non-homogeneous.

For most physical applications one need not worry about orders higher than two.
Moreover, first order DE’s can be dispensed with by direct integration. Specifically, if
the DE is

% +a(y = f0), 9.1.2)

we proceed by introducing a new function p(x) whose logarithmic derivative is equal
to a(x):

ﬁd—i =a(x) or p(x) =exp (/ a(.{)d{) . (9.1.3)

This transforms the DE into the convenient form
d
Ix PXy() = p(x)f(x) (9.1.4)

which integrates immediately to yield
X
1
X) = —= d 9.15
¥00 = o [ pOr©a ©15)
Xo
where xg is an arbitrary initial point.

[ 52Tl © 2014 Leslie Copley
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Notice that there is no lower limit for the integration in (9.1.3) but there is for the
integration in (9.1.5). An arbitrary lower limit is a short hand way of adding a constant
of integration to what is, in fact, an indefinite integral. It is needed in (9.1.5) to obtain
the general solution of the DE rather than one particular solution. It is not needed in
(9.1.3) because it would contribute an arbitrary multiplicative constant in p(x) which
would then cancel out in equation (9.1.5).

Example: Suppose that we wish to solve the DE
dy

xza+2xy—x+l=0.

To put this in the canonical form of equation (9.1.2) we divide through by x?:

Comparing this with (9.1.2), we identify

2 -1 1 1
al) =2, fl)= XXZ = e
Thus, .
p(x) = exp </ %d{) =exp(2lnx) = x?
and,

X
1 ,E-1 1 (x° 11 C
y(x)=X7/{ 2d¢'=—2<?—)(+C)=§——+—.
Xo

& X x  x?

2
where C = constant = xo — 2.

This is the general solution of the DE. Assigning a specific value to C will produce
a particular solution. This is usually accomplished by imposing a particular value on
y(x) at some point xo. If x¢ is an end-point of the range of variation of x, we say that
we are imposing a boundary condition.
As an example, suppose that we require that y(1) = 0. Solving for C, we determine
that C = % and hence that the DE together with the boundary condition has the unique
1 1

solutiony(x) = 3 - 1 + 7o

9.2 Linear DE’ s of Second Order

Having dealt with first order DE’s so readily, let us turn our attention to second order
equations. The general form for a non-homogeneous, linear, second order DE is

2
LY+ a0+ b0y = f0. 9:21)
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The corresponding homogeneous equation is

2
% + a(x)% +b(x)y(x) = 0. (9.2.2)

A fundamental property of homogeneous linear DE’s is that any linear combina-
tion of solutions is itself a solution. Thus, if ¥, (x) and ¥, (x) are solutions of (9.2.2)
sois y(x) = c1 Y1(x) + c2 ¥, (x), c1, c2 = constants.

Two solutions are linearly independent if the algebraic equation

c1V100)+c¥2(0) =0 (9.2.3)

can be satisfied for all x only if ¢; = ¢; = 0. In other words, they are linearly indepen-
dent if they are not constant multiples of each other.
Differentiating (9.2.3) produces a second linear algebraic equation for ¢; and c;,

d d
@ a e

The simultaneous equations (9.2.3) and (9.2.4) imply that y; and y, will be linearly
independent, c; = c; = 0, if the determinant of the coefficients of ¢; and c; is non-
Zero:

=0. (9.2.4)

110922 -y, D1 = Wiy, vl 4 0. (9.2.5)

WIy1,¥,] is called the Wronskian of y; and y, . If W[y, ¥,] = 0, y1(x) and ¥, (x) are
necessarily linearly dependent since

dy, dy,

V1 ax Y2 —— dx

integrates immediately to give ¥, (x) = constant x ¥, (x) for all x.
The following theorem extends and formalizes these conclusions.

Theorem: The Wronskian of two solutions of a linear, homogeneous, second order DE
is either identically zero or never zero and hence, a necessary and sufficient condition
for linear independence is that the Wronskian be non-zero at any point x .
Proof: From (9.2.5),

=0

dw d’y d’y
H=Y1() 2_)’2()61 21-
But, ¥, and y, are known to satisfy
II1 1 a0 4 bioy = 0
2
42 1 40022 4 by, =0.
x?

Multiplying the first of these by (- ¥,(x)) and the second by ¥, (x) and adding, we ob-
tain
) d’y»

2
172 y,009 20+ aly, 0022 - y,0 D11 = 0

yilx dx?
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or, P
w
" a(x)W = 0.
Integrating, we find that
W(x) = W(xo) exp 4 - / a&)dé 9.2.6)

Xo

where xg is an arbitrary point. If W(xo) = 0, W(x) = 0 and if W(xo) # 0, W(x) is never
zero and the theorem is proved.

The relevance of linear independence is brought out by the next theorem.
Theorem: If y; (x) and ¥, (x) are any pair of linearly independent solutions of a homo-
geneous linear DE of second order, then any other solution of that equation can be
expressed as a linear combination of ¥, and y,,

y00) =c1Y1(x) + c2 Y2 (%) (9.2.7)

where c; and c, are constants. The pair y; and y, are called a fundamental set of
solutions and the linear combination (9.2.7), with c¢; and ¢, arbitrary, is the general
solution of the DE.

Proof: We write the DE (9.2.2) in the modified but equivalent form

pe0d Y d + a0+ 100y =0, p() #0.
Thus, if y(x), y1(x), ¥»(x) are any three solutions of the DE then
p(X)s— q(X)— +r(Jy =0

P(X)d Y1 q(x)dy1 +r(x)y; =0

d “ +q(x) 72 107, =0

p(X)

Considered as simultaneous, 11near, algebralc equations for p, q, and r , these will
admit a non-trivial solution if and only if the determinant of their coefficients is zero.
Interchanging rows and columns in that determinant we see that this implies that the
algebraic equations

ay+a1y,+ay, =0

must also admit a non-trivial solution for the constants a, a; and a, . Moreover, if ¥,
and Y, are linearly independent, a cannot be zero. Therefore,

y(x) = c1Y1(x) + c2 ¥, (%)
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where ¢; = —a; /a and c; = —a; /a are constants. Since y, ¥; and ¥, are any three
solutions of (9.2.2), subject to ¥; and ¥, being linearly independent, we conclude that
(9.2.7) is the most general solution of (9.2.2).

Is there a similarly simple expression for the most general solution of a non-
homogeneous, linear, second order DE ? The answer is yes and is addressed in detail
by the next theorem.

Theoem: If y,(x) is a particular solution of the non-homogeneous DE

2
&Y 1 a0 4 by = 0

and ¥, (x) and ¥, (x) are a fundamental set of solutions of the corresponding homoge-
neous equation

2
d
—Z x)zl + a(x)d—i +b(x)y =0,

then every other solution of the non-homogeneous equation may be expressed as the
linear combination

y(x) = Yp(x) + ¥ (x) = ¥ (x) + c1 Y1(x) + c2 Y2 (%) (9.2.8)

where ¢; and c;, are constants. The functions Y, (x) and y.(x) are called the particu-
lar integral and the complementary function of the non-homogeneous DE, respec-
tively.

Proof: Substitution of y(x) = ¥,(x) + ¥.(x) into the non-homogeneous DE yields

d*Ve. dy.
dx? dx

whose general solution is ¥, = ¢ ¥1(x) + ¢2 ¥, (x).

+a(x) +b(x)y.=0

9.3 Given One Solution, Find the Others

Suppose that we know one solution of the homogeneous DE (9.2.2). Can we use this
information to find a second linearly independent solution? Not only can we do that,
we can find the solution to any non-homogeneous counterpart as well. To see how
this comes about, we return to a consideration of the Wronskian which, according to
(9.2.6), is determined by the coefficient of the first derivative in the DE. And, of course,
it relates a first solution ¥, (x) to a linearly independent second solution ¥, (x). In fact,
d (V2 _Y1Ys-Yayi _ W)
i (1) -2 -

So, using (9.2.6), we find

¢
x expl- [ a({)d{]

ya(x) _ W(xo) [)/XO(T
1

Y1 (x)

dé+C
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where C is a constant of integration. Adding a constant times ¥4 (x) to ¥,(x) does not
provide new information and so we shall set C = 0. Similarly, including the multi-
plicative constant W(x,) is unnecessary and so we arbitrarily set it equal to one. Thus,
our final expression for a second linearly independent solution is

¢
x exp[- [ a({)d(]
YZ(X) = yl(X) . / Wd{ (931)
1

This remarkably simple expression is obtainable by another approach which has
the advantage of applying to both the homogeneous and non-homogeneous cases.
Called the method of variation of constants, it starts from the premise that a second
linearly independent solution is necessarily related to a first solution by a multiplica-
tive function or “variable constant”.

Thus, we set ¥>(x) = u(x) y1(x), u(x) # a constant and substitute into the homo-
geneous DE (9.2.2). The result is a DE for u(x) :

@ + 2y +a(x)y; du -0
dx? V1 dx
or,
d du d
Tx In <a) =-a(x) - 2a Iny; (). (9.3.2)
Integrating, we find
X
du

™| / a(Q)d¢

whence ]
x exp[- [ a({)d{]
V(O]

where c; and ¢, are constants of integration. Since any solution for u(x) will do, we
set ¢; = 1 and ¢; = 0. Then, multiplying u(x) by y1(x) we recover (9.3.1) as expected.
Similarly, a particular integral of (9.2.1)

ulx) =c, dé+c;

2
LY 1 a0+ by = 100

cannot be a constant multiplier of a solution of its homogeneous counterpart (9.2.2).
Therefore, we set ¥,(x) = v(x) ¥1(x) where ¥, (x) is again a known solution of (9.2.2).
Substituting into (9.2.1) we obtain a DE for v(x):

VI y 42V Y +v Y +a()(v vy +vyh) + b)vys = f(x),
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or
vy +[2V1 +a() vV + ] +a() ¥i +b(X) y1lv = f(x),
or
d2 2 dyl] dv _ fx)
=-— — | == . 9.33
dx [ A+ 56 dx | dx T e ©:33)
We note from (9.3.2) that a(x) + v % can be set equal to the logarithmic derivative
1
id—R where
R(x) dx
-1 2
V> Vi
Rx)= |- (22 =1 9.34
(0= [ ()/1)} W1, ¥l ( )

and Y, (x) is a second linearly independent solution of the homogeneous DE. Thus,
(9.3.3) becomes

d (dv) 1dRdv _ f(x)

dx \dx) Rdxdx y,(x)’

a first order, non-homogeneous DE for % Using (9.1.5) for its solution, we find
/ R(Of (€ )
dX " RO y1(8)

_d (v, [ n@re
" i (y) | Wy, @) @

/ MO | - yab0f0
dx Y1 Wly1(8), y2(&)] Wly1(x), y,(x)]"

Therefore, integrating to obtain v(x) and multiplying the result by y;(x), we conclude
that a particular integral of (9.2.1) is

_ [ @ [ 7OfE)
00 =200 | W@, v, @ % neo [ e 039

Notice that we have omitted the lower limits on the integrals which means that we
have omitted the two constants of integration. Were they included, we would have the
general solution, y(x) = ¥,(x)+c1 ¥1(x)+c2 ¥»(x), whereas our original objective was
simply to find a particular integral, ¥, (x).

Thus, knowledge of just one solution of a homogeneous, linear, second order DE is
sufficient to determine all other solutions of that DE and of all of its non-homogeneous
counterparts!
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Example: Consider the DE

It is clear from inspection that a particular solution of the corresponding homoge-
neous DE,

is y1(x) = x2. Thus, noting that a(x) = 0 in this case, we obtain a second linearly
independent solution by performing the integration

X 0
)’z(X)=X2/;d.{

The Wronskian of ¥, (x) and ¥, (x) is

1 -1
WY1, Yol =V Vs -V2 Vi = x2 (—) - (37) 2x = 1.

Therefore, using (9.3.5) with f(x) = 1, we find
(Y [elg o [ ()1
- (5) [ e pae-x [ (5p) pas
(-1 L1
ORIE

=X
2
as a particular integral of the non-homogeneous DE. The general solution of the non-

homogeneous DE is thus

__X 2,01
y(x) = 2+clx +ch.

9.4 Finding a Particular Solution for Homogeneous DE’s

We can now focus on homogeneous DE’s and in particular, on the problem of finding
a first solution. We might as well start with the simplest class of such DE’s, those with
constant coefficients:

d’y . dy

R by=0 (94.)
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where a and b are real constants.

The only function that enjoys a linear relationship with its derivatives is the expo-
nential. Therefore, let us try a solution of the form y(x) = e’ . Substituting into (9.4.1)
we find

(A% +ak + b) e™ = 0. (9.4.2)

This means that e’ is indeed a solution if and only if A is a solution of the quadratic
equation
A+al+b=0

which is called the characteristic equation of the original DE (9.4.1).
The roots of the characteristic equation are

A1 = %(—a +va2-4b) and 2, = 1(—a - Va2 -4b). (94.3)

2

If a® # 4b, A1 # A, and we have two linearly independent solutions
y1(x) =eM* and y,(x) = e®*. (9.4.4)

If a® < 4b, the roots will be complex. Should an explicitly real solution be required,
the two solutions in (9.4.4) can be combined to give

y1(x) = e /% cos (\/ 4b - azg) and y,(x) = e ®/%sin (\/ 4b - azf) . (9.4.5)

2

Ifa®> = 4b, A, = A = -£ and we have only one solution yilx) = e /2 A second,

linearly independent solution is then obtained from an application of (9.3.1):

£
x exp[- [ ad{]
yz(X)=e'“"/2/7d§

eaé
X
=e_ax/2/d£

=xe ™2, (9.4.6)

Examples: Consider y” + y’ — 2y = 0. The characteristic equation is A2+A -2 = 0
with roots A; = 1 and A, = -2. Therefore, this DE has the general solution y(x) =
cre¥+ce .

Next, suppose that we wish to solve y”’ - 2y’ + 10y = 0. Its characteristic equation
isA2-2A1+10 = O withroots A; = 1 + 3iand A, = 1 - 3i. So, the general solution in
this case is y(x) = e*(c1 cos 3x + ¢ sin 3x).

Finally, consider the DE y” + 8y’ + 16y = 0. The characteristic equation is 12 +81 +
16 = 0 which has the double root A = —4. This means that the general solution must
be y(x) = e™**(c1 + ¢3 X).
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When we make the transition to DE’s with variable coefficients, the task of find-
ing a solution becomes more complicated as do the solutions themselves. In fact, the
solutions are seldom expressible in terms of elementary functions. Experience tells
us that we should therefore seek solutions in the form of power series or integral rep-
resentations. We shall examine both approaches in due course but will discover that
power series provide sufficient insight into the analytical properties of solutions that
we can make them a principal focus of our attention.

The power series approach is called the method of Frobenius and it is fairly
straight forward to apply. Therefore, before launching into an exposition of the un-
derlying theory, we shall illustrate its practical content by means of some simple ex-
amples.

Ferdinand Georg Frobenius (1849-1917) was a student of Weierstrass. Best known
for his contributions to the theory of differential equations and to group theory,he taught
at the University of Berlin and at ETH Zurich.

As we can quickly verify by checking its characteristic equation, the DE

d’y o

ZZ +w°y=0, w=a real constant (9.4.7)

d x?
has the general solution y(x) = ¢; cos wx + ¢, sin wx. Our challenge is to re-derive this
result starting from the assumption that the DE admits a solution that can be repre-
sented by a Taylor series about x = O:

)’(X)=a0+a1x+azx2+...=Zamxm. (9.4.8)
m=0

We begin by differentiating (9.4.8) term by term (which means we are assuming
uniform convergence) to obtain

y”=2-1a2+3-2a3x+4-3a4x2+...=Zm(m—1)x’"’2.
m=2

Inserting this together with (9.4.8) into the DE, we have
Zm(m— 1)amxm‘2+2a)2 amx™=0.
m=2 m=0

Remembering that power series representations are unique, we recognize that this
equality of series implies equality on a term by term basis. Simply put, this means
that we can equate the coefficient of each power that appears on the left hand side to

Z€ero:
2-1lar+w?ap =0,

3.-2as5+w?a; =0,
4-3a,+w?a, =0,
m(m - 1) am + w? am_> = 0,
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This means that a, = —% do, as = —;‘%22 ay, a; = —35 az = (-1)? 4(“3’21 do, and in
general,
2
w w
am = - ... =(-1) (w?)* (9.4.9)

m(m - 1) dm-2 mm-1)...(m-k+1) Am-2k -

This is a recurrence relation for the coefficients. It expresses them all in terms of
either ap or a; depending on whether m is even or odd. This splits the solution into
two linearly independent parts, one which is an even function and the other an odd
function of x. More specifically, we find

(0 = 1_a)zx2 w'xt ai @’ WX
y() = ao St e ) vy (e S T

or,

y(x) = ¢1 cos wx + ¢, sin wx

where c¢; and c; are arbitrary constants. Thus, as we hoped we would, we have recov-
ered the general solution of the DE.

Suppose that we up the ante by using the same approach to solve the (non-
homogeneous) DE with variable coefficients

2
% +xy=x>. (9.4.10)

Proceeding in a tentative fashion, we start with the homogeneous counterpart

== +xy=0 (9.4.11)

and substitute into it a Taylor series representation y(x) = >~ am x™ . We find
m=0

oo [eS]
Z mim-1) amx™ 2% + Z m x™1 =
m=2 m=0

Next, we set m — 2 = n in the first series and m + 1 = n in the second series to obtain

Z(n+2)(n+1)an+zx +Zan 1Xx"=0

= n=1
o, N
2-1ay+ Z{(n +2)(n+1)an2 +an1}x" =0.
n=1
Then, equating the coefficients of successive powers of x to zero, we have a, = 0 and

an-1

Tmedme "L (9.4.12)

any2 =
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Applying this recurrence relation a few times gives

- -_ % 4 g __ D U
a, =0, as 3_2,04 4'3’05 5.4 0, a6 6-5 6-5.3.2°
__ a4 _ a, =_a5 _ =_a6 __ do
=7 676438 5.7 Y 5.8 586532
and hence,
)=ao|1- X + x° -+ +a x—i+X77—+
Y =do 3.276.5.3.2 )@ 437643

(9.4.13)

where ao and a; are arbitrary. Each of the two terms in brackets in (9.4.13) is a partic-
ular solution of the homogeneous DE. Since they are also linearly independent, their
linear combination is the general solution. Thus, once again, the assumption of a Tay-
lor series representation about x = 0 has lead directly to the general solution. The
only apparent difference from the previous example being that we do not recognize
the series as ones that sum to some combination of elementary functions.

Using the same approach to solve the non-homogeneous DE (9.4.10) looks like
a reasonable proposition because the non-homogeneous term is a monomial. If it
were anything more complicated than a polynomial, we would have to expand it in
a power series and the solution of the DE, while still feasible, would become much
more complicated. Proceeding as we did for the homogeneous case, we substitute

y(x) = > am x™ into (9.4.10) and obtain

m=0
o .
Z mm-1)amx™? + Z am x™1 = X3,
m=2 m=0

or
2-lay+ Z{(n +2)(n+ 1D ano+ a1} x"=x>.
n=1
Equating the coefficients of successive powers of x on the left hand side of the equality
to their counterparts on the right, we have

a=0,3-2a3+a90=0,4-3a,+a1=0,5-4as+a, =1,

and
mm-1)am+ams3 =0, m=6.
Thus,
aop ay aop ay 1
=35 =735 :1’ = ) = ’ == e
% Myt et e 3 YT 76 4.3 g7
and so,
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where y,(x) is the particular integral

Y =x° 817 8 mx“—h... (9.4.14)

Thus, regardless of whether the DE is homogeneous or non-homogeneous, the

power series method appears to yield not just one solution but the general solution.

But wait. There must be DE’s whose solutions do not admit a Taylor series expansion

about x = 0. In fact, invoking equation (9.3.1), we see that if a(x) = %, the relationship
between any two linearly independent solutions is

Y>() = 100 / ﬁ
1

Therefore, if ¥ (x) is non-singular and non-zero at x = 0 then ¥,(x) will have a loga-
rithmic singularity there and if y; (x) has a zero at x = 0 then y,(x) will have a pole of
the same order there. In other words, one can have a DE that has a particular but not a
general solution that is expressible as a Taylor series about x = 0. There is a physically
important DE whose solutions illustrate this point.
The DE

d’y 1ldy m’ _ _an i

ax2 * 2y = 0, m= an integer, (9.4.15)
is a special case of what is known as Cauchy’s DE of order 2, x? d S+ ax ¥ +by = Owith
a and b held constant. The standard approach to solving this class of DE sistoattempt

a solution of the general power y(x) = x° . However, because we want to illustrate the
power series method of solution, we shall attempt a Taylor series, y(x) = > anx".

n=0
Substituting into (9.4.15), we have

oo

oo oo
E nn-1anx" 2+ E nanpx"? - E m? a, x"? =
n=1 n=0

n=2

Assuming m # 0 and equating coefficients of successive powers of x to zero, we find
2 2 2
may=0,1la,-ma; =0, 2-1a,+2a,-m a, =0, ...,

mm-1)am+mam-m*>am =0, ...,nn-1)an+nan-m*an =0, ....

Thus, an = 0 for all n # m, and an, is arbitrary. In other words, y(x) = x™ is the only
non-trivial solution with a Taylor series representation about x = 0. To find a second
linearly independent solution we are obliged to resort to (9.3.1):

Y2(x) = y1(x )/é'[h(s‘)] /§2m+1 - 2m+1X7m'
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So, the general solution of this DE is
yX)=ci1x"+c;x™, m#0. (9.4.16)

If m = 0, ap will be the only non-zero coefficient implying that y; = 1 is now
the non-trivial solution with a Taylor series representation about x = 0. Using (9.3.1)

again, we find that
X

Y00 = / % =Inx

is the second linearly independent solution and so the general solution becomes
y(x)=c1+c2lnx, m=0. (9.4.17)

Evidently, we need some answers to questions regarding when and where the
power series method can be used and what sort of solutions we can expect when a
Taylor series is no longer valid for the general solution. As we shall now discover, the
answers are provided by a sequence of theorems due to a nineteenth century mathe-
matician called Frobenius.

9.5 Method of Frobenius

As we know, the most appropriate language for a discussion of power series represen-
tations is that of complex analysis. Therefore, we replace the real variable x by the
complex variable z and rewrite the canonical DE (9.2.2) in the format
2
% + a(z)% +b(z)y =0, (9.5.1)

where a(z), b(z) and y(z) are complex functions of the complex variable z that satisfy
the reality conditions a"(z) = a(z"), b"(z) = b(z"), ¥ (z) = y(z"). Next, we define as
ordinary points of the DE all points at which both a(z) and b(z) are holomorphic.
Theorem: If z = z, is an ordinary point of (9.5.1) then every solution of the DE is
holomorphic there.

The proof is quite straight forward. The holomorphy of a(z) and b (z) implies that
they have Taylor series about z = z, . Substituting these as well as an assumed Taylor
series for y(z),

y(@) = cmlz-z0)", (9.5.2)
m=0
into (9.5.1), we determine a consistent set of equations for the ¢, by equating the coef-
ficients of successive powers of (z - zo) to zero. The radius of convergence of the series
(9.5.2) will be the distance from z = z to the nearest point which is not ordinary.
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This confirms and extends the experience we acquired via the examples of the
preceding Section. It also brings us to the question of what happens at “non-ordinary”
or singular points.

If a(z) and /or b(z) have poles at z = zo but

(z - z0)a(z) and (z-2z0)> b(2)

are holomorphic there, z = z; is defined to be a regular singular point of the DE
(9.5.1). If one or both of these functions has an isolated singularity at z = zo, the DE
has as an irregular singular point there.

Theorem: If z = z, is a regular singular point then at least one solution of the DE
(9.5.1) can be expressed as a Frobenius series

y(z) =(z-20)° Z cm(z-20)™, co#0 and sis real or complex, (9.5.3)
m=0
which converges in any circle about z = z, that contains no other singularities.
Note that if
s = n, n = an integer, y(z) has a zero of order natz = zo;
s = 0, y(z) is holomorphic and non-zero at z = zo;
s = -n, n = an integer, y(z) has a pole of order natz = zg;
s#0,+1,+2,...,z = zo is a branch point of y(z).

& W

To prove this theorem, we rewrite (9.5.1) in the form

(z-20)° % +(z- zo)A(z)% +B(2)y=0 (9.5.4)
where
A(2) = (z-z0)al(z) = i am(z-z0)" = ao+ai(z-zo) +ar(z-z0)*+... (9.5.5)
m=0
and

B(2)=(2-20)*b(2) = > bm(z-20)" = bo+b1(z - 20) + by(z - 20)* +... (9.5.6)

m=0

are holomorphic at z = z, and so have Taylor series expansions about that point.
Substituting the series (9.5.3), (9.5.5) and (9.5.6) into the DE (9.5.4), we find

(z-20)° {s(s -1)co +i(m +s)(m+s-— 1)cm(z—zo)m]

m=1

+(z-20)° {sco+§:(m+s)cm(z—zo)m] xiaM(z—zo)m
m=1 m=0

+(z-20)° {co +Y cmlz-2o )"’} x> bm(z-20)" =0. (9.5.7)
m=1 m=0
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Equating coefficients of successive powers of (z — zg) to zero, we obtain

cols(s—1)+aps+pol =0
c1l(s +1)s + ap(s + 1) + pol + co[sar +p11 =0

ca2[(s +2)(s + 1) + aog(s + 2) + bol + c1[(s+) a1 + b1] + cols az + b2] = 0

cml(s+m)(s+m-1)+ap(s+m)+pol+...=0
(9.5.8)
Since cg # 0, the first of these equations becomes the indicial equation
s(s-1)+ags+ho=0 (9.5.9)

whose roots, s; ands,, Res; = Re s,, are the only permissable values for the index s.

Substituting the value s; for s in the remaining equations of (9.5.8), we can solve
successively for c1, ¢2, ... Cn, ... in terms of ¢y . The latter becomes an arbitrary mul-
tiplicative constant which can be assigned any value but zero. Often but certainly not
invariably, the value assigned to it is one.

Thus, we have generated the one Frobenius solution guaranteed by our theorem.
Note that this first solution corresponds to the root of the indicial equation with the
largest real part, s;. Does the other root, s, , generate a second linearly independent
solution? The answer is obviously no if s; = s,, that is, if the indicial equation has
a double root. In that case, we have to rely on equation (9.3.1) to produce a second
solution from our knowledge of the first. The result is novel within the context of our
current level of experience. This is because

ao
alz)=——+a1+ax(z-zp) +...
(D= 2 vt alz-z0)+..,

and so,
z

/a(()d(=aoln(z—zo)+alz+ %(z—zo)2+....

Thus,
z

exp —/a(()d( = ﬁexp[— a,z - %(z—zo -] (9.5.10)

which, when multiplied by m where y1(2) = (z - z9)™ i cm(z —z0)™, yields

m=0

7@ -2 [ oo 0% (9511)
— 40
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where f(z) has a Taylor series expansion about z = zo and is non-vanishing there:

f(2) = > f.(z-20)", f, # 0. But, when we examine the indicial equation, we see
m

that a double root occurs when pq = M in which case the root is 57 = “‘Ta") This
means that (9.5.11) becomes

Y2(2) = yl(Z)/(f(() d¢ =y,(2) x foln(Z_ZO)"'Z%(Z_ZO)m
m=1

In other words, the second linearly independent solution is of a form that is defined
to be a generalized Frobenius series. Specifically,

Y2(2) = ¥1(2) - In(z - 20) + (2 - 20)™ > _ dm(z ~20)™ - (9.512)
m=1
Therefore, when the indicial equation has a double root, a first solution of the
Frobenius form (9.5.3) is determined by substituting into the DE, determining the in-
dicial equation and its root, and then solving the recurrence equation(s) (9.5.8) for
the coefficients ¢ . A second, linearly independent solution of the generalized Frobe-
nius form is then determined by substituting (9.5.12) into the DE and solving for the
coefficients d,,.
A similar kind of phenomenon occurs when the two roots of the indicial equation
differ by an integer, s; — s, = N. Because s is a root of the indicial equation, we know
that

(s2 +N)(s2 +N — 1) + ao(s2 +N) + po = O. (9.5.13)

But the left hand side of this equation is the coefficient of cy in the Nth of the equations
(9.5.8). This means that we cannot solve for cy. If the other terms in the Nth equation
are non-zero, cy as well as all subsequent coefficients is undefined and we cannot de-
termine a second solution of the Frobenius form. If the other terms in the equation are
zero, cy is arbitrary. The result is a second solution consisting of a superposition that
contains cy multiplied by the first solution or, put another way, the result is the gen-
eral solution of the DE. Curiously, expanding about an ordinary point is one instance
of this situation. If z = z is an ordinary point, ap = bg = b1 = 0 and the indicial
equation becomes s(s — 1) = 0 with roots s; =1 and s; =0

To cover either situation, cy undefined or cy arbitrary, we can again use (9.3.1)
leading to equation (9.5.11). However, now we have s; +s, = 1 — ap and so ag +2 s1 =
1 + N. Therefore, in this case,

Y2 = 1(2) / ((ff))md(
— 40

yl(z) |:N(Z_£(;)+ le"’lel'l(Z ZO)+ZfN+m(Z ZO)

m=1

(9.5.14)
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We have no a priori information about f), . Depending on the DE it may be either zero
or non- zero corresponding to either a Frobenius or a generalized Frobenius represen-
tation for y,(2).

We can allow for both cases by using a multiplicative constant and setting

¥2(2) = cy1(2)In(z - 20) + (2~ 20)™ ) dm(z~20)" . (9.5.15)

m=0

Notice that, consistent with (9.5.14), we have chosen
1. the index for the Frobenius series in the second term of (9.5.15) to be s, and
2. the summation to begin with m = 0.

Thus, should the multiplicative constant ¢ turn out to be zero, not only will the DE have
two linearly independent solutions of the Frobenius form but they will correspond
respectively to the two distinct roots of the indicial equation. This happy outcome
always obtains when the distinct roots differ by a non-integer.

When the roots are distinct and do not differ by an integer, the equations (9.5.8)
yield two distinct and well-defined sets of solutions for the coefficients ¢ correspond-
ing to the two allowed values of s, s; and s, . Denoting these to sets by {cm } and {dn}
respectively, we again have two linearly independent solutions of the Frobenius form,

¥1(2) = (2-20)" Y cm(z—20)", co#0 and

m=0

¥2(2) = (2-20)" Y dm(z-20)", do #O. (9.5.16)

m=0

We will illustrate all of these possibilities with some examples. But first, a comment
about irregular singular points is in order. It is easy to verify that if a(z) and b(z) are
more singular than we have assumed, the indicial equation will have at most one root
and so the DE may have no solution of the Frobenius form. In that case, often corre-
sponding to solutions with an essential singularity at z = z, other techniques are
required.

9.6 The Legendre Differential Equation

Adrien-Marie Legendre (1752-1833), a Parisian from a wealthy background, taught more
or less continuously at the Ecole Militaire and the Ecole Normale despite the many, often
turbulent, regime changes of that period. Although best known as a geometer, he also
made important contributions to classical mechancs, mathematical analysis, number
theory and statistics. He was made an officer of the Légion d’Honneur in 1831.
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ADEthat arises in a great many physical applications that require the use of spher-
ical coordinates is named after Legendre. Using real variable notation again, it is
dy

2
(1- xz)% — 2+ Ay =0, A= a real constant. (9.6.1)

In applications, the variable x is actually the cosine of the polar angle 8 and so it has
the range -1 < x < 1. Recognizing that x = +1 are regular singular points of the
DE we begin to worry that its solutions will be singular there. This is something we
cannot permit and so this DE is always accompanied in applications by the boundary
conditions |y(+1)| < os.

The point x = 0 is an ordinary point of the DE. Therefore, we know that its gen-

eral solution has a Taylor series representation y(x) = > cmx™, |x| < 1. Given our

observation about x = +1 we expect that the series will gi\?erge there, an expectation
that can be confirmed explicitly. Thus, while seeking the coefficients ¢, we will also
be interested in finding some means of modifying the representation so that its range
of validity is extended to include +1.

Rather than start with the normal assumption of a Taylor series, we shall assume
a Frobenius series

yo) => emx™™, co #0 (9.6.2)
m=0

and then confirm that the roots of the indicial equation give rise to a Taylor series for
the general solution.
Differentiating (9.6.2) and substituting into (9.6.1) we have

i Cm(s +m)(s +m - 1)x*"2 - i cml(s+m)(s+m—-1)+2(s +m) - A]x*"™ = 0.
m=0 m=0

(9.6.3)

The first term corresponds to y”, the second to —x? y”, the third to —2xy’, and the
fourth to Ay.

The lowest power of x in this equation is x*~2 (from the m = O term in the first sum).
Its coefficient co s(s — 1) and the constraint co # O gives us the indicial equation:

s(s-1)=0 (9.6.4)

whose roots are s; = 1 and s, = 0. We note that the roots differ by an integer.
The next power of x is x>~ (from the m = 1 term in the first sum). Its coefficient

ci(s+1)s

must also be zero. Therefore,
1. ifs=1,c; =0and
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2. ifs =0,y is arbitrary.

So far, everything is working out as our analysis in the previous section suggested it
would.

Now we consider the coefficient of the general power x**™ 2, Equating it to zero
we have

cm(s+m)(s+m-1)-cpal(s+m-2)(s+m-3)+2(s+m-2)-1] =0.

This becomes a recurrence relation for the coefficients. In fact, inserting the value s =
1, we find
[((m-1)m-A]

mm + D) Cm—2, M=2, (9.6.5)

Cm:

which expresses all of the even coefficients in terms of ¢y and all of the odd coefficients
interms of ¢, . But, since c; is zero for this value of s, this means that we obtain a single
solution, multiplied by the arbitrary constant co:

1-2—AX3+(3-4—A)(1-2—A)X5 +(5-6—/\)(3-4—/\)(1-2—/\)X7+.“

Vi) =x+

3! 51 7!
(9.6.6)
where we have set ¢y = 1. Note that the solution is an odd function of x.
If we use the other root s = 0, the recurrence relation becomes
Cm = [(m - 2)(m - 1) - 4] Cmz, M 2 2. (9.6.7)

m(m-1)

Again, all of the even coefficients relate back to ¢y and the odd coefficients to ¢; but
this time c; is arbitrary. Thus, as expected for an expansion about an ordinary point,
(9.6.7) generates the general solution in the form of a linear combination of two lin-
early independent Taylor series. Moreovet, as predicted in the commentary following
equation (9.5.13), the particular solution multiplying c; is just the y;(x) in equation
(9.6.6). The solution multiplying co is

Yo) =1+ %X2+(3 '2;!/0(—/0 X4+(5 -4—/()(36!-2—/0(—/() S

Neither series converges at x = +1. Therefore, the only way we can be assured
of having a solution that is well-defined for all x in the range -1 < x < 1 is to take
advantage of the fact that the numerator of (9.6.7) can vanish. In fact, ¢;,, = OwhenA =
I(1+1),1=0,1,2,...,and one of the two linearly independent solutions becomes a
polynomial of degree I. When normalized to have the value 1 at x = 1, these solutions
are called Legendre polynomials and are denoted by p;(x). They occur in a wide
range of physical applications and will be studied in some detail in Chapter 11. For
now it suffices to note that our normalization requirement can be met by setting

@n!

C = 21(1')2 . (969)

(9.6.8)
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Then, using (9.6.7) in the form

. _ (m-1)m c

"2 - 2)m- D10 )
we find

(21 - 2k)!
¢ ) .6.10

o = (-1) 2LkI(1 - K)I(1 - 2k)! G610
Thus, for example,

Po(x) =1,

P1(x) = x,

Po0) = 53 -1),

Ps() = 55 -3x),

P4s(x) = %(35 x*-30x*+3),....

The linearly independent solution for A = I(1+1) is denoted by Q;(x) and is singular
at x = 1. In fact, it has branch points there. For the special case of I = 0, equation

(9.6.7) gives
3 +x7+ _1ln1—x
7 07T 2 T 1+x

Xy
3

X
5

Q,(x) =x+

9.7 Bessel’s Differential Equation

Friedrich Wilhelm Bessel (1784-1846) was a German astronomer who, in the course of
studying the dynamics of many body systems, systematized the functions that now bear
his name. Although this would be a sufficient accomplishment to rank him as one of the
more important mathematicians of this period, his contributions to astronomy were even
more important. In particular, he was the first to use parallax to calculate the distance
to a star.

Another DE that occurs in many, many physical guises is called Bessel’s equa-
tion. In its most general (real variable) form it is

2
X % + x% +(x*-p?y = 0. (9.7.1)
Here u is a non-negative real parameter called the order of the equation.

We notice immediately that x = O is a regular singular point. As we shall see,
everything that can happen with expansions about a regular singular point do happen
for the solutions of (9.7.1) as we let the order parameter vary. However, we are always
assured of the existence of at least one solution with a Frobenius expansion about x =
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y(x) = Z cm X5, co #0. (9.7.2)
m=0

Substituting this into (9.7.1) we find

oo

Z(s +m)(s+m-1)cm x>+ Z(s +m)cm x*M + Z Cm X542 Z Hem xS =0
m=0

m=0 m=0 m=0
or,

oo

Z[(s +m)? - U] em x>+ Z Cm X2 = 0. (9.73)
m=0 m=0
Equating the coefficients of successive powers of x in (9.7.3) to zero yields the fol-
lowing equations

co(s*>-1*) =0
cil(s+1)*-p?*1=0 (9.74)

cml(s+m)? —p?] +cp2 =0, m=2.
From the first of these we obtain the indicial equation
s2-pu?=0 (9.7.5)

which has the roots s = +p. Recalling the conclusions of our theoretical analysis in
Section 9.5, we note that there is a need to consider four cases based on possible values
of u:

U =0;u= an integer; u = a half - integer; u = anything else.

From the second equation we see that ¢; must be zero unless y = % and we choose
the root s = —u. In that one exceptional case c; is arbitrary and so we are free to set
c1 = 0. As we learned in Section 9.5, the terms that we lose by exercising this freedom

1

sum to the solution obtained with the larger root s = u = +5.

From the third equation we obtain the recurrence relation

-1
=(s+,u+m)(s—y+m)

Cm Cm-2, mM=2. (9.7.6)
This relates all even coefficients to co and all odd coefficients to ¢; . Thus, since ¢; = O,
all of the odd coefficients must be zero also.

The solution corresponding to the largest root of the indicial equation, s = u, will
have a Frobenius expansion about x = 0 regardless of the value of y and we are now
in a position to determine what it is. Setting s = y in (9.7.6) we have

-1

Cm = Qu+m)m ¢

m-2
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or, sincemiseven,m=2k,k=0,1,2,...,

-1
Cok = m Cok-2 - 9.77)
Thus, starting with ¢,; and applying (9.7.7) k times, we have
(-1)
= . 7.8
C2x 220 (u+ 1) +2)...(u+k) co (©.78)
At this point it is conventional to choose
U S
°T 2T+ 1)
so that (9.7.8) becomes
IPRY:
Cox = ( 1) (9.7.9)

2W2 AT (u + k+ 1)

This completes the determination of the solution corresponding to s = u which, fol-
lowing convention, we will denote J, (x):

_ hd (_1)" X\ K2k
J, (%) = ; ARG+ kD (5) . (9.7.10)

The rather lengthy name that is attached to this series is Bessel function of the
first kind of order u. It looks a good deal more friendly when we assign u integer or
half-integer values.

Specifically, if u = m, an integer or zero, we can replace I'(m + k + 1) by (m + k)!
and obtain

Tn0) = Zk,( ' (f)wk, m=0. (9.711)

(m+k)!

And, if =1,
Tyt = \/7Z k'r((1 i)k+ 1) (X>2k
VA L
= \/:Slnx (9.712)

where we have used the Taylor series for sin x and the identity

2k +1)!
22]{+1 k!

F(k+1+%)= V.
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We shall now turn our attention to finding a second, linearly independent solution
to Bessel’s equation. The first case we will consider is u not equal to zero, an integer
or a half- integer so that the two roots of the indicial equation will be distinct and will
not differ by an integer. According to our analysis in Section 9.5, the second solution
will then be the Frobenius series obtained with the root s = —u. Thus, making that
substitution in (9.7.6) we obtain the recurrence relation

-1

C2k = m CZk—Z’ k >1. (9'7'13)

Applying this k times we find

(-1)F

22Kk - )2 -p)... (k- ) Co (9.7.14)

Cok =

Therefore, choosing
1

27°T(1-p)
in analogy to what was done for the first solution, we obtain as a second, linearly
independent solution the Bessel function of the first kind of order —u:

_ 1) oy
]‘”(X) Z k'F(k -u+1) ( ) ) (9.715)

This continues to be a well-defined, independent solution of Bessel’s equation
when u has half-integer value. In fact,

2
J1 () =4/ - COSX. (9.716)

Evidently, this is an instance of both solutions having Frobenius representations
even though the roots of the indicial equation differ by an integer. Will our luck hold
with the same being true when y = m, an integer? The answer is no. Since I'(k-m + 1)
is infinite for k = 0,1, 2, ..., m — 1, the coefficients of the first m terms in the series
for J_,,(x) vanish and the summation starts with k = m

( 1 2k-m
a (X)_Zk'(k )m)' (3)

But, changing the summation index to j = k — m, this becomes

Co =

3 hnd (_1)m+j X 2j+m_ m i
]"”(X)_;j!(ﬂm)!(z) - (1)"J, (0, m=1,2,.... (9.717)

Thus, for the case of u = m, an integer, the second, linearly independent solu-
tion can only be expanded about x = O in a generalized Frobenius series. And, of
course, the same is true for u = 0. These solutions are called Bessel functions of the
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second kind and are denoted by Y,,(x), m =0, 1, 2, .. .. Their generalized Frobenius
representations are

Ym(x) =]m(x)1nx+x’mdexk,m =1,2,..., (9.7.18)
k=0
and
Yo(x) = Jo(x) Inx + Z dx x~. (9.7.19)
k=1

We shall solve explicitly for the coefficients {d;} for the case m = 0 and state the
outcome of such solution for integer values of m.
Substituting (9.7.19) into Bessel’s equation of order zero,

&’y  dy
XrE T At s 0, (9.7.20)

and using the fact that J,(x) is known to be a solution of this DE, we find
d]() +Zk(k 1) de +dekxk'1+2dkxk+1 =0. (9721)
k=1 k=1

From (9.7.11) we know that

P> g ()"

and so inserting this series in (9.7.21), we have

2k-1 =2 hind
zzk«k () SR>t -

The coefficient of the lowest power of x(x°) is just d; and so we immediately obtain
d1 =0.
Equating the coefficient of any even power of x(x*¥) to zero, we have
(k+1) dogs1 +dak-1 =0, k=1,2,....

Therefore, since d; = 0, so must g3 = 0, d5 = 0, ..., successively.
Equating the coefficient of any odd power of x(x***1) to zero, we have

-1+4d,=0, k=0, and

(_1 )k+1

m+(2k+2)2 d2k+2+d2k=0! k=1,2,.... (9.7.22)
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Thus, d> = 7, § + 16 ds +d2 = 001, dy = 75 and, in general ,

(1) 1 1 1 1
d2k=m 1+ +§+ +...+=5, k=1,2,.... (9.7.23)

Collecting all of these results and applying them to (9.7.19) we can express the Bessel
function of the second kind of order zero as

o k-1
YO(X)=]0(X)IHX+Z((;|))2 {1+%+%+...+%}(§)2k

k=1
_ 1o 3 4, _
—]O(X)lnx+4x 138 ¢ +— ... (9.7.24)

Exactly the same procedure can be followed to determine the second linearly in-
dependent solution of

2
X —+xd—x+(x2—m2)y=0, m=1,2,.... (9.7.25)

That is to say, we can assume a solution of the form

Ym(¥) = [0 Inx + x> de x*, (9.7.26)
k=0

substitute it into (9.7.25) and solve for the coefficients {d;}. This is precisely what we
would do if (9.7.25) were just any old DE. However, because of the physical relevance of
Bessel’s equation, it is conventional to take an approach that yields a second solution
that is defined in an order-independent way.

The definition of the second, linearly independent solution that is used for all
values of the order parameter y is

J,(00) cos pmr - J_,(x)

Sin (9.7.27)

Ny(x) =

This is called the Neumann function of order u. For y # an integer or zero it is a
well-defined linear combination of J,(x) and J_,(x) and in particular, for u = 212* Ll=
0,1,2,...,

N (0) = (-1 ) T2 (). (9.7.28)

For u = an integer or zero (9.7.27) produces g by dint of the identity (9.7.17). For these
cases the Neumann function is defined by an application of L'Hospital’s rule:

_ v cosum - msin nJ (x)—dl—’“
NGO = lim Ju(x) cosyn Ju(x)  im U Uy dp
p—>oo sin um P—roo JTCOS U
1 [ dJu(x) m dJu(X)
-t (-1 =0.,1,2.... 72
n{ i ’Fm CO"EEE] e m=0 (9.7.29)
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To calculate the derivatives with respect to u we use the series expansions (9.7.10)
and (9.7.15):

aj,(x) X = (1)K x\mi2k do1
=Jn()In > + = — ; (9.7.30)
du e m 2 ; k! <2> Az I'(2) | ,_ ka1
aj_,(x) X = (-1)f x\m2k g1
=—J . x)InZ - = -_— —— . (9.7.31)
du e m 2 ; k! (2) dz T'(2) | ,._ ki1
We know from Section 5.2 that
_ 1 1 1 1_
d 1 i ("*1)![n—1+n—2+"'+1 7], nx2
E@ z=n - s n=1
1), n=0,-1,-2,...
(9.7.32)

where + is the Euler-Mascheroni constant,
. 1 1 1
fy—nh_)rgo [I+§+...+E—lnn} =0.5772....
Thus, on substituting (9.7.30) through (9.7.32) in (9.7.29), we obtain finally

Ni() =2 1,00 In 3

1o (C1)f rxyme2k 1 1 1 1
+EZ k! (f) m+ll \m+k mek-1 "1 77

m-1 k+m _
1 -1 m+2k Mk
o ( k)l (%) (-1)"*(m - k- 1)!
k=0 ’
1o (C1)M™ xy-mi2zk (-1) 1 1 1
+Ek_z ki (i) G-mi\k-m k-m-1 """ 17"

(9.7.33)

Setting m = 0 and simplifying we recognize the series that emerges for No(x) as the
linear combination

No() = 2[¥o(0) + (3 = 1n.2) Jo (). 9734)

Had we solved explicitly for ¥,,(x), m = an integer, we would find that this relationship
between Neumann functions and Bessel functions of the second kind obtains for non-
zero values of the order as well:

N () = %[Ym(x) +(y=1n2)], 0], m=0,1,2,.... (9.735)
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9.8 Some Other Tricks of the Trade

Representation of the solution by a series about the origin is a sufficiently powerful
approach that we can undertake the solution of most physical problems with confi-
dence. Nevertheless, the method does have its limitations. Therefore, it is useful to be
aware of the supplementary techniques discussed in this Section. Each is designed to
circumvent one or more of the limitations.

9.8.1 Expansion About the Point at Infinity

Expansion about the origin is possible when the DE

2
Y a0 by =0 (9.81)
has an ordinary or regular singular point at z = 0. Two immediate limitations are
1. ityields a solution whose domain of definition is restricted to |z| < |{| where z = {
is the location of the next or nearest singularity, and

2. it cannot be used at all if z = 0 is an irregular singular point.

These can be circumvented if z = oo is an ordinary or regular singular point because
that means that the DE admits at least one solution with a representation of the form

y(2) = (%) > cm (%) (9.8.2)
m=0

for |z| > || where z = ( is the singularity furthest from the origin.
As usual, we test the status of z = co by making the substitution z = % and de-
termining whether w = 0 is an ordinary, regular singular or irregular singular point.

Since
dy _ dydl_—l dy ——wzﬂ

dz dwdz z2dw dw
&y _d (dyNdw _ o[, dy od’y|_, sdy  ad’y
dz2 dw\dz)dz " dew 2z =2w aw VW dz2
the DE (9.8.1) becomes
4 dy 3.2 -1y 4y -1y, _
w T +[2w’ -w”alw )]W +b(w )y =0. (9.8.3)
-1 -1
Thus, if % - a(:vvz ) has no worse than a first order pole and b(:VV4 ) has no worse than

a second order pole at w = 0, our original DE (9.8.1) will admit a solution that can be
expanded in a Frobenius series about z = oo like that in (9.8.2).
Examples: Consider the Legendre DE of order zero,

dy

_dY W
a X)dx2 2de
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We know that it has the two linearly independent solutions

3 5
Po(x) =1 and Qo(x)=x+%+%+..., x| < 1.

Since we know that the series sums to In g we have an analytic continuation

for |x| > 1. However, we shall ignore this knowledge and seek a series solution that is
valid in the latter domain.
Setting x = " and noting that

sy —2/lu -2u 1y
alu )—71_1/112 =71 and b(u ") =0,
we find that
-1
2_1, u ) = 24 ond bu™) =0 and so the DE becomes
u u? u?-1 u4

&y, o dy

du? u?-1du
Recognizing that the transformed DE is still Legendre’s equation of order zero, we can
write down two linearly independent solutions without further ado:

u3 5

yiwH=1and y,(uH)=u+ 3 + u? +... for |u| <1.

Transforming back, this means that the original DE has the solutions

1 1 "
— = =§ f > 1.
+3X+5X+ 2m+1 or x|

==

yi(x) =1 and y,(x) =

Evidently, ¥, (x) is just Po(x) while ¥,(x) may be identified with Q,(x). Thus, we have
found the representation we were seeking and, of course, it sums to % In (’;f—i) .
As a second example, consider the DE

2 1 o 2 1
1 uza(u )—u e 2u =0,
and 1 1
Fb(uil) = F( u4) = _1
so that the transformed DE reads
2
dy ~y=0
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This has constant coefficients and can be readily solved. The result is

h=e =3 X and y - e - 3 ELTW

) =et =3 U and yh=et =y T
m=0 m=0

Thus, transforming back to x = u™!, the solutions of our original DE are

> m—m

yl(x)=e§=z% and yz(x)—e’?—z( 1) , |x|>o0.

m=0 m=0

9.8.2 Factorization of the Behaviour at Infinity

In appropriate units, the Schrodinger equation for a one-dimensional harmonic oscil-
lator reduces to
d’y
d 2
This equation has an irregular singular point at infinity and its solutions have essential
singularities there. In fact, for large values of x and all values of A, the DE is approxi-
mated by the equations

+(A-x?)y=0, A= a real constant. (9.8.4)

da’y 2
Ix2 (x"+1l)y=0
whose solutions are y(x) = XT Therefore it is plausible to expect the solutions

of (9.8.4) to behave like either e 7 ore 7 as x — oo. However, to be physically ac-
ceptable, solutions must be bounded everywhere. To ensure that we comply with this
(boundary) condition, we factor in the desired behaviour at infinity and set y(x) =

XZ

v(x) e” 7. The DE is then transformed into a simpler DE for v(x):

d v

i -2x d— +A-1v= (9.8.5)
This is known as the Hermite equation. It has an ordinary point at the origin and so
both of its linearly independent solutions can be represented by Taylor series about
x = 0. Both of these series behaves like e* for large x. However, as with the Legendre
DE, we can arrange to have one of the series terminate and become a polynomial of
degree n by restricting A to the the integer values A = 2n+1,n = 0,1, 2,.... With
appropriate normalization, this solution defines the Hermite polynomial of order
n and is denoted by H,(x). Thus, the physically acceptable solution of (9.8.4), (the
wavefunction of a one-dimensional harmonic oscillator in its nth energy level), is

y() = e Ha(0).
Explicitly solving (9.8.5) provides a useful exercise. We start with the usual as-

sumption for an expansion about an ordinary point:

v(x) = Zcm x™, co #0.
m=0



264 —— Ordinary Linear Differential Equations

Substitution into the DE then yields

Z cmm(m-1)x"2+ Z cmA-2m+1)x™=0.

m=0 m=0
Equating coefficients of successive powers of x to zero, we find that ¢y and ¢; are ar-
bitrary and that all coefficients ¢, are linked by the recurrence relation

2m+1)-A

Cme2 = o T D m+ 1) ™

This yields the general solution

1—AX2+(1—/1)(5—/1)X4

vix)=co |1+ 51 7

+...:|+C1 [x+ 30 =
For a specific set of values of A,A = 2n+1,n = 0,1, 2, ..., one of these series ter-
minates after the x" term and, suitably normalized, yields the Hermite polynomial,
Hn(x). The large x behaviour of the other series is determined by the higher order
terms, those with m > n. For such large m, the recurrence relation is approximately

Cm+2 2

cm m

which is the relation satisfied by the coefficients in the Taylor series expansion of e’ .
XZ
Thus, the corresponding solution of (9.8.4) behaves like y(x) =~ e7 as x — oo.

9.8.3 Changing the Independent Variable

If we make the substitution x — t = T(x), the DE

% + a(x)% +b(x)y=0 (9.8.6)
becomes
2
[T’ )? Z—t)z’ +[T"(x) + a(x)T’(x)]% +b(x)y = 0. (9.8.7)

One can now choose T(x) to simplify the transformed equation and thereby obtain a
DE that (one hopes) is easier to solve. The obvious choice is to require

T
dx?

o —exp {—/a(f)dé'},

dr _

Y

+a(x)

or

3_/1)(3+(3_/\)(7_)\)x5+... .
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or
X ¢
T = / exp d - / a@)de b dg (9.8.8)

so that we eliminate the second term in (9.8.7).
Example: The Euler equation

p —X+xl +y=0 (9.8.9)

can be simplified by setting

t=T(X)=/Xexp —/(:,d{ d(=/xd((:1nx

or, x = e’ . Under this transformation the DE becomes
2 9 2
1\"dy, 1 dy
(}) dg Ty =0 g ty=0
whose solutions are ¥, (t) = cos t and ¥,(t) = sin t. Therefore, two linearly independent
solutions of the Euler equation are

¥1(x) = cos(lnx) and ¥,(x) = sin(In x). (9.8.10)

The Euler equation can be solved almost as quickly using the Frobenius method. As
an exercise, show that this yields an equivalent linearly independent pair, ¥; (x) = x'
and y,(x) = x7.

9.8.4 Changing the Dependent Variable

Factoring the behaviour at infinity illustrated the utility of replacing the dependent
variable y(x) by a product u(x) - v(x) where u(x) is a known function or a function that
can be selected with the express purpose of simplifying the resulting DE for v(x). In
fact, making the substitution y(x) = u(x) - v(x) in

d’y

dy -
Tt a(x)a +b(x)y=0

we obtain
w'” + u' + al)u)v + W + a(u’ + b(x)u)v = 0. (9.8.11)

At this point we need to know the functional dependence of a(x) and b(x) if we are
to make the optimal choice for the function u(x). However, one simplification that
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can always be achieved is to eliminate the second term in (9.8.11) because that simply
requires

X

2% +a(x)u=0 or u(x)=exp —/a({)d{ . (9.8.12)

The DE for v(x) then becomes

d*v _lda _1 2}, -
i (b( X) x4 [a(x)] ) v=0. (9.8.13)
With just two terms in this DE, one can more readily estimate the behaviour of its so-
lutions at infinity which turns out to be the principal application of this technique.

Example: The equation x? y”’ + 2xy’ + (x?> -=2)y = 0 is a variant of Bessel’s DE called

the spherical Bessel equation of order two. If we divide through by x? it becomes

dy 2dy (1 2) _

a2 xax T\ )V=0
The large x behaviour of the solutions of this equation is not apparent. However, if we
make the substitution y(x) = u(x) - v(x) where u(x) is defined by (9.8.12),

u(x) = exp —%/%d{ =exp{—lnx}=%,

dzv 2 _
aat (1 X—)v 0

which is approximated by v’ + v = 0 for large values of |x|. This implies that v(x)
behaves like cos x or sin x asymptotically and hence that y(x) ~ € or S’“ as |x| —
oo, The exact solutions for v(x) can be found by a straightforward apphcatlon of the
Frobenius method. The result is v1(x) = cosx — % and v,(x) = sinx + <X which do
indeed behave like cos x and sin x for large |x|.

then v(x) is a solution of

9.9 Solution by Definite Integrals

This Section will pull together a couple of loose ends from earlier chapters. We have
seen that integral representations offer an alternative to representation by power se-
ries and that they are often more useful because of a larger domain of definition and
because they provide a basis from which still other representations such as asymp-
totic expansions can be derived. We have also seen that Fourier and Laplace trans-
forms offer a particularly effective means of solving a specialized class of differential
equations accompanied by appropriate boundary conditions. And of course the result
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of their application is solutions expressed as Fourier and Laplace integrals. All of this
suggests that we should explore the possibility of a general method of solving DE’s
based on the representation of the solutions as definite integrals.

We start by introducing an operator notation that will turn out to be very conve-
nient both here and in Chapter 10 where we address boundary value problems in a
formal way. In this notation the DE

d’y dy
@ (0) =5 + a1 (0) 7+ ao(x)y = 0 (9.9.1)
becomes
£xy(x) =0 where £y =a (x)d—2+a (x)£+a x) (9.9.2)
X x = U2 dXZ 1 dX 0 T

and is called a differential operator. It indicates the operations involved in obtaining
the differential equation but is itself only symbolic. Notice that we have abandoned
our usual convention of taking the coefficient of the highest derivative to be one. This
is for ease of discussion later on and has no fundamental significance.

For any such operator ¢, and a specific interval @ < x < f, one can define an
adjoint ¢} with respect to a weight function w(x) by the requirement that for any
sufficiently differentiable functions u(x) and v(x),

w(x)[v(0) x u(x) - u(x) g v(x)] = %Q(u, V) (9.9.3)

where Q(u, v) is a bilinear combination of u(x), v(x), ‘j—ﬁ‘( and % and w(x) is some func-

tion that is positive definite on the interval in question. The preceding sentence is quite
a mouthful. Put more succinctly, it simply requires the left hand side of (9.9.3) be a
perfect differential so that £ can be determined by a process of partial integration.
We will illustrate with an example as soon as we introduce some more nomenclature.
Equation (9.9.3) is called the Lagrange identity and if we integrate it over the interval
a < x < B, we obtain the generalized Green’s identity

B B
[0 £ uGom0dx ~ [0 £ voohw(0dx = QU= QW+ 994

The right hand side of this equation is called the boundary or surface term.
Joseph-Louis Lagrange (1736-1813) was born Giuseppe Lodovico Lagrangia in Turin.
Although he did not take up residence in France until 1787 at the age of 51, he is generally
considered to have been a French mathematician and physicist. Indeed, after surviving
the French Revolution, his accomplishments were recognized by Napoleon who made
him a Count of the Empire. When he died at age 77, he was buried in the Panthéon in
Paris. Lagrange made significant contributions to analysis and number theory but he is
most noted for his work in classical mechanics. His two volume monograph on analyti-
cal mechanics, published in 1788, was the most comprehensive presentation of classical
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mechanics since Newton. It provided a foundation for the development of mathematical
physics over the next century.

George Green (1793-1841) was an English miller and a self-taught mathematician
and physicist. In 1828, four years prior to his admission as a mature undergraduate at
Cambridge, he published a treatise that contained the first mathematical theory of elec-
tricity and magnetism. Like Lagrange’s famous treatise, this provided a foundation for
the work of subsequent phyicists such as Maxwell and Lord Kelvin.

Example: The simplest differential operator possible is just £, = %. A single partial
integration applied to the product u(x) £, v(x) = u(x)% gives us

dv

B B
/ V00 2 x - / u(x) [—a} dx = u(BV(B) - u(@v(a).

a a

Comparing with (9.9.4), we deduce that the adjoint of ¢, = % with respect to a weight
wx) = 1is ¢} = —% and that the function Q(u, v) = u(x)v(x). Notice that £} # ¢,.
If they had been equal, we would say that the operator £, is self-adjoint. As it turns
out one can convert % into a self-adjoint operator by the simple expedient of multi-
plication by the pure imaginary i.

When complex functions are involved, the products in the Lagrange identity have
to be modified accordingly and (9.9.4) becomes

a

B B
/ [V (2 w)]wdx / (s v) Iwdx = Qe )| = 0Gav)| . (9.9.5)

Applying this to ¢, = i &, we have

B B "
/v* [l%} dx—/u [zg] dx = i[u(B) v'(B) - u(a) v'(a)].

a a

Thus, ¢ = id% = ¢, which confirms that this operator is self-adjoint with respect to
the weight w(x) = 1.

Finding the adjoint is just as straight forward but somewhat more tedious as one
increases the order of the differentials in the operator ¢, . In the case of the second
order operator with real coefficients,

2
d
= (04 + @100 2+ ao), 996)
one can show that the adjoint, with respect to weight w(x) = 1, is

2
Ly = az(X)% +(2a5300 - al(X))% + (a3 (x) - a1 (0) + ao(x)). (9.9.7)
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We note in passing that the £, of (9.9.6) becomes self-adjoint with respect to the weight

function
1 [ a1(8)
w(x) = 400 &P { / o {)d{ } ) (9.9.8)

As we saw in Section 5.3, an integral representation of a solution of our DE would
take the form (cf. equation (5.3.2))

y(z) = / K(z, iv(t)dt

C

for some kernel K(z, t) and spectral function v(t). Specializing to real variables and
choosing C to be the real line segment «a < t < 8, this becomes

B
Y00 = / K(x, Ov(Ddt. 9.99)

a

Substitution into the DE (9.9.1) results in

B
&y = / Lex KOx, Dlv(Ddt (9.9.10)

and so the first question to address is what can we do with ¢, K(x, t) short of assum-
ing an explicit functional form for the kernel K(x, t)? The answer is to assume the
existence of a differential operator in ¢, M;, such that

M K(x, t) = ¢, K(x, ¢). (9.911)

Then, applying the Lagrange identity to M; and its adjoint, we have

v(OMe K(x, O] - K(x, Mz v(0] = %Q(K »V) (9912)

where Q(K, v) is a bilinear function of K(x, t), v(t), and their derivatives. This means
that
B B
Lxy() = / [M¢ K(x, O]v(t)dt = / K(x, O M; v(Ddt + Q(K, v)| 7 . (9.9.13)
a

a

Therefore, y(x) will be a solution of £, y(x) = 0 if
L QK,v)|,_,- QK,v)|_,=0,and
2. v(t)is a solution of the (adjoint) equation
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M v(t) = 0. (9.9.14)

Evidently, the success of this approach rests on the relative ease of solving (9.9.14) in
comparison with (9.9.1). This in turn depends on a judicious matching of the kernel
K(x, t) to the differential operator ¢, . We shall illustrate this point with a few exam-
ples.

As we saw in the last chapter, Laplace Transforms are an effective means of solving
DE’s with coefficients that are either constant or at worst, linear functions of x. In the
present context, this suggests that choosing the kernel

K(x,t) = e

should be useful. Not surprisingly, this is called the Laplace kernel.

Because of the unique properties of the exponential, it is particularly easy to
match up any ¢, with its M, counterpart. In fact, one merely replaces each power xt
with the differential dd—; and each differential dd—;,. by the power ¢ . For specificity, let’s
consider the DE

_ 4y dy .
L V(%) =X +(a+b+x)dx +by=0 (9.9.15)
where a and b are constants. Making the prescribed replacements, we have
M v(D) = £ % +(a+ b)tv + t% +bv=t(t+ 1)% +[(a + b)t + b]v. (9.9.16)

Therefore, from (9.9.7), the adjoint equation that we must solve is
M V(O = e+ DY 4@+ b- 24 b-1v =0, (9.9.17)
In addition, the Lagrange identity (9.9.12) is
VM K-KM{ v = %[t(t + 1)vK]. (9.9.18)

The first order DE (9.9.17) can be rewritten as

i@=(a+b—2)t+b—1 _ b—1+a—1
v(D) dt tt+1) £ t+1°

Thus, integrating and exponentiating, we find that it has the solution

v(t) = 1t +1)0 7t (9.9.19)
This means that the right hand side of the Lagrange identity is
2 _ 3 b a xt
5.0, K) = St (t+ 1) e™]
and hence, the solution of the original DE (9.9.15) is

B
y(x) = / e Pt + 1)t dt (9.9.20)

a
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where a and S are chosen so that

e P(t+1)° - e P(t+1)° _=o. (9.9.21)

24
Rather than complete the solution by making an appropriate choice for a and j,
we shall pause to consider what would happen if we just used the Laplace Transform
techniques of the preceding chapter. Using the notation of that chapter, Laplace trans-
formation of the DE (9.9.15) gives us

(s + 1)‘% +l(@+b-2)s+b-1]¥(s) - (a+b-1)y(0) = 0. (9.9.22)

We do not kow the value of y(0) and so we shall set it to zero arbitrarily. The result is
a DE that is identical to the adjoint equation (9.9.17) but with ¢ replaced by s and v(t)
by Y(s). Therefore, we know that it has the solution

Y(s) = st H(s+1)*t.

The next and last step is to invert the transform which, as we have seen can be done
with the Mellin inversion integral. Thus, we find
C+ico
y(0)8(x) = zim / e st (s + 1) ds (9.9.23)
C—ico

which, apart from the multiplicative constant, is the same as our solution (9.9.20) but
with a specific choice for the integration limits a and . Recall that c is any real number
greater than the exponential order of y(x). We do not know what that is of course but
the requirement that the integral vanish for x < 0 implies that ¢ > 0. By inspection
we can see that the surface term (9.9.21) will vanish with these limits only if a + b <
0. Presumably, the same constraint applies to the domain of definition of the Mellin
integral (9.9.23). Thus, Laplace transformation, while similar, is less general than the
assumption of an integral representation with a Laplace kernel. The latter requires less
input knowledge and is subject to fewer restrictions on both the independent variable
x and the parameters a and b.

Continuing where we left off in the solution by integral representation, we now list
pairs of values for & and f that will result in the vanishing of the surface term (9.9.21):
a=-landB=0 (a>0,b>0),
a=-ccandf=0 (x>0,b>0),

—candf=-1 (x>0,a>0),
OandB=occ (x<0,b>0),
=-landf=oc0 (x<0,a>0).

SRV SIS

a
a
a

Thus, for example, when a, b and x are all positive, the general solution of (9.9.15) can
be written
0 -1

y(x)=c1 / P (t+ 1) dt+ ¢, /e’“ e+ 1) de (9.9.24)

-1 —oo
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where c¢; and c, are arbitrary constants.

Our second example involves DE’s in which the coefficient of & &~ is a polynomial
in x of degree m. Such equations can always be expressed as, (this generalizes in an
obvious way for DE’s of order higher than 2),

2y =600 LY o0 + BUD Gy - 6,00+ u+ 1) Gy

+G2()y =0 (9.9.25)

where p is a constant and G;(x) is a polynomial of degree 2 - j. Such equations can be
solved by using the Euler kernel, K(x, t) = (x - t)"+l since this results in

Sl =ty = CMel(x - )71 (9.9.26)

where C is a constant, p is the largest value for which G,(x) is non-zero, and

-1

+G1(t)d )

= Go) L o F Gp(t). (9.9.27)

atr
Thus, if G,(x) = 0, M; will be of first order and so will the adjoint equation
M; v(t) =0

Notice that in this case the kernel K(x,t) does not satisfy equation (9.9.11),
2x K(x, t) = M¢ K(x, t), but rather a generalization of it: ¢, K(x, t) = M; k(x, t) where
k(x, t) = C(x — t)**?71 , Thus, assuming a representation of the form

B
y(x) = / (x - ) v()dt, (9.9.28)

a

we obtain

Ly = C/Mt[(x_ Y P v(t)dt = C/(X— £ M v(Odt + [QU, V)]

(9.9.29)

Therefore, (9.9.28) will be a solution of £, y(x) = 0 if v(¢) is a solution of the adjoint
equation M; v(t) = 0 and if a and B are so chosen that [Q(x, v)]t +_o.

To illustrate, we recall that the Legendre DE fits the descrlptlon prescribed for this
type of kernel. It reads

Ly =1 - xz) 2x— +1(1+ 1)y = 0.
Thus, using the notation introduced above, we have

Go)=1-x*
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1 Go(X) + G1(x) = 2x
SHGH D GE00 + (1 + 1) G0 + G0 = 10+ 1).

Since G4(x) = -2x, G1(x) = 2(u + 1)x. This means G (x) = -2 and G} (x) = 2(u+1) and
so the third equation becomes
M+ 1D(p+2)+G(0) =1(T+1)
which is consistent with G,(x) = 0 provided that u = [ - 1 or u = -1 - 2. Therefore, p
is indeed equal to one and the differential operator M; is
M= (- 2004 1)t
t= dr T Y

This yields an adjoint equation of the form
M; v(t) = (1- tz)% -2(u+2)tv=0.

Rewriting this as
1 @ _2(u+ 2)t
v(t) dt 1-¢ °
we integrate and exponentiate to find v(t) = (1 - ¢2)™* 2.

The surface term can be found from

006, = VIO My K(x, 6) = x(x, OMF V() = VIO M x(x, 0 = C [0 = 61 = )71,

Thus, we require values of a and 8 such that

(- epa-ey]" <o

t=a

Using the value u = -1 — 2 with [ = 0 and assuming |x| # 1, Q(x,x) = 0 when
t = +1. Therefore, we set a« = -1 and f = 1 and obtain the function

1
y) = [ -6y -£) de
/

as a solution of Legendre’s equation. As a matter of fact, this is an integral represen-
tation of the Legendre function of the second kind, Q;(x):

1
1 -
Q,(x) = S /(x— )" - ) ae.
-1
As a final example we return to Bessel’s equation which reads

_dly ddy (L OEN
ﬂxy(x):dx2+xdx+ 1=%)y=90
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This does not fit into a class of DE’s associated with any of the standard kernels or
transformations. However, it has been found by experiment that the kernel

X\ H x?
K(x,t) = (f) exp (t— E)
is effective in producing a solution. In fact, one can readily show that

0 +1
0Ke ) - 5+ Bt ) Koo
and so, we identify
M, = g u+t 1
L= dt t
This means the adjoint equation is
. _dv u+1
Mt V(t) = dt ¢ v=0
which has the solution
v(t) = t#1.
Therefore, a solution of Bessel’s equation is
B
A
y(x) = (%) / L et 140 gy (9.9.30)

a

where a and 8 are chosen so that

t=B _ [, -p-1 ,(t-x> 40 ( X\¥ t=p _
QU V| = [t e (3)] =0 (9.9.31)
The only pair of points that qualifiesis t = 0 and ¢t — —oc. Thus, we find as a solution,
0 2
(X[ _x
y(x) = (2) /t exp (t M) dt. (9.9.32)

—oco

This is not quite equal to the Bessel function J, (x). As we will show in Chapter 11,
the latter can be represented by the closely related contour integral

A 2?
@ =5 (3) /t #Lexp (t— E) dt 9.9.33)
C

where -7 < argt < mand C is a contour that encloses the cut along the negative real
axis.

When p is an integer, u = m, the contour C can be closed around the origin. This is
an obvious generalization of the real definite integral (9.9.30) subject to the constraint
(9.9.31) since, by using a contour that does not cross the cut, we are assured that

d _ d -u-1 _ Z2 _
/EQ(K’ v)dt—/a [t exp (t E)} dt=0.
C

c
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9.10 The Hypergeometric Equation

Gauss’s hypergeometric differential equation is
x(1-x)y" +[c-(a+b+1)x]y' —aby =0 (9.10.1)

where a, b, c are constants. It has regular singular points at x = 0,1 and oo.
Attempting a series solution about the origin produces an indicial equation with
roots 0 and 1 - c. Thus there is a solution y; that has a Taylor series expansion about
the origin and which can be normalized to unity. It is
ab a(@+1)b(b+1) 2
100 =1+ qpx+ 2lc(c+1) i

or

I'(c) ZF(a+n YI(b +n)

T(a)I(b) 2= T(c+n)I(n+ 1)"" c#0,-1,-2,. (9.10.2)

y1(x) =

This series is called the hypergeometric series. Its sum is denoted by F(a, b; c; x)
and is called the hypergeometric function. Note that the expansion of F (1, b; b; x)
is just the geometric series which explains the use of the term “hypergeometric”.

If 1 — ¢ # an integer, a second solution of (9.10.1) is of the form

xCu(x)

where u (x) has a Taylor series expansion about the origin. Substituting into (9.10.1)
yields a differential equation for u (x):

x(x-Du"+[(@a+b-2c+3)x+c-2u'+(@a-c+1)(b-c+1)u=0
Comparing this with (9.10.1) shows that u (x) is itself the hypergeometric function
Fbh-c+1l,a-c+1;2-c;x).

Therefore, when ¢ — 1 is not an integer, the general solution of (9.10.1) is a linear com-
bination of F (a, b; c;x) and x'™F(b-c+1,a-c+1;2-¢;x).

The importance of the hypergeometric function F (a, b; c; x) stems from its gener-
ality. A great many functions can be written in terms of it. For example,

F(-a,b;b;—x)=(1+x)" and F(1,1;2;-x) = w
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1x

Also, by making the substitutionsa = -, b =1+ 1,c =1 and x — we see that

(9.10.1) becomes Legendre’s equation

(1 X ) sxy 2xdy +I(l+1)y=0.
Thus, the Legendre polynomial P; (x) = F (-1, 1+ 1; 1; %) .

To relate Bessel functions to the hypergeometric function we must accompany a
substitution with a limiting process that results in the singularity at x = 1 coalescing
with that at infinity. Specifically, we make the substitution x — ¥/, so that (9.10.1)
becomes

x(x-b)y" +[cb-(a+b+1)x]y —aby=0.

Dividing through by x — b and taking the limit as b — oo, this simplifies to

d’y _
xF +(c- x) —ay=0 (9.10.3)

which is called the confluent hypergeometric equation. It is important to note that
the point at infinity is now an irregular singular point.

The roots of the indicial equation corresponding to the regular singular point at
the origin continue to be 0 and 1 - c¢. Thus, there is a solution that has a Taylor series
expansion about the origin and can be normalized to unity. By convention, this solu-
tion is denoted by @ (a, c; x) and called the confluent hypergeometric function.

We shall use this as an opportunity to illustrate the method of definite integrals
and in so doing obtain an integral representation of @ (a, c; x).

Comparison of (9.10.3) with (9.9.15) suggests that we again try the Laplace kernel
K (x, t) = e and seek a solution of (9.10.3) of the form

B
y(x) = /e"'v(t) dt.

a

Making the replacements prescribed in Section 9.9 we find the differential operator

1)%+(ct—a)

and so v (t) must be a solution of the adjoint equation

M =t(t-

M?v(t)=—t(t—1)%(2t—1)v(t)+(et—a)v(t) =0

where M;was obtained by an application of (9.9.7). This gives us

1 dv_(c-2)t+1-a
v(t) dt tt-1)

i@_a—lJrc—a—l
v(i)dt ¢ t-1

or
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Integrating, we have
v(t) =kt (1 - )t

where k is an integration constant and we have anticipated that 0 < ¢t < 1.
The end-points of the integral must be chosen so that the surface term

QIK, V]IB =t(t-1)v()ef = —kt*(1 - D “e"|E = 0.
Here we have used the Lagrange identity to obtain Q [K, v]:

d - ]
57 QUK. V] = YMK - KMiv = <

If ¢ > a > 0, this will happen with oc= 0 and 8 = 1. Therefore, we obtain the solution

tit-1)v(t)er|.

1

y(x) = k/ et (1 - < at.
0

At x = 0 this becomes

1
_ —a- T'@TI(c-a)
_ a-1 1- c-a-1 _ e\l —d
y(0) k/t (-0 tae - kDT
0
where we have used Euler’s Integral of the first kind. Therefore, the solution that is

normalized to unity has
Tl
I'(a)I'(c-a)

and is the confluent hypergeometric function

k

I'(c)

1
xtia-1¢q _ C-a-1
71"((1)1"(6 = et (1-1t) dt,c>a > 0. (9.10.4)
0

D(a,c;x) =

Replacing e* by its Taylor series, (9.10.4) becomes

1
L) I'(c) = x" a+n-1¢q _ pc-a-1
@(a,c;x) = Fc-a)T@ ZO CESY) /t 1-0 dt.
n= 0

But a second application of Euler’s Integral gives us

/1 oy geerigg . D@ rc-a)

I'(c+n)
0

Therefore,

T = I'(a+n) n
@ (a,c;X) = @) ;F(c+n)l‘(n+ o~ (9.10.5)



278 =— Ordinary Linear Differential Equations

which is called the confluent hypergeometric series. As one would expect, this can
be obtained from the hypergeometric series (9.10.2) by making the substitution x —
¥ and taking the limit b — oo,

D (a, cx)—hmF(a b;c; X).

b

An interesting special case of (9.10.4) occurs for a = 3, ¢ = 3 and x — —x*:

1
13 _1 —x2t,-1
CD(EE x)—z/e t 2dt.

0

Changing the variable of integration to u where u? = x?t, this becomes

X
13 5 _1 2 _1
CD(E’E’X)_x/e du—xerf(x)
0

where erf (x) is the error function.
But what is the connection with Bessel’s equation and Bessel functions? A little
work is required to transform

d’y 1dy TS
o txax T\ )y=0

into the confluent hypergeometric form. Specifically, we have to set
y () = x*e *ulx)
and substitute into Bessel’s equation to obtain

dzu
X2

Comparing this with (9.10.3) we see that a solution for u (x) is

¢<2H+1,2y+1;2ix>.

+[2u+1)- 21x]d -iu+1Nu=0

2

Therefore, a solution of Bessel’s equation must be

2}11

e Xa( , 24 + 15 2ix)

which, when multiplied by oD u+1 , yields the same power series as we obtained for
Ju (x) . Thus,

B 1 W —ix 2u+1 o
Ju(x) = 72”F(H+ 1)x e @( 5 ,2y+1,21x). (9.10.6)

Other special functions that can be expressed in terms of confluent hypergeometric
functions include both the Hermite and the Laguerre polynomials.



10 Partial Differential Equations and Boundary Value
Problems

10.1 The Partial Differential Equations of Mathematical Physics

Almost all of classical physics and a significant part of quantum physics involves
only three types of partial differential equation (or PDE). These are
— Laplace’s / Poisson’s equation V2 (r) =o(r),
— the diffusion / heat conduction equation D v2 ¥(r, t) - %=0(r, t), and

. 2
~  the wave equation V2 y(r, t) - C% % t‘z" =o(r, t).
In each case o represents a “source” or “sink” of the scalar field ; if it is zero, which
happens in many applications, the equations hecome homogeneous. Familiar exam-
ples are provided by Maxwell’s equations expressed in terms of the potentials A and
@. In SI units these reduce to the wave equation
2 2

1 0 A . 2 1 0 [} P

= =-HUyj and V@—Fatz £

2
viA - — 2 2o

or, in the event of time independence, to Poisson’s equation.

Pierre-Simon Laplace (1749-1827) was a French mathematician whose work was
central to the development of both astronomy and statistics. Among his many accom-
plishments, he derived the equation and introduced the transform that bear his name.
The Poisson equation (and distribution) are named after Simeon Denis Poisson (1781-
1840) who was one of Laplace’s students. Bonaparte made Laplace a count of the Em-
pire in 1806. Demonstrating that he too could recognize genius, Louis-Phillipe made him
a marquis in 1817, after the restoration of the monarchy.

What distinguishes the different physical phenomena that are described by any
one of these equations are the identity of the scalar field i (i.e. whether it is an elec-
trostatic potential, a temperature, a density, a transverse displacement of a vibrating
medium, or what have you) and the boundary conditions and, where time is an in-
dependent variable, the initial conditions that are imposed on it. Indeed, it is only
when a partial differential equation is accompanied by such conditions that it will
admit a unique solution.

The impact of boundary conditions or more precisely of the geometrical character
of the boundaries is first experienced in the choice of coordinate system to use when
Y is defined on a multi-dimensional space. It is enormously convenient to be able to
specify the boundary of the domain or region of definition by means of fixed values
of one or more of the coordinates. Thus, for example, if the boundary is a rectangular
box, which can be specified byx = aand b, y = cand d, z = eand f, wherea, b, ¢, d, e
and f are constants, one should choose Cartesian coordinates; if it is a sphere, which
can be specified by r = a constant, 0 < 6 < 71, 0 < ¢ < 27, use spherical polars;

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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and if it is a cylinder, correspondingtop = R,z = aand b,0 < ¢ < 27, where R, a
and b are constants, cylindrical polars are the obvious choice. Consequently, we need
to be able to express the v? differential operator in any type of curvilinear coordinate
system.

10.2 Curvilinear Coordinates

A point in space can be described by any three independent parameters (uz, uz, us).
To move in either direction between such a system of coordinates and the Cartesian
system, there must be some definite functional relationship relating the two sets of
coordinates at any point:

x=filus,uz,u3), y=fu,uz,us), z=f3(ur,us,us) (10.2.1)
and
ur =F1(x,y,2), u»=F(x,y,2), us=Fsx,y,2). (10.2.2)

The three coordinate surfaces u; = aconstant can be drawn. If the orientations of these
surfaces change from point to point, the u; are called curvilinear coordinates and if
the three surfaces are mutually perpendicular everywhere, they are called orthogonal
curvilinear coordinates.

At any point, specified by the radius vector from the origin r= xi+yj+zk, we can
construct unit vectors e; normal to the surfaces u; = a constant by means of

ar/aui

e = W. (10.2.3)

These clearly form an orthogonal system when the coordinates are orthogonal. The

quantities
_ B ox \’ oy \’ oz \°
=il = (25) 4 ()4 (22) 1024

are called scale factors and depend upon the position of r in space.
Consider a small displacement dr= dxi+dyj+dzk. Its curvilinear components can
be read off from

or or or
dr=a—uld u; +a—uzd U +a—ugd us=h,du; e;+hydus e;+hzdus es. (10.2.5)

Let us assume that the curvilinear system is orthogonal. The line element or element
of arc length is then given by the square root of

ds’ =dr-dr=h3(dus )’ +h3(du> ) +h3(dus ). (10.2.6)
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In addition, the volume element, the volume of the parallelepiped formed by the
surfaces

Ui =C1, U1 = Ccr+dui, Uy = C2, Uy = C2 +d Up, U3 = €3, U3 = 3 +d us,
is
av = hl hz h3 du1 duz dU3 . (10.2.7)

To express grad Y in terms of curvilinear coordinates we start with

(grady) - dr=dy = al/)dul oY du +— op du3

duy ou

and rewrite it in the form

cdre (L oY 199 199
(grad ¥) dr—(h16 > hldu1+<h2 auz) hzdu2+<h3 6u3) hsdus.

It follows immediately that

) 10y zp
gl‘ad l/) = FTM 1 hz a uz 2 h3 e3 . (10.2.8)

To determine the divergence of a vector field A we make use of the definition

VA= lim /, s Ards _ lim net flux of A through surface A S bounding AV
T avso AV AV—0 AV

and note that the flux through an elementary area oriented perpendicular to the e; di-
rection is A1 h, d uz h3 d us . Thus, the net flux of A through two such areas separated
by a distance h; d u; is

hidu; (A1 ha h3)dux dus.

ha

Adding the corresponding contributions from the other four faces of a volume element
and dividing by its volume, we obtain

. 1 0 0 0
leA—m [Tul(x‘h h2 hs )+67112(A2 hs h1 )+67113(A3 h1 h ):| . (10.29)

The expression for the Laplacian is obtained by combining the formulas for gra-
dient and divergence:

NN S hzhsﬂ) i<hsh1%> i(hlhz)}
vy hi h2 h3 [alh( hi1 ou +au2 hy ouy +6u3 hs '

(10.2.10)

Examples: The most common curvilinear coordinates in physics are
- planepolar: x =rcosf, y=rsinf
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— cylindrical polar: x =rcosf, y=rsinf,z=z
— spherical polar: x =rsinfcos¢, y=rsinfsing, z=rcosf.

The scale factors p; are defined for any set of coordinates by

hi - ﬂaaﬁi)z* (aazi>z+ <aalzli)2'

Thus, for spherical polars, we have

hr=1, hg=71, hy=rsiné

and so,
ds*=dr*+r*dg®+r?sin’ 0d 2,
dV = r*sin @drd@de,
| 0, . o, . 0
divA = Tend [E(r sin 6A,) + E(rsm 0Ap) + %(rAq,)}
or,
.. O0A; 2 104y cotf 1 04y
dvA =35+ TAr+ 59+ At oo 0p’

and,

2y 19 (209 L9 (Gngd¥ L)
VY5 (’ ar>+rzsineae <Sm9ae T 2sin 009’

An analogous determination in cylindrical polars can be easily done and one finds
in particular that the Laplacian is

QU

2, Y 109 1%y 'Y
V- +rar+r2692+azz’

10.3 Separation of Variables

Various methods have been devised for the solution of partial differential equations
corresponding to different kinds of boundaries (whether finite or at infinity) and dif-
ferent kinds of boundary and initial conditions. What we shall come to recognize is
that they all involve representation of the solution as an expansion in terms of eigen-
functions of one or more of the partial differential operators in the equation which
achieves a separation of the dependence on the individual coordinate variables in-
volved. Eigenfunction is a term that we have not encountered before. Therefore, to
provide some context, we shall present a method of solution that is actually called
the separation of variables method. We will then abstract from it the key elements
that are common to all methods of solution.



Separation of Variables =— 283

The “laboratory” we will use to investigate separation of variables is the vibrating
string problem. Suppose that we have a string of mass per unit length p stretched
under a tension T along the line x = 0 to x = L and fixed at both ends. The string is
set in motion at time ¢t = 0 by means of some combination of plucking and striking it.
Denoting the transverse displacement of the string by y(x, t), the string’s equation of
motion (obtained by an application of Newton’s 2°¢ law) is the one-dimensional wave
equation

2 2
% = c%% where ¢ = \/z . (10.3.1)
The manner in which motion is initiated is described by the initial conditions
Y(x, 0) = up(x) and % = vo(x), where uo(x) and vo(x) are known functions.
Finally, the fact that the string has fixed end-points is captured by the boundary
conditions (0, t) = 0 and Y(L, ) = 0.

One can prove that the solution of a linear partial differential equation accom-
panied by a complete set of boundary/initial conditions is unique. Thus, if we find a
solution, no matter by what means, we are assured that it is the only solution to the
problem. The means we shall employ here begins with the assumption that the motion
at any point 0 < x < L, and time t > 0, can be expressed in the form

Px, t) = XC)T(t). (10.3.2)

If our method works, if we obtain a solution, this assumption will be justified a poste-
riori.
Substituting into the wave equation and dividing through by ) = XT we find
1 a*X 1 1 a*T

— L s _A-—-__-42 10.3.3

X(x) dx? c2 T(t) d¢t? ( )
where A must be a constant since the first equality implies it is independent of ¢ while
the second equality implies it is independent of x. The two equalities yield the same
ordinary differential equation (ODE) with constant coefficients. The general solutions
are

AcosVAx+BsinvVAx ifA>0

X0 = AeV ™ 4Be VM ifa<o0 (10.3.4)
Ax+B ifA=0
and
AcosvVAct+BsinvAct ifA>0
TAt)={ AeVAtiBe VAt  jfa<o. (10.3.5)
Act+B ifA=0

The initial conditions on (x, t) involve functions of x and so place no restrictions
on T,(t) other than a general requirement of boundedness on 0 < t < oo. Such condi-
tions are called non-homogeneous. In contrast, the boundary conditions on (x, t)
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are homogeneous: they require that 1(x, t) and hence each X;(x) vanish at x = 0 and
x = L. A quick check tells us that these conditions cannot be satisfied for any values
of A < 0 (except in the trivial case of A = B = 0). On the other hand, there is an infi-
nite set of values of A > 0, A, = sz ’ ,h=1,2,3,..., which admit these conditions
and the corresponding solutions are, to within an arbitrary multiplicative constant,
Xn(x) = sin 2%, The latter are called the eigenfunctions of the differential operator
dd% appropriate to these boundary conditions and the A, are its eigenvalues (char-
acteristic values). This means that of those functions that vanish at x = 0O and x = L,
there is a unique subset ,{X,}, with the property that when operated on by dd—;z they
are reproduced multiplied by a characteristic constant (an eigenvalue).

With A determined, so is T . In fact, we now have an infinite set of factored solu-
tions

. nmx nrnict . nrict
P, (x, t) = Xn(x) Tn(t) = sin I (A,, cos —— + By, sin T) , n=1,2,3,...,

each of which satisfies both the wave equation and the boundary conditions. More-
over, because the equation is linear, every linear combination of solutions satisfies
both the wave equation and the boundary conditions. But, what about the initial con-
ditions? Evidently, unless uo(x) and vo(x) are themselves sinusoidal with period 2L,
we will not be able to reproduce them with one or even a linear combination of several
of the i, (x, t). Therefore, we shall use all of them. We form the superposition

= . nax nmct . nmct
Y(x, t) = ; sin I (A,, cos I + Bp sin T) (10.3.6)
and impose the initial conditions via
uo(x) = Z sin ™ 4,,, and (10.3.7)
vo(x) = Z sin @ Bn @. (10.3.8)

We recognize the summations in these three equations as Fourier sine series.
Thus, so long as u(x, t), ug(x) and vo(x) are continuous functions of x, the series will
converge uniformly to these functions when 4, and %7€ B, are replaced by the Fourier
sine coefficients of ug(x) and vo(x), respectively; that is, when

L

Ap = %/uo(x) sin %dx, and (10.3.9)
0
L
2 . nmx
Bn = e vo(x) sin de. (10.3.10)

0
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This completes the solution of the problem.

Evidently, the method of separation of variables works. Let us be certain we un-
derstand why.

Working backwards, we see that a critical element is the implicit representation
of P(x, t) by the eigenfunction expansion

P(x, ) = i ba(®)sin T (10.3.11)
n=1

which is a Fourier sine series, every term of which satisfies the boundary conditions.
Thus, it must converge uniformly to (x, t) and so, when we substitute it into the wave
equation, we can interchange the order of summation and integration. The result is

= nmx . nnax 1 @2 p,(t) . nnx
;b(t)—sm— an(t)< )SIHL_;CZ ip sin =7~

Because the sine functions are orthogonal, the second equality implies that

bn(t) =0

£ (e

and hence, that

ba(t) = Ap cos mzct + Bp sin %Ct

The solution is then completed by relating A, and B, to the Fourier sine coefficients
of up(x) and vo(x).

The separation of variables method is successful because it amounts to an expan-
sion of P(x, t) in terms of the eigenfunctions of the differential operator associated
with homogeneous boundary conditions. The differential operator is replaced by its
eigenvalues and thereby eliminated from the partial differential equation. The PDE is
replaced by a series of ODE’s with constant coefficients.

That being said, we shall now perform a practical inventory of the steps that com-
prise this method and do so in the course of solving another boundary value problem.
The problem is to find the electrostatic potential everywhere inside a conducting rect-
angular box of dimensions a x b x ¢ which has all of its walls grounded except for the
top which is separated from the other walls by thin insulating strips and maintained
at a potential V.

The PDE to be solved is Laplace’s equation

v =0.
Here is how we proceed with its solution.
Step 1. Choose an appropriate coordinate system.
We choose Cartesian coordinates with the origin at one corner of the box so that

its interior and boundaries are defined by 0 < x < a,0 < y < b,0 < z < c. The
boundary conditions then become

Y(0,y,2) =Y(a,y,z) =9Y(x,0,2) =, b,z) =P(x,y,0) =0 and P(x,y,c) =V
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Step 2. Separate the PDE into ODE’s.
Substitute (x, y, z) = X(x)Y(y)Z(z) into the PDE and then divide through by i to
obtain
18X 1Y 147 _
Xdx? Yg’y Zdz?
This can hold for all x, y and z if and only if each term is separately equal to a constant
with the three constants summing to zero:
X _ Y

axx A 23

da*z .
1 ,d—yz=/12Yand—=/13Zw1th A1+A2+A3 =0.

dz?

These three DE’s are identical to each other and to the separated DE’s of the stretched
string problem. Therefore, they have the same three sets of solutions (10.3.4) corre-
sponding to positive, negative and null values of the separation constants.
Step 3. Impose the single-coordinate boundary conditions that are homogeneous at both
boundaries and solve the corresponding eigenvalue equations for the functions of those
coordinates.

In this case, the homogeneous boundary conditions require that

X(0) = X(a) =0, Y(0) = Y(b) = 0.

We know from the stretched string problem that this implies eigenvalues

2 2
A1=—(%) ,n=1,2,... and A2=—(%) ,m=1,2,...,

corresponding to the eigenfunctions

Xn(x) = sin naﬂ and Yn(y) =sin ?

Notice that while we know that Z(0) = O we have no information bearing directly on
Z(c).
Step 4. Solve for the remaining function(s).

We now know that
b= () ()
3 a b/
Since this is always positive, the corresponding solution for Z(z) is a linear combina-

tion of eV%Z and e"V% . But we must also satisfy Z(0) = 0. Therefore, an appropriate
linear combination is

Zun(@) =sin ( () (";;T)ZZ> |

Step 5. Form a linear superposition of all factored solutions.
We now have a doubly infinite set of factored solutions

Xn(X) Ym()’)an(Z), n’ m= 1, 29 oo
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each of which satisfies the PDE as well as the homogeneous boundary conditions.
To prepare for the imposition of the non-homogeneous boundary condition, we take
advantage of the linearity of the PDE and form the superposition

Y(x,y,2) = ZZAnm sm@sm m;ry sinh( (%T)z+ (T)Z) .

Step 6. Impose the remaining boundary condition(s).
In this case there remains only one condition: ¥(x, y, ¢) = V. Imposing it on our
superposition we have the requirement that

V= iiAnmﬁnm&an/smh( ('ZT)2+("ZT)ZC>.

n=1 m=1

This is a double Fourier sine series and so we can use the Euler formula for the coeffi-
cients of such series to determine A, . Thus,

v nmx
Anm = b //sm—sm —ydxdy

sinh /()7 ()¢ 75 4

or,
74 4

2
sinh /()7 () e) "™

Substituting back into the superposition we obtain as our solution

Anm = (1 - (_1 )n)(l - (_1 )m)

oo

_ 16 = 1 . nax . mmy
Y(x,y,2z) = — _Z _Z sin == sin — . —— "
n=1,3,5,... m=1,3,5,... sinh (7) +(T) c

10.4 What a Difference the Choice of Coordinate System Makes!

We shall now investigate the solution of the homogeneous versions of the partial dif-
ferential equations we introduced in Section 10.1 when applied to a three dimensional
medium with either rectangular, spherical or cylindrical symmetry.

Recall that the PDE’s are

vV yY=0,
2y 10Y _
V-5 =0
2
vzrp—iﬂ - 0. (10.4.1)
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We start by separating off the time dependence in the case of the last two of these. We
do this by assuming a solution of the form

P(r, t) = u) 1. (10.4.2)
Substituting into the diffusion equation and dividing by ¢ = uT we find

1 oo L L dT

) = DT dt’ (10.4.3)

where A must be a constant since the first equality implies it is independent of ¢ and
the second equality implies it is independent of r. The second equality is a simple
differential equation for T(t) with solution

T(t) = Ae Pt

Unlike the vibrating string problem, we will not assume an initial condition but re-
quire only that T(t) be bounded for 0 < t < oo, (i.e. that it satisfy the homogeneous
boundary condition |T(sc)| < o). This means that A must be positive and so we set
A = k? . Thus,

T(H) = Ae KDt (10.4.4)
and the first part of (10.4.3) is
V2 um)+ i u(r) =0 (10.4.5)

which is called Helmholtz’ equation. Note that Laplace’s equation is the special case
of Helmholtz’ equation corresponding to k? = 0.

The Helmholtz’ equation is named for Hermann von Helmholtz (1821-1894), a Ger-
man physician and physicist. He made significant contributions in neurophysiology,
physics (electrodynamics and thermodynamics), and philosophy. The Helmholtz Asso-
ciation of German research centres is named after him.

We can do a similar separation of the time dependence in the case of the wave
equation. Assuming a solution of the form (10.4.2), substituting into the equation, and
dividing by ¥ = uT, we find

2
11 ‘:I—tzT, (10.4.6)

1v2u=—A=
u C

~|

with A a constant. The second part of (10.4.6) is the same differential equation for T
that we encountered in the vibrating string problem. This time we will accompany it
with the homogeneous boundary condition | T(+e0)| < co which makes it an eigenvalue
equation with solution A = %, 0 < k < co and

; » etket sin kct
TA(®) = Ti(O) = A ™' + B e ™ = { _,.kd} = { } . (10.4.7)
e cos kct
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The use of curly braces in (10.4.7) is a convenient short-hand for a linear combination
of the functions that appear between them.
This means that we obtain the Helmholtz equation

Viu+iiu=0

once again to describe the space dependence.

To proceed further with the separation of variables we must now adopt one or
another type of coordinate system.

In Cartesian coordinates Helmholtz’ equation is

2y

z2

Zu
0 x2

QU
QU

+1Ku=0 (10.4.8)

2
+a—u+
0y?

QU

and so, assuming a separated solution of the form u = X(x)Y(y)Z(z), substituting
into (10.4.8), and dividing through by u = XYZ, we have
1d*°X  14%Y 1ad*°Z 5
XW+YT)/2+2W+I( =0. (10.4.9)

Thus,

2 1a’Y 147
Ydy? Zdz2’

1d*°X

Xdaz - M=k (10.4.10)

where A; must be a (separation) constant. Then, as in the potential problem of the last
Section, we find

% Zzyf =-A (10.4.12)
and,
1d*Z
7d2 A3 (10.4.12)
but now
M+h+As =k (10.4.13)

We now need some information about the spatial boundaries. Rather than confine
the medium to a finite box as was the case in the potential problem, we shall assume
that the medium is infinite and that the boundary conditions require X, Y, and Z to be
bounded for all x, y, and z. The differential equations for X, Y, and Z are the same as
the differential equation for T(t) and so we know that they admit bounded solutions
if and only if A; > O fori = 1, 2, and 3. Thus, we set A; = ki, 1, = k3, A3 = k3 with
—oo < k1, k2, k3 < oo to obtain

X(x) o e kX
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Y(y) x e'k2”
Z(2) x 037, (10.4.14)
with
I3+ K3+ k3 = I (10.4.15)

Multiplying these together we get (plane wave) solutions for u(r) of the form
u(r) = Ay ™ (10.4.16)

where k is a three-dimensional vector with norm k - k=k?.

This is as far as we can go without having information about how the wave motion
or diffusion was initiated, that is, without having initial conditions to impose. There-
fore, let us turn instead to the question of the kind of waves we would obtain if there
was cylindrical geometry.

In cylindrical coordinates Helmholtz’ equation is

’u 1ou  1%u  d’u o

2t rortrgg My k“u=0. (10.4.17)
Assuming a separated solution of the form u = R(r)©(6)Z(z), substituting in (10.4.17)
, and dividing through by u = ROZ, we find

1[d?’R 1dR] 11q*6 14°Z
R [drz *?ﬂ YRedg Tzdz k0 (104.18)
Separating variables yields the equations
14°Z
ETZZ = Az (10.4.19)
1d'6 __, (10.4.20)
9 dez = 1 H.
1[d*R 1dR] A )
R [T 7t ?ﬂ 7 Atk =0 (104.21)

Most physical applications involve the boundary condition 6(6 + 271) = 6(6) to
ensure that O is a single valued function. It then follows that A, = m?>,m=0,1, 2, ...
and

0(0) = ©,,(0) = Ay cosmO + By, sin mb (10.4.22)

are the eigensolutions (or characteristic solutions) of equation (10.4.19) .
There is no common boundary condition that can be applied to the solutions
of (10.4.20) and so we write them for now as

Z(z) = Cexp(y/- A22) + Dexp(-+/- A»2) (10.4.23)
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and note that this will be a trigonometric function if A, > 0 and a hyperbolic function
if A, <O.
Setting k% - A, = a® and p = ar, equation (10.4.21) becomes

d>R 1dR m?
22 4+-"4(1-=)R=0 10.4.24

dp? pdp p? ( )
which is Bessel’s equation. As we have seen, its general solution can be expressed as
the linear combination

R(r) = EJ,(ar) + F Np(ar) (10.4.25)

where J,,(x) and N,,(x) are the Bessel and Neumann functions of order m, respectively.
These have an oscillatory dependence on x with an infinite number of zeros. Moreover,
the Neumann function, N, (x), is singular at x = 0. Thus, if there are homogeneous
boundary conditions such as R(0) = R(a) = 0, we would require F = 0 for all m and
determine eigensolutions J,, (am,n r) where am,n = Xm,n /a and xm,n is the nth zero of
T (0.

If ., > k% a will be a pure imaginary. In that case it is conventional to re-
place (10.4.25) by the linear combination

R(r) = G Im(Ja|r) + HKm(|a|r) (10.4.26)

where J,,(x) and K, (x) are called modified Bessel functions.The modified Bessel func-
tions are not oscillatory in behaviour but rather behave exponentially for large x.
Specifically, [, — oo and K, — 0 as x — oo. At the other end of the scale , as
X — 0,Km — ocowhileJ,, — 0if m # 0 and J, — 1. Note that the modified Bessel
functions arise when the z- dependence is given by oscillatory sine and cosine func-
tions. The converse is true also: if Z(z) is non-oscillatory, A, < 0 and R(r) is given by
the oscillatory form (10.4.25).

In the event that A, = k*,a = 0 and one must require that m = O and F = 0
in (10.4.25) to obtain a bounded but non-null solution. The overall solution is then the
plane wave

u(r, 0, z) ~ e,

A second special case involving a = 0 arises when k? = 0 (so the partial differential
equation is Laplace’s equation) and A, = O (so there is no z dependence). The equation
for R becomes

d°R 1dR m’

Etrar ?zR =0 (10.4.27)

which has the general solutions

(10.4.28)

Gr+Hr™, m#0
R(r) =
™ { G+Hlnr, m=0.
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Forming a superposition of solutions as we did in the examples of Section 10.3
gives us the potential

Y(r,0) = Ao+ Bolnr + Z(Am "+ B 7 ™(Cpp cOS MO + Dy Sinmb)  (10.4.29)

m=1

which we recognize as a full Fourier series in 6. The coefficients A, Bm, Cm and
Dm, m > 0 can be determined by imposing non-homogeneous boundary conditions
at two fixed values of r, (a, 8) = V1(6) and Y(b, ) = V»(60) for example, and then
using the Euler formulae for the Fourier coefficients of the functions 1/;(6) and V/,(6).

As if (10.4.29) is not complicated enough, a superposition of solutions of the
Helmholtz equation with homogeneous boundary conditions at r = 0 and r = a has
the form

u(r,0,z) = Z Z]m(amn 1) (A mn cOs MO + By, sin mo)

n=1 m=0
x (Cmn COSh v/ a2, = k%2 + Din Sinh v/ an — kK22).

(10.4.30)

This is a Fourier series in the 6 coordinate as well as a series unlike anything we have
seen thus far: an expansion in terms of an infinite set of Bessel functions. Evidently,
our knowledge of series representations requires extension if we are to feel comfort-
able working with cylindrical polars.

What further complications await us when we switch to spherical polars? In spher-
ical coordinates Helmholtz’ equation assumes the form

1 d’u
sin 6 o @2

li(ru)

0 ,. ,0U 2.
3 E(sm 9%) + ] +1’u=0. (10.4.31)

P
r2sin 6

Assuming a separated solution u = R(r)Y(6, ¢), substituting into (10.4.31), and divid-
ing by u = RY, we obtain

11 d° 1 1 o (. ,0Y 1 9°Y 2
ﬁ;ﬁ(rR) t I Tsnd [@ (sm 9%) * 506307 (pz] +k”=0. (10.4.32)
Separating variables yields the equation
1 1 [o,. ,0Y 1 9°Y]
Tsnd [% sinb=z) + —5 307 (pz} = (10.4.33)
for the angular dependence of u(r, 8, ¢) plus the radial equation
11 4° 2 A
E?W(r}{) iy 2 0 (10.4.34)

where A is the separation constant.
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We shall start with the angular equation (10.4.33) which we subject to a further
separation of variables. Setting Y = 6(6)®(¢), we obtain

%ﬁ%(sin@i—(g) + sinlz 6%(61127? +A=0
and hence,
%Zz(pf =-m’, m=0,+1,%2,..., (10.4.35)
and
L ing20) + (A _m ) 0=-0, (10.4.36)
sin6 df sin @

where we have invoked the boundary condition @(¢ + 271) = @(¢) to ensure single-
valued solutions and determine the second separation constant. The corresponding
eigensolutions are a linear combination of cos mg and sin mg or of e*™? _ In this in-

stance we will choose the latter and write

D= Pu(p) = Ane™ +Bne ™. (10.4.37)

To identify solutions of (10.4.36) , we introduce the new variable x = cos 6 which
transforms the equation into a version of Legendre’s equation:

)d P dP

1- - 2Xx— {A - 1_2] P =0 where P(x) = O(cos ! x). (10.4.38)

dx

Since 6 varies over the range 0 < 8 < m, x has the range -1 < x < 1. But as we
know, the boundary points x = +1 are regular singular points of Legendre’s equation.
Therefore, an obvious boundary condition to impose on the solutions of (10.4.38) is
that they be bounded at x = +1. This can be satisfied if and only if A is assigned one of
the discrete eigenvalues A = I(I+ 1),1= 0,1, 2,... with | > |m|; the corresponding
eigensolutions are the associated Legendre polynomials, denoted PJ"(x). How do
these relate to the Legendre polynomials whose acquaintance we made in Chapter 9?
The answer will be derived in Chapter 11 but here is a preview:

m

Pre = (1- )% 4P Z’( ) m=0,1,2,...1. (10.4.39)

The product
Y = 0(0)@(p) = P["(cos B) e™?,

with appropriate normalization to be defined later, is called a spherical harmonic.
We will have occasion in Chapter 11 to study its properties in some detail. It suffices
at present to note that it is an eigenfunction solution of (10.4.33) combined with the
periodicity and boundedness conditions and hence, an eigenfunction of the angular
part of the partial differential operator V2 .
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We can now turn our attention to the radial equation (10.4.34) with A set equal to
1(1+1):

d>R 2dR , l(1+1)
Tt rat {k 5| R=0. (10.4.40)
Ifk? #0,wesetr=p/kandR = %S to transform this equation into
2 2
LS+1§+ 1_(l+1/2)
dp* pdp p?
which we recognize as Bessel’s equation of order [ + 1/2. Thus, we conclude that the
general solution of the radial equation is

] §$=0 (10.4.41)

R(r) = A\ﬁjm/z(kr) B\/F

where j(x) = /35 Ji11/2(%) and ny(x) = /5% Ni.1/2(x) are called spherical Bessel and
Neumann functions of order I, respectively.
If k* = 0, which corresponds to Laplace’s equation, the radial equation is
4R 2dR _10+1)
dr? rdr r2

which has the general solution

N1z (kr) = A"ji(kr) + B ny(kr), (10.4.42)

R=0 (10.4.43)

R-Ar'+B . (10.4.44)

Summarizing, the sort of superpositions we can expect in problems with spherical
geometry are potentials of the form

oo 1

P, 0,0)=> > [Amr +Bimr1Y]'(6, 9) (10.4.45)
1=0 m=-1
and waves like
co 1
u(r, 0,9) = > > (A jy(kr) + Bim m(kn)] Y{"(6, ). (10.4.46)
1=0 m=-1

Thus, Fourier series do not figure in the solutions at all when spherical coordinates are
used. Rather, we have a double series expansion in terms of the spherical harmonics
and so yet another type of series representation to become familiar with. Fortunately,
all of these representations are special cases of a Sturm-Liouville eigenfunction ex-
pansion and so we can acquire a comprehensive understanding by considering a sin-
gle eigenvalue problem.

A student of Poisson at the Ecole Polytechnique, Joseph Liouville (1809-1882) con-
tributed widely to mathematics, mathematical physics and astronomy. The Liouville the-
orem of complex analysis and the Liouville theorem of classical mechanics are both
named after him as is the Liouville crater on the moon. He developed Sturm-Liouville
theory in collaboration with a colleague at the Ecole Polytecnique, Jacques Sturm (1803-
1855).
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10.5 The Sturm-Liouville Eigenvalue Problem

To review, the separation of variables in a partial differential equation results in two
or more ordinary differential equations which, when combined with homogeneous
boundary conditions, become eigenvalue equations whose solutions correspond to
characteristic values of the separation constant(s). Once all of these are known, we use
them to express the solution of the original partial differential equation as an eigen-
function expansion and then impose whatever non-homogeneous boundary condi-
tions may be associated with the problem. In the vibrating string problem the eigen-
function expansion is a Fourier sine series which is a type of series that is reasonably
familiar to us. But what are the convergence properties of series involving Legendre
polynomials or Bessel functions? How do we determine their coefficients? Is there a
connection with the theory of Fourier representations?

The most general way of answering these questions is to study the Sturm-
Liouville eigenvalue problem. It consists of solving a differential equation of the
form

du(x)
dx

d
Lulx) = Ix {p(x) ] - q(u(x) = -Ap(x)u(x) (10.5.1)
where p(x) > 0 on the interval a < x < b of the real line and the solution u(x) is
subject to (homogeneous) boundary conditions such as u(a) = u(b) and u’(a) = u’(b),
(the periodicity condition is an example of this), or

a1u+ﬁl%=0 at x = a and
a2u+ﬁ2%=0 at x=»b (10.5.2)

where a4, 8, a2, and 3, are given constants. The form of the differential operator £
in (10.5.1) is quite general since after multiplication by a suitable factor any second
order linear differential operator can be expressed this way.

The differential equations obtained by separating variables in the preceding Sec-
tion are all of the Sturm-Liouville type, the separation constants being the eigenvalue
parameters A. The boundary conditions to go with them, such as boundedness or pe-
riodicity, were determined by the requirements of the physics problem in which the
equations arise and this is invariably the case.

Changing the boundary conditions can result in a profound change to the eigen-
value spectrum of a differential operator. To illustrate, we shall consider the simple
operator £ = dd—;. Its Sturm-Liouville equation is

Lulx) = dd—;u(x) = -Au(x), (10.5.3)
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corresponding to p(x) = 1, g(x) = 0, p(x) = 1. We know already that this equation
has solutions

A cos VAx + Bsin vVAx if A>0
u(x) = { Acoshv-Ax + Bsinh v-Ax if A<0 (10.5.4)
Ax+ B if A=0

So, if the boundary conditions are
- ulx+2m) = u(x) then,

A=m? and um(x) = Ay COS MX + By, Sin mx, m=0,1,2,..., (10.55)

— u(0) = 0 and u(b) = 0 then,

2.2
A= nb;[ and un(x) = A, sin %, n=1,2,3,..., (10.5.6)
u'(0) = 0 and |u(eo)| < oo then,
A=k and ui(x) = Ay cos kx, 0< k<oo, (10.5.7)
—  |u(£o9)| < oo then,
A=12 and up(x) = Az e, —00 < k< oo, (10.5.8)

The multiplicative constants in these expressions are determined by some nonlinear
normalization condition such as

b
/ | un(x) | dx = 1. (10.5.9)
0

Some other Sturm-Liouville problems encountered in Section 10.4 are reviewed in
the following table (Table 10.1).

Table 10.1: Sturm-Liouville Problems in Section 10.4

Equation Boundary Eigenfunctions Eigenvalues p(x) p(x) q(x)
Conditions

Legendre [u(x1) |? < oo 1 Pi(x) I(I+1) 1 1-x? 0

=0,1,2,...

Associated ditto P"(x) (+1) 1 1-x2 %

Legendre

Bessel |u(0)| < oo Tn(X) 1 x b'e "'72

Spherical ditto Ji(x) 1 x2 x2 1(1+1)

Bessel
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The Sturm-Liouville eigenvalue problem is an infinite-dimensional analogue of
the matrix eigenvalue problem

Mu = Au, (10.5.10)

where M is an n x n matrix and u is an n-dimensional column vector, encountered
in connection with finite dimensional vector spaces. In both cases there are solutions
u, only for certain values of the eigenvalue A,. These are called the eigenvectors of
M while in the case of £ ,they are the eigenfunctions corresponding to the particu-
lar choice of boundary conditions that accompany the equation. Significantly, like the
eigenvectors of matrices, the eigenfunctions of £ can be used as basis vectors span-
ning a type of vector space in which the vectors are functions. Such function spaces
are generally infinite dimensional corresponding either to a countable infinity or to a
continuum of eigenfunctions and eigenvalues. An example of the former is the space
consisting of all square integrable functions defined on a finite interval a < x < b. A
continuum normally arises when one or both of the end-points is at infinity.
In a conventional vector space each vector is an ordered n-tuple of numbers,

a=|a>=(ai,az,...,an). (10.5.11)

The numbers can be real or imaginary. The number of dimensions, n, can be finite
or infinite. Various operations such as addition, subtraction and multiplication by a
scalar are defined as is the operation of scalar product,

a-b=<alb>=> a;b. (10.5.12)

i=1

The ordering is discrete and even if the number of dimensions is infinite, it is a “count-
able infinity”.

Functions also provide ordered sets of numbers although now the ordering is con-
tinuous: f(x), a < x < b, denotes an ordered continuum of numbers. Thus, the set
of all functions which satisfy certain behavioural conditions on an interval of the real
line, a < x < b, can define a vector space called a function space. An example is the
set of functions which are square integrable. The scalar product is defined in analogy
with the definition for a conventional vector space,

b

<ulv>= Z u(vix) = /u*(x)v(x)p(x)dx. (10.5.13)

all components a

Here, p(x) is a weight function that determines how one counts “components” as x
varies along the real line from a to b : p(x)dx = the number of “components” in the
interval dx about x.

In conventional vector spaces it is convenient to define a basis (or bases) of or-
thogonal unit vectors e; ,i =1, 2,...n with e;-e;=§;; so that each vector a can be
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expressed as

a=>) ai e, aj=¢-a (j=1,2,...). (10.5.14)

Notice that e; - e;=§;; captures both orthogonality and normalization. The corre-
sponding expressions in “ket” notation are

la >= Z aijle;> aj=<ejla> and <e;|e;>=§;;. (10.5.15)

When all vectors in a space can be so expressed the basis is said to be complete with
respect to the space. (The adjective complete should have a familiar ring to it.)
The same is true of function spaces. One can determine basis vectors (functions)
un(x) which are orthonormal,
b

< Um |[Un >= / U () un ()P ()AX = s (10.5.16)

a

and which are complete with respect to the space. That means that each f(x) in the
space can be expanded in the series

b

fx) = i Cm um(x) where cpy = /u:n(x)f(x)p(x)dx. (10.5.17)
m=1

a

Now we remember where we have encountered the term complete before. It was
in connection with Parseval’s equation and the representation of functions that are
square integrable on -7 < x < 71 in terms of the Fourier functions {cos nx, sin nx}.

Having digressed into the algebraic perspective on series representations, let us
return to the analysis of the Sturm-Liouville problem. Its solutions have some general
properties of key importance. These follow in large part from general properties pos-
sessed by the Sturm-Liouville operator £ . Specifically, suppose that u(x) and v(x) are
arbitrary twice differentiable functions. For increased generality, we shall take them
to be complex. We write

V(0 Lu(x) = vV () L p() 2] - v () g()u(x),
u()(Lv(0)" = u(0) L p0) 0] — u(x)g()v'(x),

take the difference, and then integrate by parts to obtain

b b
/V*(Su)dx—/u(ﬂv) dx = p(x) vix )du(x) u(x)dV (X)] x=b

(10.5.18)

dx x=a
a

This is an instance of the generalized Green’s identity that we encountered in Sec-
tion 9.9 and its appearance here tells us that the Sturm-Liouville operator £ is self-
adjoint wth respect to the weight function w(x) = 1.
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Note that if the functions u(x) and v(x) both satisfy the homogeneous boundary
conditions

ary(a)+B,y'(a) =0 (10.5.19)
azy(b) +B,y'(b) =0 (10.5.20)

or the conditions
y(a) = y(b) and y'(a) = y'(b) together with p(a) = p(b), (10.5.21)

the surface term on the right hand side of (10.5.18) vanishes and we obtain the
Green’s identity for self-adjoint operators

b b

/ V 0(2u(0)dx = / U()(EV())' dx. (10.5.22)

a a

In algebraic terms, imposing homogeneous boundary conditions on a set of func-
tions u(x) defines a function space; a self-adjoint differential operator £ then defines
a Hermitian operator on that space.

The fact that the Sturm-Liouville operator is self-adjoint has important conse-
quences for its eigenfunctions and eigenvalues. Suppose that we have two different
eigenfunctions un(x) and um(x) corresponding to the eigenvalues A, and A, An # Am :

Lun(x) = =2, p(x) un(x), (10.5.23)

Lum(x) == Am pO0) um(x). (10.5.24)

We shall allow for the possibility of complex eigenfunctions and even complex eigen-
values but, by definition, p(x) and £ are real. Multiplying (10.5.23) by u,(x) and the
complex conjugate of (10.5.24) by ux(x), subtracting and integrating, we find

b b
/ [ ()L un(x) = un ()L U ()] dx = =Xy = Am) / Uy () un()p()dx.  (10.5.25)

Since un(x)and um(x) are eigenfunctions, they satisfy homogeneous boundary condi-
tions and, as we have seen, that means that the left hand side of (10.5.25) must vanish.
Thus,

b
My = o) / 100 un () dx = 0. (10.5.26)

If n = m, the integral cannot vanish because both p(x) and | um(x) |* are non-
negative. Therefore, we conclude that A, = A,,; all the eigenvalues of the Sturm-
Liouville operator are real.
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If n # mand A, # Am, We conclude that

b
/ 1y () un(Gp()dx = 0. (10.5.27)

a

Two functions un(x) and um(x) satisfying a condition like (10.5.27) are said to be
orthogonal with respect to the weight function p(x). In other words, the func-
tions{un(x)} comprise an orthogonal set of vectors in a function space where the
scalar product between two vectors u(x) and v(x) is defined to be

b
Vi ou=<vju>= / v (Qu(x)p(x)dx. (10.5.28)

a
If we normalize the eigenfunctions by requiring

b
/| um() > p)dx = ||um |)* = 1, (10.5.29)

a
we obtain an orthonormal set and (10.5.27) and (10.5.29) combine to read

b
/ Uon () Un (PO X = G - (10.5.30)

a

It is also possible to have n # m, but A, = A,, = A. If this happens, we say that A is de-
generate and equation (10.5.26) no longer requires the corresponding eigenfunctions
to be orthogonal.. However, we can always choose or construct them to be orthogonal
by forming orthogonal linear combinations.

The most important consequence of the self-adjoint character of the Sturm-
Liouville operator is one that we shall state without proof. (The proof can be found in
a variety of analysis texts such as Courant and Hilbert or E.C. Titchmarsh.) Its state-
ment is as follows: the eigenfunctions of a Sturm-Liouville operator comprise a
complete set of functions. Algebraically, this means that they span the function
space on which they are defined and can be used as basis vectors for that space.
Thus, any other function (vector) f(x) in the space can be expanded in terms of them,

F0) =" cmum() (10.5.31)

where the coefficients cn, are the “components of f(x) along the ‘unit’ vectors um(x)”,

b
Cm =< Um |f >= /u,*n(x')f(x/)p(x')dx’. (10.5.32)

a
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Keep in mind that we have normalized the functions {um(x)}. If that were not the
case, (10.5.32) would become

b
S umfF (X )p(x)dx’

Cm = (10.5.33)

- .
[ TumX) |> p(x’)dx’

In general, the eigenfunction expansion in (10.5.31) is an infinite series and so
the statement of completeness implies a statement about the convergence of the
series. Since the Fourier functions {% exp [i25"x] } are Sturm-Liouville eigenfunc-
tions, it is not surprising that the convergence properties of Fourier series characterize
those of all such eigenfunction expansions. In fact, (10.5.31) is sometimes referred to
as a generalized Fourier series and the c,, as generalized Fourier coefficients. In
particular, if f(x) is square integrable with respect to p(x) over a < x < b, then we are

assured that the series

b

i Cm Um(x) with ¢ = /u:n(x/)f(x’)p(x')dx' (10.5.34)

m=1 a

must at least converge in the mean to f(x) and therefore,

b oo oo
<FIf >= / £ 2p00dx =3 em P =3 < flttm >< um If > . (10.5.35)
a m=1 m=1

Equation (10.5.35) is called a completeness relation. Having it hold for all vectors
f(x) in a function space defined over a < x < b is a necessary and sufficient condition
for the set {um(x)} to be complete with respect to that space.

We encountered convergence in the mean in connection with Fourier series. To
remind, it means that if Sy is the Nth partial sum of the series,

N
SN = cmum(),

m=1

then,
b
Jim [ 1760550 pC0dx -o. (10.5.36)

This does not imply point-wise convergence let alone uniform convergence of the se-
ries. However, one can prove that if we further restrict f(x) so that it is piecewise con-
tinuous with a square integrable first derivative over a < x < b, the eigenfunction ex-
pansion (10.5.34) converges absolutely and uniformly to f(x) in all sub-intervals free of
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points of discontinuity and at the points of discontinuity it converges to the arithmetic
mean of the right and left hand limits of f(x). If there are no points of discontinuity
and in addition, if f(x) satisfies the boundary conditions imposed on {um(x)}, the ex-
pansion converges uniformly throughout a < x < b.

In physics texts the completeness relation is often complemented by and confused
with an equation called the closure relation. Substituting (10.5.32) into (10.5.31) and
reversing the order of summation and integration, we have

b
700 = [ 106¢) 3 0 0N )X

for an arbitrary function f(x). Comparing this with the defining property of Dirac delta

functions,
b

/ 5(¢ ~ f ()X’ = f(x), a < x < b,

we conclude that

P(')> " um() up(x') = 8(x' - x). (10.5.37)

10.6 A Convenient Notation (And Another Algebraic Digression)

We have defined the scalar product in a complex function space as

b
vV - u=<vu >=/ v (u(x)p(x)dx, (10.6.1)

a

where p(x) is a suitable weight function. This is a generalization of the expression

N
<alb>=a"-b=> ajb; (10.6.2)

j=1

for the scalar product in an N-dimensional complex number vector space in which an
orthonormal basis has been chosen. In a function space, the vector |u > corresponds
to the entire set (or continuum) of values assumed by a function u(x) fora < x < b.
Therefore, it is convenient to consider the number u(x) for a specific value of x to be
the x'" component of the vector |u >. This implies the existence of a set of basis vectors
|x >, a < x < b, such that

u(x) =< xfu > . (10.6.3)
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The continuity of x gives rise to difficulties in defining the normalization of [x > . We
assume, of course, that two distinct basis vectors |x > and |x’ > are orthogonal,

<x'|x>=0for x' # x.

Moreover, we assume that the analogue of the familiar decomposition of a vector in
terms of an orthonormal basis,

N
la >=Zaj|e,- >, ap=<erla>k=1,2,...,N),

j

is
b
lu>= /dxp(x)u(x)|x >, (10.6.4)
a
This means the scalar product of |u > with |x’ > can be written
b
<xX'|u>=u®) = /dxp(x)u(x) <xX'|x >
a

which implies that p(x) < x’|x > has the properties of a Dirac §-function. Evidently, we

cannot normalize |x > to unity. Rather, the analogue of < e; | ) >= §j x = {(1) g] ; ;( is
j#k
/ 1 / 1 / 1 /
<xlx' >=—O8x-xX) = —=<06(x-x) = —<6(x-x"), (10.6.5)

Vp)pK') p(x) px")

which is not so surprising once we remember that the Dirac §-function is a continuous
variable analogue of the Kronecker §-function §; . .

As we saw in the preceding Section, our function space can also have an enu-
merable orthonormal basis consisting of vectors | u, > represented by the functions
Um(x),

Un(X) =< X|um > m=1,2,....

The closure relation satisfied by these functions is (see (10.5.37))

1
p(x’)

S(x' —x) = i U () up ().
m=1

Using the normalization equation (10.6.5), we can rewrite this as

oo oo
<X >= 3" < x|um >< um [ >=< x| <Z|um >< Unm > X' > .

m=1 m=1
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Since |x > and |x’ > are arbitrary basis vectors, the object in brackets must be the
identity operator I. Thus, an alternative expression of closure is

T="|tn >< Un|. (10.6.6)
m=1

The analogous relation for the basis |x >,a < x < b, is

b
I= /dxp(x)|x >< x|. (10.6.7)
a

10.7 Fourier Series and Transforms as Eigenfunction Expansions

The most familiar examples of complete sets are the Fourier functions

1 2mm
—exp|i=—x|, m=0,+1,%+2,...,a<x<a+T (10.7.1)
VT p[ T }
and
1 ikx
—e s —oo<k<oo,—oo<x<oo_ (10.7.2)
V2

As we have seen already, the first of these is comprised of the eigenfunction solu-
tions of the Sturm-Liouville equation

2
%u(x) =-Aulx), a<x<a+T (10.7.3)

subject to the periodic boundary condition u(x) = u(x + T). The corresponding eigen-
values are A = (Z”Tm)z . This discrete set is called the spectrum of £ = dd% when ap-
plied to functions which satisfy this boundary condition. The orthogonality relation
satisfied by these eigenfunctions is

a+T

/ U (0 Un(O)X = S - (1074)

a

which also tells us that they are normalized to unity.
An eigenfunction expansion of a function f(x) in terms of this basis provides a
Fourier series representation:

o 1 2mm | _do 2mm . (2mm
f(x)—m;mcmﬁexp |:1Tx:| =5 +;[amcos (—T >+bmsm (—T )},

(10.7.5)
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with

a+T
1 .2mm
Cm =< Um|f >= 77 /exp [_ITX} f(x)dx. (10.7.6)

The completeness relation for the Fourier functions is

a+T o
/ fO)Pdx=">" |em|? (10.7.7)
a m=-co
or,
5 oo a+T
2

D> lahenhl -7 [ 0P dx. (1078)

m=1 a

The latter expression is known as Parseval’s equation in the theory of Fourier series.
At this point the reader may wish to return to our analysis of the solution of the
stretched string problem since it centres upon the identification of a Fourier sine series
as an eigenfunction expansion.
Suppose that the range of x is the entire real line so that (10.7.3) is replaced by

2
%u(x) - Au(x), —oo<x<oo (10.7.9)

and the periodic boundary condition is replaced by
[u(2e0)| < oo. (10.7.10)

As we have seen, the eigenfunctions are now

u(x) = e, —co< k< oo

and the corresponding eigenvalues are A = k? . Notice that £ = dd—; now has a contin-
uous spectrum. The eigenfunctions’ orthogonality relation is

/ e e KX dx — 218k - K). (10.7.11)

Thus, normalizing the eigenfunctions, we arrive at the form given in (10.7.2):
1 —ikx
V2 ’
An eigenfunction expansion of a function f(x) defined on —co < x < oo in terms of
this basis is given by the continuous sum

—o00 < k < oo,

ui(x) =

oo

£00) = / F() u (x)dk (10.712)

—oco
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where

oo

F(k) =< uy |f >= / LLOOF O (10.713)

—o0

Substituting for u;(x), we see that F(k) is the Fourier transform of f(x),
1 7 ikx' / ’
F(k) = — | ™ f()ax' = F{f(x)1, 10.7.14
W) Tﬂ/ £0) {00} (10.714)

and (10.7.12) is a Fourier integral representation of f(x) :

oo

fx) = % / e ™ F(k)dk = FH{FK)}. (10.7.15)

—o0

The completeness relation in this case reads

oo oo

/ f() |* dx = / |F(k) |* dk (10.7.16)

—co —oo

which is a result known as Plancherel’s Theorem in the theory of Fourier transforms.
The closure relation is

oo oo

/ () w0 )lk = o / 0 gl = 5(x - ). (10.717)

We shall now consider a concrete problem involving a continuous eigenvalue spec-
trum. Four large conducting plates are arranged with the electrostatic potentials
shown in the diagram below.

The size of the plates is much larger than the separation 2a and so they can be
treated as though they extend to infinity in the x- and z-directions. We wish to find the
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electrostatic potential in the region between the plates. That means we wish to solve
Laplace’s equation
2 2 2
‘ZX‘f +2 y‘lz’ + %Zlf -0 (10.718)
subject to boundary conditions at the x- and y-boundaries but not at the z-boundaries.
In fact, the symmetry of the problem tells us that there is no z-dependence at all.
Evidently, the conditions at the y-boundaries are

Y(x, ta) = V for x > 0 and Y(x, ta) = -V for x <0 (10.719)

which implies, among other things, that {(x, y) is an even function of y.
Formulating the conditions at the x-boundaries requires a little more thought. We
note that the conditions in (10.7.19) are odd with respect to x — —x :

Y(-x, ta) = -P(x, ta).

This must also be true for all other values of y, that is (-x, y) = —(x, y) for—a < y <
a. Therefore, we must have the following condition at x = 0 :

P(O,y)=0forallyin —a<y<a. (10.7.20)
The other x-boundaries are at infinity where we can require
lim [P(x, y)| < oo. (10.7.21)
X—rtoo

Since the conditions at the x-boundaries are homogeneous, we will begin our solu-
tion of Laplace’s equation by eliminating the derivative with respect to x . This means
expanding Y(x, y) in terms of the eigenfunctions of £ = dd—;z that satisfy the boundary
conditions X(0) = 0 and |X(too)| < oo. The boundedness requirement means that we
have to rule out the possibility that A < O since that corresponds to the exponential
solutions exp(+v/—-Ax) of the equation

d’ X
a2 - -AX.
The condition at x = O further eliminates the possibility of A = 0 and of the cosine
solution when A > 0. This leaves us with the eigensolutions X;(x) = sinkx, 0 < k < oo
and eigenvalues A = 2.

Since the only restriction placed on k is that it be real and positive-definite, we
have obtained a continuous eigenvalue spectrum and the eigenfunctions X;(x) com-
prise a non- denumerably infinite set. Of course we know that when normalized to

become {\/% sin kx} this set of eigenfunctions provides the complete, orthonormal

basis for Fourier sine transform representations. Therefore, we can represent (x, y)
by the uniformly convergent eigenfunction expansion

Yx,y) = \/Z/ Y (k, y)sin kxdk (10.7.22)
0
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where the expansion coefficients ¥(k,y) comprise the Fourier sine transform of

Px, y):
Y(k,y) = Fs{x,y)}. (10.7.23)

Substituting the representation (10.7.22) into Laplace’s equation and interchanging the
order of differentiation and integration gives us

27 2 I’ Y] .. _
\/;/ { kK" W¥(k,y)+ FI2a sin kxdk = 0. (10.7.24)
0
In other words, the PDE has been reduced to its Fourier sine transform
2
%yf - K> ¥(k,y) =0. (10.7.25)

Solving this equation and using the fact that ¥(k, y) is an even function of y (because
P(x, y) is even) we obtain
Y(k,y) = C(k) cosh ky.

To find the remaining unknown C(k) we impose the boundary condition (x, a) = V;

that is, we require that
2V
Y(k,a)=Fs{V} = \/;f'

2V 1
Clk) = \/;f cosh ka

oo

_ 2V [ coshky sin kx
Yx,y) = — / coshika &k (10.7.26)

Thus,

and our final solution is

0

This demonstrates that using integral transforms is completely equivalent to per-
forming an eigenfunction expansion when the eigenfunctions correspond to a con-
tinuous eigenvalue spectrum.

10.8 Normal Mode (or Initial Value) Problems

Having started our discussion of boundary value problems with a vibrating string, we
shall conclude with a vibrating membrane (or drum head). But first, we shall pursue
some theoretical considerations that are relevant to any system that is set in motion
via an action that is expressible by means of non-homogeneous initial conditions.
The equation of motion of such a system will typically be one of
19%°Y

v Y(r, t) 1o v (r, t) =57

D of (10.8.1)
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and the problem will be to solve it within a region V bounded by a surface S subject
to time independent boundary conditions on S and to initial conditions that specify
Y and in the case of the wave equation % throughout V at ¢ = 0.

The most efficacious way of proceeding is to set

Y(r,t) =y, (N+y, (r, 6 (10.8.2)

where
1. V2 Y, (r) = 0 and ¥, (r) satisfies the same boundary conditions on S as does
Y(r, t)
2 2 _10Y, 2 _1 o P, d isfi h
. VI, (r ) =552 or VA, (r ) =% 52> an P, (r, t) satisfies homogeneous
boundary conditions on S and the same initial conditions as does Y(r, t).

We have seen how one goes about solving for i, (r) in either Cartesian, cylindrical
or spherical coordinates. Therefore, we can focus on the initial value problem associ-
ated with i, (r, ).

We already know from Section 10.3 how to separate the time dependence. It results
in separated solutions of the form

sin kct

W, (r, ) = e 2K () or ,(r, 0) = {C"S ket } u(r) (10.8.3)

depending on which PDE we are solving. Moreover, in both cases, the time-independent
function u(r) is required to be a solution of

Viu)+1tu) =0 (10.8.4)

which when accompanied by homogeneous boundary conditions on S is a multi-
dimensional Sturm-Liouville eigenvalue problem. Denoting its eigenfunctions and
eigenvalues by u,(r) and k2 respectively, we can assert that the former comprise a
complete, orthogonal set of functions. In other words,

/ Uy (N um(NAV =0 if n#m (10.8.5)
4

and, any function f(r) that is square integrable over V can be represented by the (con-
vergent) series

f)=>" caul® (10.8.6)
where
[ un(Nf(r)dv
n= Lt (10.8.7)
[lun(®)|?av

14
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This means that there is an infinite set of solutions of the diffusion and wave equa-
tions which satisfy homogeneous boundary conditions on S. Each solution has a char-
acteristic time dependence and collectively, they are called the normal modes of
the system in question. Forming superpositions of them, we can express any other
solution of the diffusion or wave equation as

Po(r, 0= ca e un (1) or Y [ancoskyct+ bysinkactlun(r)  (10.8.8)
n n

respectively. A complete determination of the solution is then made by imposing the
initial conditions via an application of (10.8.7):

[ un(®), (r,0)dV
v

o T T lunn)2av
14

, Or (10.8.9)

[ un(M), (r,0)dV
an =" and (10.8.10)
[lun(@®) | av
v

GRS R1%
=0 (10.8.11)

- m fv|un(r)|2dv

n

As advertised at the beginning of this Section, we shall illustrate the use of this
machinery by trying it out on a vibrating membrane. The transverse vibrations of a
horizontal membrane of rectangular shape that is stretched equally with a tension T
in all directions will satisfy the two- dimensional wave equation

2 2 2
oY Y _10Y L, _T (10.8.12)

ox2  oy? c?29¢’ u

where u is the mass per unit area and (x, y; t) is the vertical displacement of the
membrane at any point (x, y) and time t. We shall set up our coordinate axes along
two of the edges of the membrane. Then, assuming that it is fixed along all four of its
edges and that it has sides of length a and b, the boundary conditions for this problem
are

YO, y;t) =y(a,y;0) =0
Y(x,0;) = P(x,b;t)=0  forall t. (10.8.13)

As we have just seen, the solution can be expressed as

Yx,y;t) = Z[av cos ky ct + b, sin k, ct] uv(x, y) (10.8.14)
v
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with

62 Uy " 62 Uy
oxZ  oy?

+kpuy(x,y) =0 (10.8.15)

and
uy(0,y) = uv(a, y) = uv(x, 0) = uy(x, b) = 0.

Setting uy(x,y) = X(x)Y(y) the Helmholtz equation in (10.8.15) separates into the
eigenvalue equations
d’ X

2
i and d—Y

=-1X() dy?

- LYY (10.8.16)
subject to
X(0) = X(a) =0 and Y(0) = Y(b) =0,

where A; +1, = k2. These are identical to the eigenvalue equation in the stretched
string problem and so we know that the eigenvalues are

2.2 2.2
=T m=1,2,. and = n =12, (10.8.17)
and the corresponding eigenfunctions are
. max . nm
(X, y) = umn(x,y) = Xm(x) Ya(y) = sin —,sin Ty (10.8.18)

Further, since k2 = A1 + A, = 7° (’;'—22) , the corresponding time dependence is given by
Tim,n(t) = @m,n COS Wm,n t + by,n SIN Wm,n t (10.8.19)

with wmn = mcy/ ’3—22 + Zé, mandn =1, 2,.... Thus, each pair of integers (m, n) de-
fines a distinct normal mode of vibration of the membrane and the complete solution
of the two-dimensional wave equation with homogeneous conditions at rectangular
boundaries is the superposition

= - . . max . nm
Yx,y;t) = Z Z[am,n COS Wm,n t + by n SIN W n t] Sin 4 sin Ty (10.8.20)

m=1 n=1
This is a double Fourier sine series and so equations (10.8.10) and (10.8.11) for the
coefficients reproduce the familiar Euler formulae. Specifically, if we impose initial
conditions

oy

Fra vol(x, y).

Y(x,y;0) = up(x,y) and

we have

a

b
_ 4 . X . nmy
am,n = ab//uo(x, y)smmnasm -5 dxdy (10.8.21)
00
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and
4 mnx . nmy
bmn = abwmn //vo(x y) sin 7 sin —= 5 dxdy. (10.8.22)
It is interesting to explore the properties of the individual normal modes. Because
smM =0 at x= g,z—a,...,(m—l)g
a m’ m m
and b 2b b
nmy =90 20 -2
sin —=+ 5 =0 at y E R . (n 1)n,

the (m, n) normal mode,

mrx T .
(X, y5£) = sin e sin by [@m,n COS Wim,n t + by p SIN Wm,n t],

has (m - 1) nodal lines parallel to the y-axis and (n — 1) nodal lines parallel to the
x-axis. Every point on each of these lines remains at rest for all t.

Two modes can possess the same frequency if { is a rational number. When that
happens we say that the frequency is degenerate because it is associated with more
than one eigenfunction. A simple example is afforded by a square membrane since
then every pair of transposed integers defines a pair of normal modes with the same
frequency. For instance, the (2, 1) and (1, 2) modes both have frequency @ More-
over, any linear combination of the (2, 1) and (1, 2) modes,

Y,y t) = <A sin 2™ sin ™ 4 Bsin ™ sin 2ny) oS \@cnt,
a a a a a

represents a harmonic motion with the same frequency. These solutions are called hy-
brid modes and are vectors in the space spanned by the normal modes. The hybrid
modes have nodal curves whose location depends on the relative value of the coeffi-
cients A and B.



11 Special Functions

11.1 Introduction

The “special functions” of mathematical physics are simply functions that occur
so frequently in the solution of physical problems that they have been studied exhaus-
tively resulting in an unusually complete knowledge of their properties. We made the
acquaintance of a number of these functions in the last Chapter. Now what we need to
dois learn enough about them that acquaintance waxes into friendship or at least into
that level of familiarity needed to feel comfortable when they arise in the solution of
boundary value problems. And, to promote that sense of comfort, we shall solve prob-
lems drawn from several fields of physics. More often than not, the problems will be
classified not by their physical origin but by their spatial symmetry.

We shall commence with a study of spherical harmonics.

11.2 Spherical Harmonics: Problems Possessing Spherical
Symmetry

11.2.1 Introduction

As we learned in Section 10.4, spherical harmonics are eigenfunctions of the angular
part of the Laplacian differential operator v when it is expressed in spherical coordi-
nates. Thus, they arise in descriptions of electromagnetic phenomena and of classical
and quantum mechanical wave motion. This also means that they are eigenfunctions
of the orbital angular momentum operator in quantum mechanics and so they fig-
ure in the description of molecules, atoms and nuclei and even in some models of
sub-nuclear or quark matter. All of which is to say, spherical harmonics warrant our
attention.

We start by reviewing a few lines from Section 10.4. Substitution of a separated
solution u(r, 6, @) or Y(r, 6, @) = R(r)Y(8, ¢) into the Helmholtz equation or Laplace’s
equation resulted in the following equation for Y:

1 0 (. ,0Y 1 °Y
0050 <sm 6¥> + n’0 097 A1 Y(0, ). (11.2.1)

Accompanied by suitable boundary conditions, this is an eigenvalue equation and the
eigenfunctions are found by performing a second separation of variables.
Specifically, we set Y(6, @) = 6(0)®D(¢p) and obtain

> o
de?

= -1, D(p), (11.2.2)

[ IE2T=Tl © 2014 Leslie Copley
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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and

1 d (. ,dO _ A _
Sn0do (sm 9@) + (}ll m) =0 (11.2.3)
whereO <@ <2mand 0 <0 < 7.
Since we want single-valued solutions we impose the boundary condition @(¢ +
21) = @(¢). This implies that

2 and @ = @p(p) = 1 em™ m=0,z%1,42,... (11.2.4)

V2
where we have included a normalization factor.

We now turn our attention to equation (11.2.3) which can be rendered more fa-
miliar by a transformation of the independent variable. In terms of the new variable
x = cos 0, (11.2.3) becomes

Aa=m

2p _ dp 2
(- xz)‘jl7 -2+ </1 - %) P=0 (11.2.5)

where P(x) = O(cos™! x) and -1 < x < 1. Note that we have suppressed the subscript
on }; . This is a variant of Legendre’s equation called the associated Legendre equa-
tion. Like the original Legendre DE, which corresponds to setting m = 0 in (11.2.5), it
has regular singular points at x = +1. Therefore, the boundary condition that we must
impose on its solutions is that they be bounded, |P(x1)| < co. We shall now use the an-
alytical tools of Chapter 9 to find the eigenfunctions that result from that imposition.

11.2.2 Associated Legendre Polynomials

Our first tentative move will be to expand P(x) in Frobenius series about the regular
singular points x = +1. Our object is to determine its leading behaviour there.
Substituting P(x) = > ¢;(x-1 )**k, co # Ointo (11.2.5) and equating the coefficient

k=0
of the lowest power of (x — 1) to zero, we obtain the indicial equation

4s(s— 1) + 4s - m? =0 with roots s = 1%.

To remove a source of ambiguity, we shall restrict m > O for the time being.

The root s = -3 can be ruled out immediately because P(x) has to be bounded at
x = 1. Therefore, we must be able to write P(x) = (1 - x)% f(x) where f(x) is bounded
and non-vanishing at x = 1.

Next, we substitute P(x) = > cx(x+1 )”k , Co # 0into (11.2.5) and again determine

k=0
the indicial equation. The result is the same as before and so s must again be set equal

to 2. This means that P(x) = (1 + x)% g(x) where g(x) is bounded and non-vanishing
atx =-1.
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Combining these two results, we conclude that P(x) can be expressed in the fac-
tored form

P(x)=(1-x%)7 ux) (11.2.6)

where u(x) must be bounded and non-vanishing at x = +1. A differential equation for
u(x) can be found by substituting (11.2.6) into the associated Legendre equation. The
result is

du
dx?

Since x = 0is an ordinary point, the solutions of this DE will have the Taylor series

A-x)9 ¥ _om+ 1)x% +(=m-mdu=o. (11.27)

representation u(x) = 3" ¢; xX . Substitution into (11.2.7) and equation of coefficients
k=0
of successive powers of x to zero results in the recurrence relation

k(k-1)+2(m+ 1)k - )l+m(m+1)

Cks2 = k+Dk+2) k=0. (11.2.8)

This relates the coefficients of all even powers in u(x) back to ¢y and of all odd powers
back to c¢; . Thus, as we learned to expect in Chapter 9, we have obtained two linearly
independent solutions.

Applying standard convergence tests (the ratio test for example), one finds that
the series diverge at x = +1. However, there is a remedy at hand and it is one we have
invoked before.

If we choose A so that ¢, = 0 for some k, one of the series will terminate to
become a polynomial of degree k. Therefore, the requirement that |u(+1)| < oo implies
that

k(k-1)+2(m+1k-A+m(m+1) =0,

or
A=(m+k)(m+k+1) for some k.

This has a familiar ring to it and to reinforce the familiarity we set m + k = 1. The
eigenvalues A are then specified as

=l(l+1), l>m,m=0,1,2,.... (11.2.9)

The corresponding solutions for u(x) are polynomials of degree [ - m

Normally, the next step would be to use the recurrence relation (11.2.8) to deter-
mine an explicit expression for u(x). However, it is less messy as well as more instruc-
tive to make the determination in a somewhat different way. As we know from Chapter
9, Legendre polynomials satisfy the equation

dp

d’ P R E R (PR (11.2.10)

dx?

(1-x%)
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Differentiating m times we obtain

(- Xz)d; <cg"xﬁl) 2(m+1)x7 (6;"151>+[1(1+1) m - m2]<d Pl)

which is identical to the DE for u(x). This enables us to make the identification u(x) =
m

dd — P;(x) and conclude that the eigenfunction solutions of the associated Leg-
endre equation are

m

Pl'(x)=(1 —xz)% ddWPl(x)’ 1=0,1,2,... and O0<m=<l (11.2.11)

corresponding to the eigenvalues A = [(I + 1). These functions are called associated
Legendre polynomials (but are polynomials only when m is even). We shall begin
an exploration of their properties by focussing on the subset we have met before, the
('m = 0) Legendre polynomials.

11.2.3 Properties of Legendre Polynomials

The explicit polynomial expression for p;(x) that we found in Section 9.6 reads

[1/2]

(21 - 2k)! -2k
Px) = IZ( 1)k PTG (11.2.12)
where [1/2] = 5 L ifliseven and [I/2] = &L if 1 is odd . This can be recast in a form that

has a variety of uses, both practical and theoretical, by noticing first that

1 d W2 21-2k
PI0d = i i Z(‘ )V - k)'X

and then that
[1/2]

I K22k
-1) —Z( 1)¢ P TR
Combined, these two identities give us Rodrigues’ formula for p;(x),

1 2
Pi(x) = ﬂﬁ( -1y (11.2.13)
This formula was derived by Olinde Rodrigues (1795-1851) and appears in his doc-
toral thesis. After graduation from Université de Paris in 1815, Rodrigues became a
banker, a not uncommon fate for mathematicians then as now.
One can generate the lowest order polynomials fairly easily from Rodrigues’ for-

mula and thus confirm what we found in Section 7.6:

Po =1, P00 =X, Po(0)= 3G -1), P00 = 3(5°-3%), ..
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Yet another way of generating the polynomials and more importantly, of deducing
many of their properties is to make use of the so-called generating function

=> P, Jt<1,0x] <1, (11.2.14)

1
Vi-2xt+t2 3

The proof of this identity can be established by a “brute-force” method that begins
with the expansion

Glx, t) =

3)...(3-m)
m!

(1-2xt+¢ )_% =[1+¢t(t- Zx)]_% = i (2 (- 2x)™,

m=0

uses the binomial theorem to expand (t - 2x)™, and then performs an “inspired”
change of summation index to obtain

oo [1/2] -k
Gx, b) = ZZ kz (_%) 1-3-... (21k—!(§li ;;))!(21 -2k-1) {200y
=0 k=0

which is recognizable, after some simplifiation, as the left hand side of (11.2.14). We
shall establish it by a more elegant approach that employs integral representations of
Pi(x).

A contour integral representation follows immediately from Rodrigues’ formula
and the Cauchy differentiation formula:

11 -1y

i3 (7( — )m ac (11.2.15)
C

Pi(2) =

where C is any simple closed contour enclosing the point { = z. This is called Schléfli’s
integral representation.

Ludwig Schldfli (1814-1895) was a Swiss geometer and complex analyst.

We shall choose C to be a circle about z with radius |v'z2 -1| in which case any
point on C is defined by

(=z+\/zz—1ei9, 0<6<2m.

It does not matter which branch of v/z2 -1 is used here so long as we are consistent.
A little algebraic manipulation then gives us

(?-1=2({-2)(z+Vz2-1cos ) and d{ =i({ - 2)d6.

Therefore, substituting into (11.2.15), we obtain Laplace’s integral representation,

Pi(2) = % /(Z +Vz2-1cos 0)1 de. (11.2.16)
0
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This is the representation we need for the generating function identity. Substituting
(11.2.16) into the right hand side of (11.2.14) and interchanging the order of summation
and integration, we have

oo T oo

! 1 ! 7 !
%t pi(x) n/lzo:t(x+w< 1cos6) db
N )

n

= g
7T0 1-tx-tvx2-1cos@

- =G0,

V1= 2tx + t2
where the evaluation of the integral over 6 is done by residue calculus (or by refer-
ence to a set of integral tables). This is just (11.2.14) written in reverse order and so our
derivation is complete.
The generating function readily yields the values assumed by p;(x) at a number
of special points. For example, at x = 1, we have

gtpl(l)-G(l,t)—ﬁ—Zt, el <1,

-0

Therefore,

P(1)=1 for all 1=0. (11.2.17)

At x = 0, we have

Zt1P1(0)=(1+t2)_% =1—%t2+<—%> (—%) §+

=0

Therefore,
0 if 1 is odd
)

if 1 is even (11.2.18)

At x = -1, we have
S p-1) = = St)
1+t
=0 =0

and so,

Pi(-1) = (-1)! for all I=0. (11.2.19)
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More generally,
Pi(-x) = (-1)' () (11.2.20)

which follows from
1

)=
V126060 + ()

G(-x, -t = G(x, t)

or
PN SICIEDPPJETE
1-0 1-0

The generating function is also the source of a number of useful identities con-
necting Legendre polynomials of different orders. These are found by differentiating
G(x, t).

Differentiating with respect to t, we obtain

oG _ x—t 3 x—t
ot (1—2Xt+t2)% (1-2tx+¢?)

G, )= 1¢ pi).
1=0
After cross-multiplying and then substituting for G(x, t) , this yields

x-0> P00 =(1-2xt+ ) 17 px)

=0 =0
or
Z 171 py(x) - Z(Zl + Dx ' px) + Z(l +1) ¢ p(x) = 0.
1=0 1=0 1=0
Equating coefficients of like powers of ¢, we find that this implies

QI+ xp)=U+1) 1) +1P 1), 1=1,2,3,.... (11.2.21)

This is called a recursion relation. An immediate application of it is to determine
all Legendre polynomials from a knowledge of Py(x) = 1 and P;(x) = x.
If we differentiate G(x, t) with respect to x rather than ¢, we obtain
oG _ t t

o .
- = G(x,t) = tl /X, (x) = 440
OX  (1-2xt+)? 1-2xt+¢t (x, 1) ; P, Pi(x) i

Cross-multiplication followed by substitution for G(x, t) makes this read

oo

Yot =1 -2xt+ )Yt Pi0).
=0

1=0

Equating coefficients of like powers of t, we find the second recursion relation:

Pi(x) = Ply(x) - 2x Pj(X) + P, (x), 1=1,2,3,.... (11.2.22)
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Many other recursion relations can be derived from linear combinations of these
two basic ones including, for example,

21+ 1) Pi(x) = Py () - Pi1 ()
1Pi(x) = x P1(x) = P11 (%)
Pl () = x Pj(0) + (1 + 1) Pi(%)
(x* -1) Pi(x) = Ix Py(x) = 1 Pp1 (). (11.2.23)
We now turn our attention to those properties of Legendre polynomials which bear
directly on their relevance in the solution of boundary value problems. These are or-

thogonality, normalization and completeness. Since the polynomials are solutions of
the Sturm-Liouville eigenvalue problem

% {( )sz] = —I(1+ 1) P(x) with | Py(x1)] < oo, (11.2.24)

they are mutually orthogonal with respect to the weight function p(x) = 1:

1

/ P00 Pn()dx = 0 if 1#m. (11.2.25)
-1
Verifying this provides an instructive example of the utility of Rodrigue’s formula.
Taking [ < m, we have

1 1

1 1 d" m
/P;(X)Pm(x)dx= 217+m1l7ml/ {dx’(x —1)] [W(xz—l) ]dx. (11.2.26)

-1 -1

Integrating by parts, we obtain

1
/ d‘i ' A6 -1ymax
4
-1 x=1
- ddxl—1( _1) (X -1)" 1
p d m+1 ) m
/d— Xm+1(x -1)"dx.
-1

The integrated term vanishes because ST (x -1 ) has simple zeros at the end-points
= +1. We now repeat the integration by parts [-1 times. In each of these integrations
the integrated term vanishes and we are left with

1
/di AT 1) dx - (1)/(X -4 e ydx. (112.27)
-1
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The function (x> -1 )™ is a polynomial of degree 2m. Thus, if l > m, we are differenti-
ating it more than 2m times and so the result is zero. Therefore,
1
/Pl(x) Pu(0dx =0, 1#m.
]

If I does equal m, this integral becomes the normalization integral

Ni = /[PI(X)] dx _FW(_ )/x 1) ZI(XZ—l)Idx

where we have used (11.2.26) and (11 2.27) with m = l. We know that

ax 2I(x —1) =QD!

2!
M= 1 / (¢ -1 dx.

and so,

The latter integral can be evaluated by repeated integration by parts. One finds

l+11!
1-3-5---Q21+1)°

1
/(x2 -1)ldx = (-1)
4

Thus,

/ [P(0)]* dx = ﬁ (11.2.28)

The normalization integral can also be derived from the generating function.
Specifically, we can square G(x, t),

2 o e
(GO, D) = — 2Xt+t2 = [Zt Pi(x } =33 8 P P,

=0 m=0
and then integrate from -1 to 1 to obtain

1 1

/ T sz'”" / PO PaOdx = 3 [eorax w22

=0 m=0 ¥ =0 %

where we have used the orthogonality of the Legendre polynomials to eliminate all
but the terms with m = [ on the right hand side of the equation. Introducing a new
variable of integration y = 1 - 2tx + ¢* the left hand side of the equation is found to be

(1+t)

1
1 [y 1 (1t
1-2tx+¢* 2t y t 1-t

-1

(1-t)?
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which has the power series expansion

1, (1+t) = ¢
?ln <ﬁ) _2221+1. (11.2.30)

=0

Equating coefficients of like powers of t in (11.2.29) and (11.2.30), we recover

1
2
_ 24

Ni= [IP0OT dx = 5%+

-1

Orthogonality and normalization are conveniently combined in the single equa-
tion

1

[ P P = 37

1 St,m - (11.2.31)

-1
As eigenfunctions of a Sturm-Liouville problem, Legendre polynomials form a
complete set: any function f(x) that is square-integrable with respect to the weight

p(x) = 1 on the interval -1 < x < 1 can be represented on that interval by the expan-
sion

- 1
fx) = Z ¢; Pi(x) where ¢; = ZIT+1 /Pl(x')f(x’)dx’. (11.2.32)
=0 4

This is sometimes called a Fourier-Legendre series. The completeness relation for
Legendre polynomials is

1
= 2 o 2
> ST ¢t = / [F(0)1? dx (11.2.33)
1=0 ]
and the closure relation is
= 20+1
Z ; Pi(0) Pi(x) = 6(x - x'). (11.2.34)

=0

In theory at least, the coefficients of like powers in an expansion over an infi-
nite set of polynomials can always be summed so that the expansion is converted to a
power series. This raises the question of how power series fit within what is in fact an
algebraic picture. The answer is straightforward but instructive. A Taylor series about
x = 0 is an expansion over the monomials 1, x, x2, %2, ... and the algebraic counter-
part of Taylor’s Theorem is a theorem due to Weierstrass that this set is complete with
respect to any space of square integrable functions. However, they do not form an or-
thogonal set. Rather, once a weight function and interval of definition is given, one
has to form orthogonal linear combinations of the monomials. There are well-defined
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methods for doing so, the most general being the Gram-Schmidt orthogonalization
procedure which constructs successively polynomials of degree [ that are orthogonal
to the polynomials of degree 0, 1, 2, ...1- 1. The outcome is a set of orthogonal poly-
nomials that is unique to the choice of interval and weight function used. We will dis-
cuss this in more detail in a subsequent section. For now it suffices to know that the
orthogonalization process in the case of the interval -1 < x < 1 and weight p(x) = 1
results in the Legendre polynomials.

11.2.4 Problems Possessing Azimuthal Symmetry

Returning to the discussion in Section 11.2.1 of what happens with separation of vari-
ables in problems with spherical symmetry, we now know that the angular depen-
dence will be governed by the complete set of functions

Pl"(cos 9){ cosme }l= 0,1,2,... and O<m<l (11.2.35)
sinmg

where we have used an explicitly real form for @,,(¢).

Many applications involve symmetry about the z-axis. This means that there will
be no dependence on the azimuthal angle ¢ and so it is often referred to as azimuthal
symmetry. A glance at (11.2.35) tells us that no ¢ -dependence necessarily implies m =
0 and hence, a 6 - dependence expressible in terms of Legendre polynomials rather
than associated Legendre polynomials. In the case of Laplace’s equation, for example,
a solution with azimuthal symmetry will have the Fourier-Legendre expansion

¥(r,0) = > Ri(r) Py(cos 6) (11.2.36)
1=0
where, as we saw in Section 10.4, R,(r) is a solution of

d’Ri, 2dR; ll+1)
dr? r dr r2

The general solution of this equation is

R =0. (11.2.37)

R =ar+Br. (11.2.38)

As a concrete example, suppose that we have two conducting hemispherical shells
of radius b, insulated from each other by a thin strip along their circle of contact and
maintained at potentials +V and -V, respectively. We seek the potential everywhere
inside the composite sphere.

This is an example of an interior problem: the lower limit of the range for r is zero
and, since we require a solution that is bounded there, we can set B; = O for all I. (The
corresponding exterior problem would be to find the potential everywhere outside



324 — Special Functions

the sphere. In that case, the requirement of a solution that is zero at infinity results in
A; = 0 for all I and the B; have to be determined from the potential at the surface of
the sphere.) Thus, it only remains to impose the boundary condition

+V, 0<0<%

l/)(b,9)={ -V, Z<0snm

on the Fourier-Legendre series

¥(r,0) =" Ar' Pi(cos6).

1-0
Using (11.2.32), we find that this implies

A1= 1 2I+1 /lp(b 0) p;(cos 0) sin 6dO

and, since (b, 0) is an odd function of cos 6 while p;(cos 8) has parity (-1 )l, this
becomes

121+1
Ai=4q bt 2

1
|74 / Pj(cosB)d(cos8) if I is odd
0

0 if 1 is even

Recalling (from (11.2.23)) that
21+ 1) Py(x) = P2 () - P, (%),

we find )
1 x=1
| pitcos )d(eos 6) = 377 [Pa00 - P CO] .
0
L
But, (1) = 1 for all l and p;(0) = S22 if | is even and is zero otherwise. Thus,

(%)

(-1)7 (1 + 1)

(1 odd).
2 ()1

1
/ P;(cos 8)d(cos 6) =
0
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Therefore, the electrostatic potential at any point inside the sphere is

poo-y 3 GDCH )

1=1,3,5,... 2kt (HTl)zl

As a further example we shall consider the problem of a conducting sphere in a
uniform electric field Ey. What we seek is the new, perturbed electrostatic potential 1.

Because there are no charges present, V2 ¢ = 0. And, choosing our z-axis to be in
the direction of E(, we have azimuthal symmetry. Thus,

(%)IPI(COS 0).

oo

Y(r,0) = [+ Bir '] Py(cos 6).

=0

Taking the origin to be at the centre of the sphere, the effect of the perturbing
sphere should go to zero as r — oo. Therefore, we require

rle Y(r,0) =-Eoz=-Eorcosf =—EqrP;(cos ).

It then follows that 4; = O for all I > 2 (as one would expect for an exterior problem)
and A1 = - Eo.

The conducting sphere must be at a constant value of potential and so, denoting
the sphere’s radius by a, we have the boundary condition

- cos O
Y(a, 0) = a constant = 4g +% + (%) P1(cos6) + ZBI %-
1=2
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In order that this hold for all 8, each coefficient of a p;(cos 8) with [ # 0 must vanish.
Thus, B; = 0 for I = 2 and B; = Eo a® which gives us

3
Y(r, 0) = Ao +% —-Eor (1 - %) P1(cos 6).

Since it is E=V 1 rather than  itself that has physical significance, the constant
Ao can be dropped. In addition, we know from Gauss’ Law that By is determined by
the net charge Q on the sphere: By = —=-. Therefore, our final answer is

Q 3
Y(r, 6) = zmg 7 -Eor (1— —) cos 0.

In effect, the sphere has perturbed the external field by adding both a monopole
term, [mlg +, and a dipole term, Eo % cos 6, corresponding to an induced dipole mo-

ment
b= a’ Eo .

11.2.5 Properties of the Associated Legendre Polynomials

From (11.2.11) and the Rodrigues’ formula for p;(x), we can write down the correspond-
ing formula for pP"(x) immediately:

(1- X2 )% dl+m
21 ll dX’+m

Pl'(x) = *-1), m=0,1,2,...,1, 1=0,1,2,.... (11.2.39)
This identity yields well-defined functions even if m is negative, provided that |m| <
1. However, they are not independent of their positive m counterparts since one can
show that

P™(x) = (-1)™ 8 X g: P'(x), O<ms<l (11.2.40)

From the recursion formulas for p;(x) one can readily obtain formulas for pj"(x).
Of particular use are the m-raising and m-lowering relations,

mx Py (x) + (1 - Xz)dp’ - (1-x7) P ()
mx P (x) - (1 - x )sz —A+m)(l-m+ 11 -x2)} Pri(), (11.2.40)

and the l-raising and 1-lowering relations,

2 dP;n m
(I+1)x P e (I-m+1) P (x)
m 2 d P;n m
Ix P - = (I+m) P, (%). (11.2.42)

dx
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As for parity, we know already that p;(-x) = (-1)' p;(x). Therefore, since

"o d"
d(—x)’”_( DY T

PP(-x) = (-1)""™ pI'(x). (11.2.43)

And, in regard to special values, it is obvious that p;*(+1) = 0.
Of most interest to us are the properties the associated Legendre polynomials have
by dint of being eigenfunction solutions of a Sturm-Liouville problem. As we have

seen, the equation
d 2 dP mz _
ﬁ[(l X)E}JF[A 71—)(2}13_0

together with the boundary condition |P(+1)| < oo has the eigensolutions P(x) =
PJ"(x), 0 < m < I, corresponding to eigenvalues A = I(l+ 1), = 0,1, 2, .... Thus, the
set Pl"(x),l=m,m+1,m+2,... for fixed mis complete and orthogonal with respect
to the weight function p(x) = 1 on the interval -1 < x < 1.

The statement of orthogonality is

1
/P?"(x) Pr(x)dx =0 for all 1+ k. (11.2.44)
-1

The associated Legendre polynomials satisfy a second orthogonality relation. It
arises because
d d’ pf’ m?
e |- e 00 - T PP, PG <o
is also an eigenvalue problem with eigenvalues, for fixed ,A = -m?,0 < m < I, and

weight function p(x) = %> Thus,

1
m n
/ %dx =0 for all m # n. (11.2.45)
]
Orthogonality needs to be accompanied by knowledge of the corresponding nor-
malization integral. For the physically relevant case, this means that we need to eval-
uate

1 1

m m
Nim = / [PPOOT dx = / (1-x2yn d" Prd" Py, (11.246)
)

dxm dxm

-1
Integrating by parts, we have
1

m m-1
—/—d [(1—x2)md P’} d”_Pigy,
1

dx dxm | dxm-1

_ 1
2 ym d" P d™* P

Nim = (1= dxm dxm1 |

-1
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The integrated term is zero and the derivative in the integral is

d de d P dm+1P
yr [(1—;(2)"‘ dxml] = —2mx(1 - x*)™? T L (@-x)" dxmﬂl

which we can simplify by using Legendre’s equation. Differentiating (11.2.10) m - 1
times we have

+1PI dm d
(1- x)d =l —ZdeX -[l1+1) -m(m - 1)]d ml'
Thus,
2
=+ 1) - m(m - 1)]/(1 2y |:dX”111?:| dx. (11.2.47)

The numerical factor in front of the integral can be rearranged to read (I+m)(I-m+1)
while the integral itself is recognizable as

1
Nimo1= [ [P[7H ()] dx
/

In other words,
Niym = (L+m)(I—=m + 1) Nim

and if we apply the same procedure m times, this becomes

m=U+mI-m+1){+m-1)I-m+2)Nymo

I+mI+m+1)...(0+Dl...(01-m+2)(I-m+1)Nyo

1

(I+m)! 2

= [P (x)]” dx. (11.2.48)
{ m)!{

But the latter integral is just the normalization integral for the Legendre polyno-
mials and is given in (11.2.31). Therefore, our final result, combining the statement of
orthogonality and normalization, is

Lk - (11.2.49)

1
n m 2 (I+m)
/Pl 00 P (dx = 5=
-1

The statement of completeness is

/ [F(0) ]2 dx = Z St (“m)'[ P (11.2.50)

+1(-m)!
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where

Cm_21+1(l—m)!
L7772 (+m)

1
[ preareodx,
]
m is a fixed positive integer, and f(x) is any function that is square integrable over the
interval -1 < x < 1. Seen in isolation, this result does not appear to add a significant
new tool to our box of problem solving techniques. After all, no one would choose to
expand functions in terms of associated Legendre functions rather than the much sim-
pler Legendre polynomials unless, of course, some other aspect of the problem gives
rise to a compelling reason. This is exactly what happens in problems with spherical
but not azimuthal symmetry and it is of such importance that we will devote a separate
sub-section to it.

11.2.6 Completeness and the Spherical Harmonics

Separation of variables using spherical coordinates has taught us that any problem
with spherical symmetry has a solution whose angular dependence can be expressed
in terms of the solutions of the eigenvalue problem
1 0 (. oY 1 0%Y
0030 (sm 6@) penvar 37 " -AY(6, ¢)
where Y(6, ) is required to be single-valued and finite over (the sphere) 0 < ¢ < 27,
-1 = cos 0 =< 1. These solutions are

Y(6, p) = Pl"(cos ) e*™°, m=0,1,2,...,1 (11.2.51)

corresponding to eigenvalues A = (I + 1),1 = 0, 1, 2, .... Rather than carry the plus-
minus sign in the exponent, we shall allow m to assume both positive and negative
values. A further convenience is provided by inclusion of normalizing factors and a
phase that is useful in quantum mechanical applications. Making all of these modifi-
cations , we obtain

2l+1 (1-m)!
41 (1+m)!

m=-1,-1+1,...,0,...,1-1,1. (11.2.52)

Y76, 9) = (-1)" Pl'(cosB)e™, 1=0,1,2,...,

This set of functions is called spherical harmonics.
Notice that
(¥ (6, 9)) = (-1)" ;" (6, 9), (11.2.53)

and

2n m

/ / (Y70, 9)) Y6, ¢) 5in 0d0d = §1x Smn - (11.2.54)
0 O
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]
N

m=0 m=1 m
_ 1
=0 U=
=1 /2 cos6 \/ & sin 0 e®
1=2 /2 (3) -1/%¥cosBsinfeiv 1,/3%sin’ 0%

Since for each value of I there are 21 + 1 allowed values of m, each eigenvalue
= I(1 + 1) corresponds to 21 + 1 eigenfunctions y;"(6, ¢) and so we say that it is
(21 + 1)- fold degenerate.

As eigenfunctions, the spherical harmonics are complete with respect to the space
of square-integrable functions defined on the surface of a sphere. Thus, any function
f(6.9) that is square integrable over the sphere can be represented by the convergent
series

oo 1
£0,9)=> "> cim ¥"(6,9) (11.2.55)

1=0 m=-1
where the coefficients are given by
2n «
Cim = / / (Y6, 9)) f(8, @) sin 6dOd . (11.2.56)
0 0
The closure relation for spherical harmonics is

)

ZZ Y16, 9@, o)) = 200180 -9 (11.2.57)

sin 0
=0 m=-1

We conclude the formal discussion of spherical harmonics by stating a fortuitous
theorem that separates a dependence on the angle between two directions into a de-
pendence on the directions themselves. Suppose that we have two coordinate vectors
r and »’ with spherical coordinates (r, 8, @) and (', 8', ¢’), respectively. Trigonometry
determines the cosine of the angle a between the two vectors to be

cosa = cos @ cos &' + sin Osin &' cos(p - ¢’). (11.2.58)

Remarkably, when cos a becomes the argument of a Legendre polynomial, the de-
pendence on 6 and ¢ separates totally from that on 6’ and ¢’. In fact, what happens
is

Pi(cosa) = 5 Z(Y, @, )Y, p). (11.2.59)

This identity is known as the addition theorem. In the special case of a = 0, it

produces the sum rule
21 1
Z YO, ) P = =2 (11.2.60)

m=—1
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A far more important application, however, is in the expression of the inverse distance
ﬁ between two points in terms of spherical harmonics. This arises in a wide range
of potential problems, from electromagnetic and gravitational theory to quantum me-
chanics. A further application of some importance involves the rotation of coordinate

axes.

11.2.7 Applications: Problems Without Azimuthal Symmetry

We begin by pursuing the observation about the inverse distance between two points.
The electrostatic potential at r due to a point charge g at r’ is

Yr) = — 19

" hnmeo r-r'|°

If instead of a point charge we have a distribution with charge density p(r’) confined
to aregion r’ < R, the electrostatic potential at r, r > R is

1 pr) 5.
P(r) “tmes | -4 T (11.2.61)
14
In either case, knowledge of the inverse distance ﬁ is critical.

The generating function for Legendre polynomials is
1 oo

S S— ) CNNEE!

vV1-2xt+t¢t -
and the inverse distance can be cast into exactly this form:
11 1 ~ 1
r-r \/ N2 V12211 cos a+r'? \/1 or "2
(r-r) r\/1-2% cosa+(%)
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Thus, identifying cos a with x and ’7/ with t, we have

1 = !
WZZ — Py (cosa), r<r. (11.2.62)
1=0

Invoking the addition theorem, this becomes the fully separated expression

m « 1 m
TR r, Z Z st (Y89 5 Y0, ) (11.2.63)

which, when substituted into equation (11.2.61), produces a representation of the po-
tential due to a distributed charge that has an immediate physical interpretation. The
representation is

co 1

1 1
Y = % r;l STT1 r1+1 L yre, 9) (11.2.64)
where
Q"= / 7@, Nr'prYd’r. (11.2.65)

Evidently, the Q" are spherical components of the multipole moments of the
charge distribution. Therefore, the representation of y)(r) in terms of them is called a
multipole expansion. Notice that each term has a distinctive angular distribution
and an inverse dependence on r that falls off more rapidly with increasing I. The
lowest order multipole moments are the monopole,

0 _ 1 N 434 — 1 _ 1
Qo —m/p(r)d r lmq Tin
14

x (the total charge present),

the dipole,
Q' =%\ e 1 1P, 02 =\ 2 ps where p= [ Vo) ¥
v
and the quadrupole,
Q;z—lz\/ (Ql1$21Q12 sz) Q = (Q13$1Q23)
Qg—f Q33 where Q;; = /(Bxlx, -r 5,])p(r’)d3 r

%4

Thus, with respect to a Cartesian basis, our multipole expansion is

P(r) = .87, ZZ Qe (11.2.66)

i,j=1

lme
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Evidently an expansion of a potential in terms of spherical harmonics is effectively
the same as an expansion of the source charge distribution in terms of its multipole
components. To reinforce our intuitive appreciation of this, we shall determine the
potential due to specific multipole configurations of discrete charges.

We start with a dipole constructed from a charge g located at z = § and charge —¢
at z = - 5. The resulting potential at a point r is

1 1
() = lme [|r— T - \r+gkd

_a 1[f, ,a a1t o[, ay?\’
T 4megr {{1 2ZrCOSGJr<2r) } {1+22rc059+(2r)

Nl

|

or,

Y(r) = Me = [i ( ) Py (cos6) - i (;)le(cos(?)]

1=0 =0
2qg 1
T 4mey 1

[(Zi) Pl(C059)+( r) p3(C059)+...].

Thus, at a distant point, r > a, the potential is

() ~ ga Pi(cosf) 1 gqarcos6 1 p-r
T 4meg r? 47T €9 r3 4Teg 13

where p= gak is the dipole moment that we learned to associate with such a charge
distribution in introductory electricity and magnetism.

We shall now move the dipole off the z-axis so that it can be combined with a
second dipole to form an electric quadrupole. To be as general as possible, we will

use an arbitrary azimuthal orientation and locate charge q at r'= (L, 5o ) and -q

V2
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atr’'= (%, 3, <p’) . Again, we have

1 1
vr )_lme [|r—r’| Cr=r|

but this time we have to use the addition theorem in the form

r— r/\ Z z:21+1rz+1(Y1 @, 0N v"©6,9), r>r

to expand the two inverse distances. Then, since cos 32 = — cos Z 7> wehave pj (cos ) =
Pl'(-cos §) = (-1 ylm P["(cos 7) and hence,

4 < tmycom (T Ny om
w(r)=4ﬂ€0§m§2,+12,,2 prlt= (=D (G @) Y6, ).

The factor g, =1 - (-1 )””’ vanishes for even values of | + m. Therefore, we find

3
b0 =L [ LR o) 6.0 L Re [0 ViG] 40 (4]
or, forr < a
Y(r) ~ \4/;3“ r12 P (cos *)Pl (cos 9)—4qa€O C(ﬁe

As we would expect, this is the same as the result obtained for a dipole on the z -axis.
A dependence on the azimuthal angles enters the picture only when the relative size
of r and a justifies inclusion of the ‘j—f term. However, as we shall now see this becomes
the leading term when we combine two dipoles to form a quadrupole.

The quadrupole is constructed by placing a second dipole a distance a from the
first and with its charges oriented so that the dipoles are anti-parallel. So, if the first
is at an azimuthal angle ¢’, the second is at ¢’ + 71. Therefore, since

. !’ . . ’ : ’
elm((p +m) _ elMm oime” _ (_1)m elme ,

the potential due to the two dipoles is

q - I+m NS m

Y = ;Z Ty ,+1[1 -1 - D" (G ) Y6, ).

The numerical factor X; ,, = [1-(-1 )¥™][1-(~1)™] results in all the lowest order terms

vanishing with the first non-zero term corresponding to I = 2, m = +1 and the next to

l=4,m=+3and 1. Thus, forr > a
4 a?

n N _ q
Y =l S 8Re (V1 (G 9) Y26, 9)] =5
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An electric octupole can similarly be constructed from two quadrupoles and one finds
that a further cancellation occurs leaving the I = 3 term as the leading one in the
spherical harmonic expansion of its potential. Generalizing, we can assert that the
potential due to an electric 2! -pole falls off like ! and has an angular dependence
determined by Y;"(6, ¢) for r > a.

We now turn our attention to solving problems involving Laplace’s equation and
non-homogeneous boundary conditions. Suppose that we have a spherical shell of
radius R which is maintained at a potential 7y cos 2¢. Let us find the potential at any
point inside the sphere.

This is an interior problem and so the solution must have the characteristic r
-dependence that ensures boundedness at the origin. However, unlike the interior
problem of Section 11.2.5, this one manifestly lacks azimuthal symmetry. Therefore,
rather than use a simple Fourier- Legendre representation of the potential, we now
must work with the spherical harmonic expansion

oo 1
Y, 60,9)=> "> Amr Y6, ).

=0 m=-1

(This problem is more amenable to use of the equivalent explicitly real expansion

oo l
Y(r, 0, p) =Z Z r! P (cos 0)(ayy, cos m@+ by sinme).

-0 m=0

However, the object of the exercise is to gain experience working with spherical har-
monics.)
Using (11.2.56) and the boundary condition (R, 6, ¢) = V, cos 2¢, we have

2n m

Aim = %//(y{"(e, ®))" cos 2¢ sin 8dOd¢p
0 O

or,

2n

_ | .
214;1) % /le‘ (cos ) e cos 2¢ sin HdOd .
0 0

The integration over ¢ gives us

2 2

. 1 . . o 0 if m#+2
img _ = imo(,2ip 2ip =
/e cos 2¢pd¢p 2/6’ (™ + e Mdg { moif m=+2
4 0

This means, of course, that in addition to the restriction on m, we must restrict I to
1 = 2. Proceeding with the 6 integration, we have

2

1 1
2
/plz(cos 6) sin 6d0 = /Plz(x)dx = /(1 —XZ)d Xlzl dx
-1 -1

d
0
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where we have made the substitution x = cos . Integrating twice by parts, we find

1 1

/(1 x?) d P’dx- 2xP1(x)| I—Z/Pl(x)dx 21+ (-1)]-2 /Pl(x)Po(x)dx

dx
-1 -1
The last integral is zero because [ = 2 and the Legendre polynomials form an orthogo-
nal set. Therefore,

m

/P,z(cos 0)sin 6d6 = 0 %f ; S odd
4 if | is even

0

Collecting all this information, we conclude that

4o [(2L+1)(1-2)!

R\ ar (e Y60 Y6,

l/)(r’ 9’ §0) = Z

1=2,4,...

(1-2)
Z 2 Vo2l + ) )]

— 2 .
1-2,6... ( ) P (cos 6) cos 2¢

As a further application, consider two hemispherical shells of radius b separated
by a thin ring of insulation and maintained at potentials ¥V and -V as shown in the
diagram above. The boundary condition at the surface of the sphere is

+V if Osp<m

1/)(b,9,<p)={ -V if n<p<2n

which is certainly not azimuthally symmetric. Therefore, if we wish to find the poten-
tial at any point inside the sphere, we will have to resort a second time to the expansion

oo

1
'l)(r’ 6’ (P) = Z Z Amm rl Ylm(ex (P)

1=0 m=-1
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Using (11.2.56) plus our boundary condition at r = b, we determine the coefficients
Am to be

1 2n

A= [ [ 06,907 b, 0, p)dcos 0)dg
-1 0

n

1 2n

21+1 (l - m)' m —-img _ —-ime

an (Txm)! /P, (cos B)d(cos 8) /e do /e do
-1 b4

0
The factor in square brackets is

b4 2

/e‘i’"“’ d(p—/e‘im‘” de = %[(—1)”’—1].
0 rr

Thus, m can only assume odd integer values. Recalling the parity (-1 )l”" of associ-

ated Legendre functions, we realize that this means that I must also be restricted to
odd values. To evaluate the integral over cos 6 we can either resort to integral tables
or we can evaluate term by term starting from [ = 1, m = 1 and try to deduce an ex-
pression for the general term by interpolation. The first option sounds simple until we
discover that this is an uncommon integral and when listed, it is expressed in terms
of hypergeometric series. The second option sounds tedious at best and at worst an
opportunity to commit egregious arithmetical errors. And so, we search for a third op-
tion.

Comparing the diagram for this problem with that for the hemispherical shells in
Section 11.2.5, we realize that this is the same problem but with either the sphere or
the coordinate axes rotated through 90°. Therefore, we can write down the solution.
Itis

21+ 1)(-1)7 1+ )t (l)lpz(cos ),

’,[)(7,9,([)):‘/ Z b

1=1,3,5,... 21+1 (HTI)Z !

but the angle a that appears here is not the polar angle but rather the angle between
r and the y-axis. Nevertheless, this is a major breakthrough because we can use the
addition theorem to relate p;(cos a) to spherical harmonics in the angular coordinates
of r and of the y-axis. In fact, from (11.2.59) we have

Pi(cos a) = 2147111 il (Yz’” (g g)) Y7'(0, ).
—

Since cos § = 0, this becomes
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Pi(cosa) = Z - |m|) ml(O)e im3 Pml(cosf)) eime

= 2;) 8;2 "(0) P} (cos ) sin me.

The special value pj"(0) can be worked out and one finds

meey _ 2"V
O Ty

In our case, both | and m are odd. Therefore, the first gamma function in the denom-
Lm l+m
. l-m (I-mM va(-1)z 2z
| = VAATR) T 27
inator can be replaced by 5 > ! i and the second by Gem-Dn
Collecting all this information and substituting into the expression for the potential,

we conclude that

Y-V Z @1+ D 1)'( 1% R () b cos ) sinmep

T
I=odd m=o0dd 21 1+1| T+ m)tt

where (-1)!! and (0)!! are both understood to be 1.

11.3 Bessel Functions: Problems Possessing Cylindrical
Symmetry

11.3.1 Properties of Bessel and Neumann Functions

As we saw in Section 10.4, separation of variables applied to the Helmholtz and
Laplace’s equation when cylindrical coordinates are used results in a radial equation
that can be transformed into Bessel’s DE

d*R 1dR m?
-2 1-
dpz+pdp+( P’

)R 0, m=0,1,2,. (11.3.1)

by the simple expedient of replacing the radial variable r by p = ar where a® = k - A5,
k? is the Helmholtz equation parameter and A, is the separation constant associated
with the z-dependence. The parameter m? is the separation constant associated with
the 8-dependence and was determined by imposition of the homogeneous boundary
condition that we have solutions that are single-valued functions of 8 . The general
solution of (11.3.1) is the linear combination

R(r) = c1 J(ar) + c2 Nim(ar) (11.3.2)
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where J,,(x) and N, (x) are the Bessel and Neumann functions of order m, respectively.
We solved for them explicitly in Chapter 9 and found the series representations (9.7.11)
and (9.7.33). What we need to do now is relate those of their properties that are most
germane to the solution of boundary value problems.

The Bessel functions are well behaved both at the origin and as x — oo. In fact,
they “look” like lightly damped sine or cosine functions. Like sines and cosines, they
are oscillatory functions with infinitely many zeros. However, the Bessel function ze-
ros are not equally spaced. With the sole exception of J,(x) all of the J,,(x) are zero at
x = 0. Moreover, using the first term in the power series (9.7.11), we see that

1

It Ty

X m
(5) as x — 0. (11.3.3)

The Neumann functions are not well behaved at x = 0. No(z) has a logarithmic
branch point there and N,,(z), m > 0, has a pole of order m. Thus,

No(x) ~ %lnx asx — 0, (11.3.4)

and

Ny (%) ~ _(m 7_1 ! (i)m as x — 0. (11.3.5)

The asymptotic or large x behaviour of the Bessel and Neumann functions can
be deduced from integral representations and the method of steepest descents; (see
Section 6.3). One finds for x > m

T (0) ~ ,/% cos (x - ? - %) (11.3.6)

and

N () ~ ,/% sin (x - % - %) . 11.3.7)

The complementarity of these two expressions reflects the judiciousness of the choice
made for the definition of the Neumann functions.
Notice that the linear combinations

HY () = J(0 + i N0 and  HE (%) = J,,(x) = i N (%) (11.3.8)

have the asymptotic forms

HD (o) ~ % exp [,- (X _ % _ %)} (11.3.9)

and

HP(0) ~ % exp [—i (x - % - %)} . (11.3.10)
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These are called Hankel functions or Bessel functions of the third kind.

Hanbkel functions are named for the complex analyst Hermann Hankel (1839-1873).
He worked with a who’s who of nineteenth century German mathematicians including
Kronecker, Mobius, Riemann and Weierstrass.

Recurrence relations for the Bessel functions can be derived directly from their
power series representation (9.7.11). Dividing it by x™ and then differentiating, we find

Jmn() (-1) 21
< ) Z (k = D!k + m)! p2ksm-1~ (11.3.11)

This can be related to J,,.,; (x) by replacing k by k + 1 :
i ]m(X) _ i (_1)k+1 X2k+1 — _]m+1(X)
dx \ xm — kl(k + m + 1)! p2km+1 xm

which is valid for all m = 0. A particularly useful special case occurs for m = 0:

dixlo(X) =-J1(%). (11.3.12)

Notice that repeated application of (11.3.11) , starting with the m = O case, allows us to
relate each J,,(x) back to J,(x). In fact, we can write down a Rodrigues-like formula,

J(x) = X (—1 d

m
; ﬁ) Jo(x), (11.3.13)
which means that the differential operator -1 dix is to be applied m times to J,(x) and
the result is then multiplied by x™
Similarly, multiplying the power series for J,, (x) by x™ and differentiating, we have

i _1)k 2k+2m-1
dix[xm TnCO1 =3 k!(k(+1n)_ ] );ZM,,H = X" Jna (%) (11.3.14)
k=0

which is valid for m > 1.
Adding J,.,(x) = —x™ Ix <]’"Enx)) to J_q1(x) =

the recurrence relation

1

d [x Jm(0)], we establish

Jme1(0) + T 00 = 2TmIm(X). (11.3.15)
Subtracting them gives us
d
Jme1 () = T () = —2$. (11.3.16)

One can show that Bessel functions of integral order have a generating function
of the form

exp[ (t—7>] Z]m(z)t , t#0 (11.3.17)

Mm=—co
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where we have switched to a complex independent variable for reasons that will be-
come obvious when we look at applications. The proof is straightforward. From the
Taylor series representation of the exponential, we have

el (1] SH6 LRGN

j=0 k=0
e (1) ik
_,:Zo; jlk! (E) o

All that remains is to replace the sum over j by one over m = j -k since that transforms
our power series into

( 1 2k+m m o .
exp [;( )} Z Z k'(k+)m)| (E) " = :Z J.(2)t

Notice that the generating function series is a Laurent rather than a Taylor series
and that Laurent’s theorem gives us an immediate contour integral representation of

Jn(2):

J(2) = ﬁ / £ lei(t1) g (11.3.18)

c

where C is a closed contour about the origin. Changing the integration variable to u =
Z this becomes

J(2) = 2— (g)m / u™ L exp (u - 2) du (11.3.19)
C

which we recognize as the integral representation (9.9.33) of Chapter 9.
A Fourier integral representation is obtained by setting t = e . The generating
function becomes

eizsinb _ Z ™ (2) (11.3.20)
m=—oco
with Fourier coefficients
n
Jm(@) = % / eizsind g=imf gg. (11.3.21)

-1

Because Bessel’s equation is of the Sturm-Liouville form, the radial equation
(11.3.1)

2
4R, 1dR (1_7)13 0, p=ar=vViE-—or (113.22)

dp* pdp p?
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or

d dR m2 2
ar (rﬁ> - TR(r) =-a"rR(r)
becomes an eigenvalue equation with eigenvalue a? as soon as we impose homoge-
neous boundary conditions on the general solution R(r) = ¢; J,,(ar) + c2 N(ar). Let
us suppose that the range of r is 0 < r < a. Typically, one boundary condition will be
that R(r) be bounded at the origin: |R(0)| < oo. This immediately eliminates the Neu-
mann functions from consideration and we conclude that R(r) « J,,(ar). The second
condition will most likely be
either R(a) =0 or % =0

r=a

which implies that
either J,(aa) =0 or J,(aa)=0.

Denoting the nth zero of J,,(x) by xm,» and the nth zero of J;,(x) by ¥ n, we see that
the eigenvalues are
Vi

a2

2
Xm,n
a2

either ap, , = or ap, =

and the corresponding (unnormalized) eigenfunctions are
Ru(r) = J(@mnr), n=1,2,3,.... (11.3.23)

These must comprise an orthogonal set with their orthogonality (with respect to
weight function w(r) = r) expressed by

a

/R,,(r) Rp(Nrdr = /]m(am,n 1) Jm(@m,p Vrdr =0 for n # p. (11.3.24)
0 0

The zeros of J,,,(x) and J,, (x) are tabulated in standard references such as Abramow-
icz and Stegun. For future convenience, we provide below a limited table containing
the first four zeros of the first five Bessel functions.

m=0 2.404 5.520 8.654 11.792

m=1 3.832 7.016 10.173 13.323
m=2 5.135 8.417 11.620 14.796
m=3 6.379 9.760 13.017 16.224
m=4 7.586 11.064 14.373 17.616
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The determination of the norm of J,,,(am,n 1) requires evaluation of the integral

a U @
1 1
Nm,n=/[]m(am,nr)]2rdr= > /[]m(X)]Zde= >— Im.n
o am,n o am,n

where we have set x = am,» 7. Integrating once by parts, we have

Am,na

- / Jn (0 1 () X% dx.
0

X=0mn

But, from Bessel’s equation we have
X% J () = m? J (%) = x J1 () = X 12 ().

Therefore,

Am,na

- / T GO T 06 = x T (0) = X2 T (01dx,
0

X=Qmn 4

Imn = %Um(x)]z

x=0

or

X=Qm,n A

2 2 2
I = { S U0 P "5 U@ P+ 5 U0 |

x=0
Thus, if J,,(am,n @) = 0,
a’ ’ 2 a’ 2
Nm,n = 7[]m(am,n a)] = ?[]mﬂ(am,n a)] (11'3'25)

where we have made use of the recurrence relation

dm

dx ~Jme1 () + %]m(x)-

On the other hand, if J,(am,» @) = 0,

2 mZ 5
Nmn = = (1 - 272) Um(am,n a)] . (11.3.26)
Amn A

Thus, combining the orthogonality and normalization results, we have either

q 2
/ @ D i @omp D = U @ @) 61, (113.27)
0

or

2

i a’ m 5
[ i@ Intamp vrdr = 5 (1= ") U(@mn @ F 6. (11328)
0

m,n
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The further consequence of being solutions of a Sturm-Liouville problem is
the J,,(@mn7),n = 1,2,..., are a basis for the space of functions that are square-
integrable with respect to the weight function w(r) = r on the interval O < r < a. Thus,
any such function f(r) can be represented by the (mean convergent) series

f(r) = Z Cm,n ]m,n(am,n r)

n=1

where

cmn= —""——> /]m(am 2 Df()rdr, (11.3.29)

a []m+1(am nda )]
or
a
2
Crn = : . / I, (@mn DF(IrAr, (11.3.30)

((12 _%,,) Um(a'm,n a)] 0

depending on whether am,n = y'" rn=1,2,....

11.3.2 Applications

Free Vibrations of a Circular Drum Head:
The transverse vibrations of a (two-dimensional) drum head are described by the wave
equation

v? Y = 10271/) where ¢ = T T = tension/length = mass/area
Zop Tk s M .

As we saw in Sections 10.4 and 10.8, the solution of this equation can be expressed as
Y, t) = Z[an COS ky Ct+ by, Sin ky ct] un (1)
n

with
Viun+kiun=0 and un(r)=0for r on the edge of the drum head,

where the latter condition follows from an assumption that the drum head is fixed
along its edges. If it is a circular drum head, we should use cylindrical coordinates
for r. The solutions of the Helmholtz equation in these coordinates were obtained in
Section 10.4. Since we have no z-dependence, the separation constant A, in that dis-
cussion must be zero and so, a? = k% . Thus, the solutions of the separated angular
and radial equations are

Om(0) = Ay cosmO + By, sinm6 and Ry (1) = C J1n(k7) + Dy Nm(kr), m=0,1,2,...



Bessel Functions: Problems Possessing Cylindrical Symmetry =— 345

where we have imposed the boundary condition in 8 but not those in r.

We shall take the radius of the drum head to be a and its centre to be located at
r = 0. We then have as boundary conditions |u(0, 8)| < oo and u(a, 6) = 0. The first
of these implies that D,,, = O for all m. The second implies that J,,(ka) = O which has
solutions ky, , = *2* where Xm,n is the nth zero of ], (x). This means that we obtain as
eigenfunctions of the Helmholtz equation the normal modes

Jin(km,n ) cOSMO
,0) = Jmm =0,1,2,...n=1,2,,....
tm.n(r, 6) {]m(km,nr)sinme m "

The frequencies wm,n = kmn € = Xmn <, m = 0,1,2,...,n=1,2,..., are the
natural frequencies of the drum head. Each frequency has two normal modes, one
with cos m6 and the other with sin m, and so is twofold degenerate. The exceptions
are the frequencies with m = 0 each of which has a single mode possessing radial
symmetry. From the values of xn,» given above, we see that the lowest modes in order
of frequency are

m,n normal mode frequency
(0,1) Jolko 1) 2.404¢

(1,1) J1(k1,1 1) cos 0, J1 (k1,1 ¥) sin @ 3.8327

(2,1)  Jy(k2,17) 0520, J5(k2,1 7)Sin20  5.135%

(0, 2) ]o(k(),z r) 5.520%

(3,1)  J3(k317)c0s30,J5(ks,1 7)sin30  6.379<

(1,2) J1(k1,2 r) cos 0, J; (k1,2 1) sin 6 7.016<

(4,1)  J4(ka,17) cOS 40, J,(ky,1 T)SIN40  7.5867
(2,2)  Jy(k2,27) 0520, J5(k2,27)5in20  8.4177

(0, 3) ]0(k0’3 r) 8.6545

(5, 1) ]5(k5,1 r) cos 50,]5(1(5,1 r) sin50 8.779%

To impose initial conditions on the transverse displacement and velocity of the

drum head, we form the superposition of normal modes

Y1, 0,0 => "> Junlkmn N(@n,n COS MO + by 5in MO) COS W, t

n=1 m=0

+ (Cm,n cos MO + dpy,, Sin MO) Sin Wi, t].

At t = 0 this gives us

uo(r, ) = Y(r,0,0) = > > " J,u(kom,n l@m,n c0S MO + by, sin MO}

n=1 m=0
and
0 Z - .
vo(r, 8) = a—l’tb = Z Z]m(k’"’" 1) Wm,n[Cm,n COS MO + dyn. Sin MO].
=0  p=1 m=0
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These are Fourier-Bessel series in r as well as Fourier series in 6. Thus, invoking
(11.3.29) for Fourier-Bessel coefficients and the Euler formulae for Fourier coefficients,
we find

a 2m
. B , 0 0 drdf fi
am, TR {%}O/O/HOU ) cos m8 ] (km,n 1)rdr or {m=0}

a 2m

Bon = —//uo(r ) sin mB J,, (kn,n )rdrd0
’ ma Um+1(Xm" ]

a?n
2 1 m#0
Cm,n= vo(r, 8) cosm0 ], (km,n r)rdrd6 for
7 Wl ey Cmn) |2 {5}0/0/ o(r, 6) Tm(kmn 1) {m=0}

a 2m

dmn = 2 5 //vo(r, 0) sin mO J,(km,n r)rdrde.
0 0

a2 wm,n[]m+1(xm,n) ]

Heat Conduction in a Cylinder of Finite Length:

For our next application, we shall consider a metal cylinder of radius R and length
L whose surface is maintained at a constant temperature T; . Initially the cylinder is
at a uniform temperature To . We want to find out how the temperature changes as a
function of time and position.

We locate the cylinder so that its central axis lies along the z-axis and its ends
correspond to z = 0 and z = L. The temperature y(r, t) at any point within the cylinder
and at any time t will be a solution of the heat conduction equation

v lp———lp where D—L,
cp

D ot
K is the thermal conductivity, c is the specific heat and p is the density of the cylinder.
Since Y(r,t)=T;= a constant is a solution of this equation, we can set
Y(r, ©) =T1+yP(r, t) where ¥ (r,t) is a solution of the PDE that satisfies homo-
geneous boundary conditions at the surface of the cylinder. Separating variables,
Y, (r, t) can be expressed as

NE Z u, (re® Kt where w2 Uy +k5uy =0

and u~(r) is subject to homogeneous boundary conditions in all three coordinates. As
ever, the requirement of single-valuedness implies that the angular dependence of the
u~ is given by a linear combination of cos m6 and sin m@. Then, since | u~(0, 6, z)| <
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oo and u~(R, 6, z) = 0, the radial dependence of the u is determined by the Bessel
functions J,,(&tm,n 1), @m.n = =%~ . Thus, the u, have the series representation

u,(r, 0,2) = Z Z]m((xm,n Nlamn cosmb + by, ,, sin mé]

n=1 m=0

X [C’Y,m,rl ev ag"’" —kgyz + d'y,m,n e a%l’n —k%YZ].

Now we impose the requirement that u.(r, 6, 0) = u,(r, 6, L) = 0. It then follows that

Cymn =—=dymn and \/az ,—k3 =B, BL=pn, p=1,2,...

so that the final term in square brackets in u, becomes proportional to sin 27=. Thus,
X gn,n b 2n?

R? L?
and the eigenfunctions (normal modes) corresponding to these eigenvalues are

. pnz .
Um,n,p(1, 0,2) = J(@m,n 7) sin pT[am,n,p cos MO + by n,p Sin M.

To complete the solution we now must impose the initial condition on

2 2 2 2
ky = km,np = Qm,n +B° =

ll)(rs 9’ z, t) =T1+

e e . pnz . DR
>3 Jul@nnr)sin pT[am,n,p cOS MO + by, p Sin MOl P Kt

p=1 n=1 m=0

Setting t = 0, we have

oo

To-T1= Z Z Z]m(am,n r) sin I%[am,n,p cos MO + by, n,p SIn MO.

p=1 n=1 m=0

Since the left hand side is constant, m must be restricted to zero. Thus, we lose one
summation and are left with the double series

- . nz
To—T1 = Z Z ao,n,p ]0(“0’11 r) sin pT
p=1 n=1

which is a Fourier Bessel and Fourier sine series. Using the formulae for the coeffi-
cients of both such series, we find

R L

4(To - T1) / . pnz

Aonp=——""— Jolao,n 1) sin == dzrdr.
P LR2U1(X0,n)]2 5% 0 " L

Since x J,(x) = %[x J1 ()], we have j Jo(X)xdx = aJ,(a). Therefore,
0

@o,n R

R

1 R
/Jo(ao,nr)rdr = Jo(X)xdx = % Ji(aon R) =
0

o,n »n
0

R
Xo

2
]1(X0,n)-
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L
Further, the integral [ sin 2Zdz = ﬁ [1 - (-1)"] and so we obtain
0

4(TO_Tl) [1_(_1)p].

Aopnp=——F7"
P pﬂXO,n]1(X0,n)

Our final solution for the temperature is thus

lp(r’ 6: Z) = Tl t— 8(T0 Tl) Z Z 7]0((10 n r) s]n an Dkfz).n,Pt
p=1,3.5,... no P Xo,n J1(xo,n)

where k§ , = af +pZL§2 = Xlgz" + po )
At the centre of the cylinder, r = O and z = % Therefore, since J,(0) = 1 and

sin Bf = (-1 )¥ for p = an odd integer, we find a temperature
L 8(To T1) DK
T = O’ 0’ 7) T t— 7( 1 2 e Onp
¢ l/)< 2 p%d;pXOnfl(XOn) )

For most metals, this series converges rapidly. For example, let us consider a steel
cylinder of radius R = 0.1 m, length L = 1mand D = 0.126x 10~ S"éc The tables of
Bessel functions provide

Xo0,1 =~ 2.40, Xo,2 ~5.52, J;(2.40) ~0.52 and J,(5.52) ~ -0.34.
This means that successive values of k(z),n,p are
ké,1,1 =576, kb3 = 665., kb1,5 =823., koo =3.06x10°, ko153 =3.14x10°

and, at time t = 3 mins, the corresponding exponents in successive terms of the series
are
-1.31, -1.51, -1.87, -6.93, -7.11.

This means in turn that exp [-(k3 5.1 — k3.1,1)Dt] = €1 x0.004 and so the n = 2
terms can be ignored . Therefore, after 3 minutes, the central temperature will have
decreased to

_ 8(To — T1) 1 ;1301 15101 187 1 540
T @ao0s2 | 3° ' 7€
8(To— 0.223
~ T+ (To-T1) ( )

i (2.40)(0.52)
~ Ty +(0.455)(To — T1)-

So, if the initial temperature is 500°C and the surface temperature is 20°C, the centre
will have cooled to T, = 238°C in just 3 minutes.
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Particle in a Cylindrical Box:
The Schrodinger equation for a particle of mass m confined to a box but otherwise not
interacting with a field or with other particles is

_’i Vzl/) =Ey
2m -

with ¥ = 0 at the walls of the box. Setting E = % and cancelling out common

factors, we convert the PDE to Helmholtz’ equation. Therefore, if the box is cylindrical,

with radius R and length L, we have precisely the same eigenvalue problem that we

solved in the heat conduction problem. So, without further effort, we can assert that
2 2 2 2

the energies available to the particle are Ep »,p = h [X'"r” p

5m ?+ 12 }correspondmg

to the (unnormalized) wave functions

- T\ . pnz ) cosmb
l1bm,r1,p(r’ 0,2) = I (Xm,nR)Sln T { }

sin mo

Acoustic Radiation:
As a final application, we shall consider sound waves in a gas contained within a cylin-
drical box or wave guide. One way of describing them is in terms of condensations and
rarefactions or density fluctuations of the gas relative to a uniform background. The
fluctuations, Y(r, t) = W, where p, is the uniform background density, can be
shown to satisfy the three-dimensional wave equation. Moreover, since there can be
no motion normal to the (rigid) walls of the container, we know that the component of
the gradient of the density that is normal to each wall must vanish at that wall. Thus,
our problem is to solve
1

2
= % subject to n- Vi(r, t)|

2. _
v ,’b - at the walls

where c is the speed of sound in the gas and is determined by ¢? = Pp"—o"*, Py is the
background pressure and + is the ratio of heat capacities g—;

Separating the time dependence, we again have

Y, t) = Z uy (rlay cos k., ct+ b, sin k ct]
¥

where the normal modes u.(r) are determined by the eigenvalue problem

Viu, +kZuy =0 with n-Vu,(r) =0.

at the walls

Assuming a cylindrical container of radius R and finite length L and proceeding
as in the preceding applications, our new boundary condition translates into the re-
quirements

d _ d =" =y
E]m(ar) =0 and iz {cve v +dye v}

r=R

=0
z=0,L
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rather than those requiring the undifferentiated functions to vanish. Therefore, in this
case the eigenfunctions (normal modes) are

cos mo
i 0,6,2) - (Yn &) c05 2 { e )

with eigenvalues kﬁmp = Yy p ” ' (x). Initial values

RZ
Y(r,0) and a¢ can now be ﬁt to superpositions of these modes.
t=0

Of more 1nterest is the propagation of acoustic waves along a very long cylindrical
wave guide of radius R. Suppose that we generate the waves with a harmonic time
dependence and frequency w : ¥(r, 6,z,t) = u(r, 6, z) e"™“!. Substituting this into
the wave equation, we obtain the Helmholtz equation V2 u + k% u = 0 again but with
k* already determined via k? = “C’—ZZ Therefore, the solutions are

Umn(r, 0, 2) = J(@mn 7)[@mn cOS MO + by, Sin MO][Crun €V S B M

In order that these represent waves propagating down the wave guide in the pos-
itive z-direction, we require d,,,, = 0 and ,/ aZ, —“C’—Zz = 1 Kmn, Kmn real, so that

i 2 y cos mf
Y1, 0,2, 8) = vinn(r, 6) elkmZ=00  ywhere Vin(r, 6) =Jm ( z" r) { sin.me }

The modes that are allowed to propagate down the guide are those for which xmn is
indeed real. Since k2, = ‘2’22 -, we see that k2., becomes negative for frequencies be-
low the cut-off frequency w;n(min) = § ¥y, and the (m, n) mode is not propagated.
In fact, if one attempts to propagate the (m, n) mode at a frequency w < wmn(min),
one will have k7, = w = - B2, < O resulting in a wave number kmn = i f,,,

that is pure imaginary and a wave
l/)mn(r; 6, Z, t) = an(r, 0) e_an Zriwt

that is exponentially damped or attenuated. Notice that the m = 0,n = 1 mode is
always propagated. This is because Yo; = 0 (J5(x) = - J;(x)) and since J,(0) = 1,

W, (1,0, 2, t) o e=00

which is a plane wave propagating in the + z-direction with wave number ko1 = k = .

11.3.3 Modified Bessel Functions

The differential equation

2y 1d ’
&y, 1dy_ <1+%>y=0 (11.3.31)
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is the same as Bessel’s DE but with x replaced by ix. Thus, its solutions are

Jm(iX)
()=9 " .
Y Nm(ix)
However, in physical applications it is convenient to have the solutions expressed in

a form that is explicitly real for real values of x. Therefore, we define the modified
Bessel functions

-im% SN (_iym LN = 1 X 2k
Im(x) = e ™2 ] (ix) = (=i)" J,,,(ix) = ; PRI (2) , (11.3.32)
and
Km(x) = gi’"” HY(ix). (11.3.33)

The choice of K,,(x) as the second linearly independent solution is made to ensure
that the two functions exhibit complementary asymptotic behaviour. Specifically, for

x>1,
In() ~ ) = & and Kn(0) ~ 1/ 2= e (11.3.34)
m 2mx m 2x

For small values of x, x <« 1, the modified Bessel functions have the limiting forms

1 (x\™m
Im(x) ~ { m! (12) ig; Zig , and (11.3.35)
D™ for m>0
~ 2 2 . 11.3.36
Kn(x) { (nX+y) form=0 (11.3.36)

Note that the I,(x) is well behaved at the origin but diverges at infinity while the re-
verse is true for Kn(x). Like the hyperbolic functions, neither I, (x) nor K;»(x) has mul-
tiple zeros.

Not surprisingly, the recurrence relations satisfied by the modified Bessel func-
tions are similar to those satisfied by J»(x). The most important ones are

Im1 (%) + I (X) = 2 Iy (%), (11.3.37)
%[xm Im()] = x™ [m-1(x) and % [I';(”)l()] = Im;l(x) (11.3.38)

In 100 = Ina (9 = 27 10, (11.3.39)
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for I)n(x) and
K1 (%) + Kimn-1(%) = =2 K (%), (11.3.40)
d%[x”’ Kn(0)] = =X™ Kn_1(x) and dix {K;,Ef)} - —K’”;}n(x) (11.341)
Kn 100 = Kmoa (0 = =2 K0, (11342)
for Km(x).

Because the modified Bessel functions do not have multiple zeros, they cannot
satisfy homogeneous boundary conditions of the type found in Sturm-Liouville prob-
lems and so do not comprise complete orthogonal sets. Thus, when they figure in the
solution of a boundary value problem, they are always coupled with functions that
do form complete orthogonal sets. As we shall see in the next sub-section, potential
problems with cylindrical symmetry provide a graphic illustration of this point.

11.3.4 Electrostatic Potential in and around Cylinders

Consider a cylinder of radius R and height L. One surface, either the top or the curved
lateral wall of the cylinder, is maintained at a non-zero and perhaps variable electro-
static potential V. We want to find the potential y)(r, 6, z) at any point inside the cylin-
der. Since there are no charges present, the potential must satisfy Laplace’s equation,
v?2 ¢ = 0. Using cylindrical coordinates and then separating variables in Section 8.4,
we found that the solutions of this equation could be expressed as one of two possible
superpositions: either
Jm(ar) cosh az cos mo 2
¥(r,0,2) = Z{ Nm(ar) } { sinh az } { sinm# } ,a” >0

a,m

Im(||T) cos |a|z cos mo 2
¥ 0,2) = ; { Kn(la|r) } { sin |a|z } { sin mO } Sl
where, as usual, each set of braces is understood to be a linear combination of the
functions they contain. As we noted then, both superpositions have the r and z de-
pendence coupled in such a way that one or the other but not both is oscillatory in
behaviour. Therefore, the choice between the two options is made for us by the bound-
ary conditions in the problem: to satisfy homogeneous conditions at both boundaries

associated with a particular variable, we require a function with multiple zeros and
thus an oscillatory dependence on that variable.
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y=0orV

v=Vor0

R

L y=20

So, let us start with the boundary conditions
Y(r,0,0)=y(r,0,L) =0 and P(R,0,z) = V(6, 2).

To satisfy the homogeneous boundary conditions at the z boundaries, we must choose

the second superposition, discard the cos |a|z possibility and set a* = —"ZLQZ ,n =
1,2,.... Next, the (implied) boundary condition [(0, 6, z)| < oo requires that we

discard the K,,(|a|r) possibility and so we arrive rather quickly at the following ex-
pression for the potential inside the “can”:

Y(r,0,z) = i i[m (%) sin %[amn cos m + ppn Sin mé).

m=0 n=1

This double Fourier series can now be made to fit the remaining boundary condition
Y(R, 6, z) = V(0, z) and thus determine the coefficients amn, byn:

L 2m
}//V(G,z)sinnﬂzcosmededz for { m#0 },
L m=0
)

2 nnz
bmn = 7//V(9, z)sin —= sin mOdodz.
" g () ) I

N =

2
Amn = 77[1‘1’" (#) {

Suppose, for example, that we halve the cylinder vertically and insert the usual very
Vo for 0<6O<m
-Vo for m<0<2m

where V is a constant. Since it is an odd function of 8, am, = 0 for all m and

4 Vo
bmn = s Im @ //sm—sm médodz.

0

thin strip of perfect insulator to permit a potential V(6, z) =
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L

Since [ sin %Zdz = L =[1-(-1) ]andfsmmede 1 +[1-(-1)™], we have
0

mn nzlm(#)

i& for m and n odd
bm n=— .
0 for m and n even

Thus,

e e nmr
Y(r,0,z2) = 16 VO >y mln II:: (mR)) smm@sm%
m=1,3,... n=1,3,...

If, on the other hand, we had started with the boundary conditions (R, 8, z) = 0
Y(r,0,0) =0and P(r, 0, L) = V(r, ), we would have been obliged to go with the first
superposition, discarded the N, (ar) possibility (to ensure boundedness at the origin)
and the cosh az possibility (to meet the condition at z = 0) , and set & = amn = =
where xmn is the nth zero of J,,(x). Thus, our expression for the potential inside the
“can” would become

Y(r,0,2) = Z Z]m(amn r) sinh amn z[@mn cOs MO + by, Sin MO)
m=0 n=1
where
h 2m R o
2 cosech amn L 1 // m #
Amn = V(r, 0) ] ,n(@mn r) cos mOrdrd@ for
nRz[]mﬁ-l(amnR)]z{% }O 5 ( )] ( ) { m=0 }
and
h L 2m R
2 cosech amn .
bmn = //V(r, 0) J n(@mn 1) sin mOrdrde.
ﬂRzUm+1(am"R)]2 00 "

As an example, let us take V(r, 0) = V, = a constant. We would then have p,,,, = 0
for all m and am, = O for all m # 0. Thus,

Y(r,60,2) = aonJo(@o,n 1) sinh ao,n 2
n=1
with
N R
_ 2 Vpcosechagn L /
aon = —————7L= | Jo(aon Drdr.
B Y
R
As we learned in sub-section 11.3.2, [ J,(aon r)rdr = ai;" J1(aon R). Therefore, our final

0
expression for the potential under these boundary conditions is

Jo (Xon ) sinh (xon %)
Xon J1(Xon) sinh (Xon R) ’

W(r,8,2) =2 Vo Z
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As a final example, we shall allow our cylinder to extend infinitely far in both the
positive and negative z directions. The boundary conditions at the z boundaries must
become [Y(r, 0, z)| < oo which immediately implies that & = ik, —oo < k < oo. The
appropriate superposition to represent ¢ must then be

sin m@

P(r,0,2) = /[Am(k)lm(|k\")+Bm(k)Km(\k\r)]e”‘de {COS'"@}
m=0 |_ .

where the summation over a has become a continuous sum or integral over k.

Suppose that we are interested in finding the potential outside the cylinder, given
that it is maintained at a value V(6, z) on the curved surface. The boundary condi-
tions in r must then be (R, 6, z) = V(0, z) plus the requirement that the potential be
bounded as r — oo, (oo, 0, 2)| < oo. But we know from the asymptotic behaviour of
the modified Bessel functions given in (11.3.34) that this latter requirement eliminates
the [}, s from consideration. Thus,

P62 -3 / Kn([KI7) € [am (k) cos m6 + by () sin mo]dk
m=0_"

where

27 oo
- —ikz m#0
an(k) = 2n21<m(k|R){ }//V(H,z)e cos mBdbdz for { mro }
0 —oo

and,

LSIE

21 oo
= ; ~ikz .:
bm(k) = 2ﬂsz(‘k‘R)//V(@,z)e sin mfdbdz.
0 —oo

Taking the relatively simple functional form V(0,z) = V, e~clel, Vo and c con-
stants, results in a restriction to m = 0 and yields

oo

Vo ~c|z| -ikz Vo c
aplk)= ——————— | e e “dz= .
oK) 271 Km(|k|R) T Km(|k|R) 2 + I

Thus, in this case, our solution for the potential outside the cylinder becomes

oo

_Vo [ Km(klr) ¢ i
wir,0,2)- ¥ [ KR C s e

—oo

11.3.5 Fourier-Bessel Transforms

As we have seen repeatedly, including the preceding example, when homogeneous
boundary conditions are imposed at the limits of an infinite or semi-infinite range the
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eigenvalue spectrum that results is continuous rather than discrete and the superpo-
sition of eigensolutions requires an integration or, more precisely, an integral trans-
formation. A further example is provided by Laplace’s equation in cylindrical coordi-
nates with the homogeneous boundary conditions that i be bounded both at r = 0
and as r — oo. Bessel’s DE becomes a Sturm-Liouville eigenvalue equation again but
this time the eigenfunction solutions are the set J,,(ar) , 0 < a < oo. To arrive at this
conclusion, we simply have to note that neither of the modified Bessel functions nor
the Neumann function can be bounded at both limits while the Bessel function of the
first kind obviously can.

To conform with more conventional notation we shall set @ = k,0 < k < co. We
then have, from the properties of Sturm-Liouville eigenfunctions, orthogonality and
completeness with respect to the weight function p(r) = r. As it happens, the Bessel
functions are appropriately normalized already for this range of r and so the statement
of orthogonality is

/ k) (K Dy = %60k ~ K (11.3.43)
0

while the closure relation is
/ k) ok etk = L5 - 1), (11.3.44)
0

The proof of the orthogonality statement follows from an application of equation
(10.5.25) and the generalized Green’s identity (10.5.18) to these eigenfunctions of the
Bessel differential operator. The result is

oo

Jn(k'r) S R PRCIRDIZD
0 0

D i) SIS0

' [Jm(kr) % '35’“)}

If we now use the recurrence relation (11.3.16) and the asymptotic form (11.3.6), we can
express the left hand side of this equation as

.1 [k+K ’ k-Kk
lim = sin(k - k')r - -1)"cos(k + k' r}.
HM[ X sintk - K97 - XKy costies 1)

Thus, dividing through by [k* —(k" )?], we have

) , 1 1 sin(k-k)r (-1)" cos(k + k')r
/]m(’“”m(k nrdr = lim 2 [\/W K-k ki k+ kK
0

The first term on the right hand side, in that limit, is a representation of \/i? S(k-K) =

%6(k - k') while the second has a limit of zero. Thus, we get the result in equation
(11.3.43).
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The statement of completeness is that any function f(r) that is square-integrable
with respect to the weight function p(r) = r can be represented by the (mean) conver-
gent integral

) = / F() 1, (kn)kdk (11.345)
0
where
F(k) = / £ ], (kn)rdr. (11.3.46)
0

The functions f(r) and F(k) are Fourier-Bessel Transforms of each other.

An application for these transforms is the solution of Laplace’s equation in the
space between two infinite planes located at z = 0 and z = L with y specified on the
planes themselves and with the assumption that [)| — Oas xand yorr — oo .In
a problem like this we have the option of using either Cartesian or cylindrical coor-
dinates. If we choose the former, 1 will be represented by a double Fourier integral
transform involving the x and y variables. If the latter, we will have a Fourier-Bessel
transform for the r-dependence and a Fourier series for the 8-dependence. We shall
illustrate with a specific example.

The electrostatic potential on a plane at z = 0 is given by the function

0 for r<1
V(r,9)={ Vo for r>1
=T

We seek the potential everywhere above the plane given that it goes to zero uniformly
as z — oo and as r — oo. Evidently, cylindrical coordinates are appropriate and so we
represent the solution with the superposition

o s kz
(r, 9,z)=2{ Z?;r';’g } / ]m(kr){ eesz }kdk. (11.3.47)
0

m=0

The boundary conditions in this problem provide considerable simplification: be-
cause || — 0 as z — oo we discard the e** possibility and because i is independent
of 8 when z = 0 we restrict m to be zero. Thus,

W(r, 6,2) = / Ao(k) €™ Jo(kr)kdk. (11.348)
0

Therefore, since Y(r, 0, 0) = V(r, ) = TAo(k) Jo(kr)kdk, we have
0

oo

Vo
Vr2-1

Jo(kr)rdr = Vo cos k

Ao(k) = K

1
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where we have used integral 6.554#3 from Gradshteyn and Ryzhik. Substituting this
back into (11.3.48), we obtain the solution

oo

Y(r,0,2) = Vo / coske™ Jo(kr)dk.
0
Using Gradshteyn and Ryzhik one more time, formula 6.611#1 in this case, we can eval-
uate this explicitly and find

1

V(z2+r?-1) + 2iz

l/)(r,G,Z)=V0Re[ }, z20, r>1.

11.4 Spherical Bessel Functions: Spherical Waves
11.4.1 Properties of Spherical Bessel Functions
In Section 10.4 we discovered that separation of variables applied to the Helmholtz

equation V2 u(r)+ k% u(r) = 0 when spherical coordinates are used results in a radial
equation

2R 2dR I(1+1
66117+?W+[k2_(; )}R=O (11.4.1)
with general solution
Jji(kr)
R(r) = . 11.4.2
(r) { n(kr) (11.4.2)

The functions j,(kr) and n;(kr) are called spherical Bessel and Neumann functions
and are defined by

j(x) = \/gjh%(x) and mn(x) = \/§N1+%(X)=(—1)“1 \/%LF%(X)' (11.4.3)

From the power series representation of J,,(x) we have

~ i (_1)k x 2k+l+1
]’+%(X)‘§k!r(k+1+;)<z> ‘

Thus, using
1 2n+1)2n-1)...1 .1 2n+1)!
F(§+n+1)= 2Yl+1 F(§)=m\/>
we find
5! O +DY ok
ji(x) = Z Meksas X (11.4.4)
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Similarly, starting from the power series representation of ]7,7% (x), one finds

These two power series are instantly recognizable in the special case of I = 0

oo = Z (2(k1+)1)' 2~ % (11.4.6)
and
no(x) = (- 1)2 ((23, =22 (11.47)

where we have used I'(2n + 1) = (2n)! and I'(n + 1) = n!. These two identities offer a
valuable aid to one’s intuitive appreciation of j,(x) and no(x).

From the recurrence relations satisfied by J L1 (x)and ]7,7% (x), one can derive cor-
responding relations for j,(x) and n;(x). One finds that they both satisfy

21+ 1

i 0+ () = i), (11.4.8)

and

dj ’(X) (11.4.9)

i) -+ 1D)j,0=021+1)
Multiplying the first of these by | and then subtracting the second from it, we find

(0 = - X! d% (11)(7’;)> . (11.4.10)

We can generate successive j; s and n; s by applying this relation repeatedly to j,(x)
and no(x), respectively. Thus, we write formally

1 .
j,00 = ! (—%%) jo0) = (1) x <)1(;X) (%) 1=1,2,... (11411

and

1 1
n(x) = ' (—%%) no(x) = (-1)"*! x! (%%) (Cojx),l=1,2,.... (11.4.12)

Evidently all spherical Bessel and Neumann functions can be expressed in terms of
sines and cosines. For example,

cos X sin x
X

SlIl X COS X

100 = 55 - C5X iy - -2
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- (21« 3 -3 _1 3
1L\X) = F_; SlnX—szCOSX, n\x)=- F_} COSX—FSII’IX.

The spherical Hankel functions are defined by analogy with ordinary Hankel func-
tions:

l ix

AP0 = 00 + imy(x) = (=x)! (%%) (%) , (11.4.13)
1d\' (e

R 00 = jy0) - im0 = (—x)' (}ﬁ) (_ix) : (11.4.14)

The small x behaviour of these functions is easily obtained from their power series
representations:

TR 5! X

. I ~
W0~ G i TGl TGl D.. 5.3 r X<l (1415
Q1
n(x) ~ “ST X for x < 1. (11.4.16)

To obtain the asymptotic behaviour, we could start from the behaviour reported
for the Bessel and Neumann functions in Section 11.3.1. A more direct approach how-
ever is to use equations (11.4.13) and (11.4.14) for the Hankel functions. For very large
x,x > 1 or I, the largest contributions in these formulas results from applying all
derivatives to e’* rather than the inverse powers of x. Thus, we find

ix . .
AP0 ~ (1)) eTx = %e'[x’(l”)?] for x> 1,1, (11.4.17)
R (x) ~ %e’”"*’*“g] for x> 1,1. (11.4.18)

Combining these to construct j;(x) and n;(x) we obtain

. 1 T 1 . T
700 ~ X cos (x— I+ 1)5) = sin (x— 15) for x > 1,1, (11.4.19)

n(x) ~ %sin (x— 1+ 1)%) = —% cos (x— lg) for x > 1, 1. (11.4.20)

The spherical Bessel and Neumann functions j;(kr) and n,(kr) are solutions of

% <r2 %) 10+ )R = - 1P R (11.4.21)

which is of the Sturm-Liouville form. If we impose homogeneous boundary conditions
such as

|Ri(0)| < oo and Ry(a) =0, (11.4.22)
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it becomes an eigenvalue equation with eigenvalue A = k? and weight function p(r) =
r? . The first boundary condition requires us to discard the possibility of n;(kr) figuring
in the solution. The second condition requires j,(ka) = 0 or

ka =k na =z, = {the nth zero of j(x)} = Xpo1 0 = {the nth zero of ]z+%(x)}.

Thus, the eigenfunctions that correspond to these boundary conditions are j;(k; , ).
Eigenfunctions associated with different eigenvalues are orthogonal with respect
to the weight function p(r) = r:
a
/j,(kl,n Njilkim) r’dr=0 for n+m. (11.4.23)
0

The normalization of the eigenfunctions follows from that for ordinary Bessel
functions:

a a 2
/ Uitk DT P dr = 57 [y Gan ) rdr = 57 G (i @)
0 "0 '

a3 ./ 2
- Cljjlan T (11.4.24)

If we now use the recurrence relation jj(x) = % J,(0) —j,1 (x), we can give this result the
alternative expression

a 3
/ ik r* dr = %Ul+1(kl,n Al (11.4.25)
0

The eigenfunctions form a complete as well as an orthogonal set. Thus, any func-
tion that is square integrable with respect to r? on the interval O < r < a can be repre-
sented by the (mean) convergent series

£y =>_ eniilkn ) (11.4.26)
n=1
where
2T ,
7 Bl ka7 O/ il DF) 1 dr. (11.4.27)

As with ordinary Bessel functions, when a — o and the homogeneous boundary
conditions become | R;(0)| < oo and le | Ri(r)| < oo, the eigenfunction solutions of
r—oo
(11.4.21) are j,(kr) where k is now a continuous variable with range 0 < k < oo. The
orthogonality/normalization statement becomes
/ Jr) 0 dr = 7 80k K, (11.4.28)
e
0
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the closure relation is

oo

/ j k) jy (') 2 dk = 2—’1260 -7, (11.4.29)
0

and any function f(r) that is square integrable with respect to r> on 0 < r < oo can be
represented by the Fourier Bessel transform

fr) = \/g / ji(kn)F(k) i* dk (11.4.30)
(0]
where
F(k) - \/% / i\ (kNf () P dr. (11.4.31)
0

11.4.2 Applications: Spherical Waves

Particle in a Spherical Box

The independent particle “shell model” of the atomic nucleus postulates that each
nucleon in a medium to large nucleus experiences an effective central potential due
to the sum of all of the pair-wise interactions it has with the other nucleons. In the
simplest version, the central potential is taken to be V(r) = - V, for 0 < r < R and, to
insure that the nucleons cannot escape, infinite at r = R where R is the radius of the
nucleus in question. Under these circumstances, the time-independent Schrodinger
equation for each nucleon is just the Helmholtz equation

m

V2 + k* Y = 0 where k2=2h—2\/E—V0

and its solutions are subject to the boundary conditions lir% [Y(r, 0, )] < oo and
r—

Y(R, 6, p) = 0. From the foregoing analysis, we see immediately that the (unnormal-
ized) energy eigenfunctions are ¥, (r, 6, @) = j(k;,n 1) Y;" (6, ) and the correspond-
ing energy levels are Fj, = % k,z,n - Vo where f;, = ZITg". Notice that the levels are
(21+1) -fold degenerate. Allowing for the spin of the nucleons, they are in fact 2(21+1)-
fold degenerate. It is this degeneracy that produces the so-called “magic numbers” of
nucleons associated with increased nuclear stability and was the basis for developing
and elaborating on this simple model.

Acoustic Radiation
The energy eigenfunctions of the preceding application will, with one modification,
also describe the normal modes of sound waves in a gas that is contained in a spherical
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cavity. The one modification is due to a change in boundary condition at the wall of
the container: we now have n - Vi(r,0, ¢, t)]le = %—‘f‘ =0 and so kj, = “i* where
B r=R

wyy is the nth zero of jj(x). Thus, the waves are described by the superposition

r 0, (ps Z Z Z ]l(kln r) Y; (9 ﬁa)[almn COS Wiy t + bimn SIN W)y, t]

n=1 [=0 m=-1

where wy, = ¢ kp, - The coefficients are determined by the initial conditions ¥(r, 6, ¢, 0) =
uo(r, 0, @) and % 0= vo(r, 6, ). Specifically,
t=

R m 2n

Ay = ————————— r, 0, 0) i,k (Y™, ©)) r* drsin 0d0de,
m R3[f1+1(k1nR)]2///u0( ®)jilkin (Y7 (6, ) 7 @
D00
R m 2n
2 *

bimn = - ///V(T,Q, )i, (ki (YO, @) 1* dr sin 0dOd .
Imn wlnR3[11+1(’<lnR)]2 I 0 @) ]i\kin i ) ®

To describe travelling rather than standing waves we use spherical Hankel func-
tions in place of the spherical Bessel functions. Thus, an Ith partial wave in a super-
position will be either

i, O =B (k) Y70, 9) e or . (r, t) = B (kr) Y[ (0, @) e

depending on whether we want the wave to look asymptotically like an outgoing or
an incoming wave. To understand this point, we need look no further than equations
(11.4.17) and (11.4.18) which give the large argument behaviour of hgl) (x) and hgz) x).
With the choice of e to describe the time dependence of waves generated with fre-
quency w, the h(l)(kr) combination will have the limit

i(kr-wt)
(A t)~(—z)“1e Y (8, ) as 1 — oo

which represents an outgoing spherical wave. The hgz)(kr) combination on the other
hand has the limit

el e—i(kr+mt) m
Y, (r, 6) ~i & Y (0,90) as r — oo

which corresponds to an incoming spherical wave. (If we had chosen an e*®! time
dependence, the incoming and outgoing roles would be reversed.)
Suppose that we have a monochromatic (fixed w) source that generates at r = a
sound waves of the form
l,l)(r, 0, P, t) = F(e, QD) e—iwt
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where F(6, ¢) is a known function determined by the nature of the source. For r > a,
the radiation is a superposition of outgoing waves with the same frequency,

w

) 1
l/)(r’ 9’ ®, t) = e—iwt Z Z Aim hgl)(kr) Ylm(e’ (P)’ k=—

c
=0 m=-1

The coefficients a;,,, can be determined from the boundary condition at r = a:

co 1
F0,0)=> > amh{"(ka) "6, ),

1=0 m=-1

and so
2n

am = —— [ [(¥"®6, 9))" F(6, 9)sin 6d6de.
n'ka) ) J

As an example let us assume that the waves are produced by a “split-sphere” an-
tenna for which

B B f, 0<6<Z
F(G,(p):F(e)—{ _jio g<e<;21 '

The waves will share the azimuthal symmetry of the antenna and so we need only
retain the m = O terms in the superpositions. Thus,

Y(r, 0, 9,0 = P(r, 0,0 = e > ayni”(kr) Pi(cos 6)
=0
with -
F(6) = > ah{"(ka) Pi(cos 6)
=0

and

SIE]

s

fs / Py(cos 0) sin 0d0O - f, /Pl(cos 6)sin 6d6
0

n
2

@ - 20+1 1
L=
2 pd(ka)

We have evaluated the term in square brackets in an earlier example. It yields zero for
even values of  and

o fy o QI+ DI+ D)=
= (_1 2
R SN

for odd values of I. Therefore, our final solution is

o (M
Y, 6,0,0=fe @ 3 (-1)7 Q@1+ 1)1+ 1A - D! hy (kr)

P;(cos 9).
I b [(E)1]* AP (ka)
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When we are far from the source, we can replace hgl)(kr) by its asymptotic form.
The wave then becomes

ei(kr—wt)

lzb(rye’(p’t)’\‘f(ey(p) "

where 1
1 — A
f(ey (P) = E ; ZI alm(_l )l ! Ylm(e) (p)
0 m—

For the special case of waves produced by a split-sphere antenna, we have

fo = QUL+DI+DI-1! 1

(9, )= 5 P( 6).
1o k 135, 2% [(“71)']2 hE”(ka) rees

The relevance of the function f(6, ¢) becomes clear when we realize that the en-
ergy density at a point r associated with a monochromatic wave (r, t) is propor-
tional to |1)(r, t)|?>. Thus, the energy flux in the (6, ¢) direction is proportional to
c|y(r, 6, @, t) |> which means when we are far from the source

2

the energy flux o CM.

To obtain the rate of energy flow through solid angle dQ = sin 8d0d¢ in the direction
(8, @) at r, we multiply the flux by the subtending area r* dQ. The two factors of r?
cancel and we fi