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Foreword
This book is based on lecture notes written and rewritten for mathematical meth-

ods courses given at both the undergraduate and graduate levels over a period ofmore
than 30 years. The suggestion that I write a book was �rst made by students in one of
those courses back in 1982. It seemed like a good idea but like many good ideas had
to await a window of opportunity. The window did not open until I had completed a
number of other projects and more especially until I had completed a 14 year stint in
academic administration. Work began in earnest only in 1999 and even then only on
a part-time basis, competing for attention with the demands of yet another adminis-
trative assignment. Retirement in 2005 �nally removed professional distractions and
slow but steady progress ensued.

It was always my intention to make the book freely accessible through posting on
the internet. The book is in pdf format and can be downloaded chapter by chapter.

Curricular change is oftendrivenby resource considerations and can result in con-
siderable variability in the sequencing of topics. Necessity has proven to me that pre-
sentingboundary valueproblemsbefore introducing complex analysis or evenFourier
analysis is quite feasible. Nevertheless, I believe that the sequence adopted in this
book beginning with complex analysis and proceeding through Fourier analysis and
the solution of ordinary di�erential equations to boundary value problems is optimal.

While I solve a large number of example problems in the course of presenting
theory, I have not included lists of suggested problems at the end of chapters. This
omission is due to two observations. The �rst is that students seldom attempt prob-
lemsother than those they are assigned and the second is that instructors alreadyhave
many excellent sources to use when constructing their assignments.

Readers will discover that the proofs of theorems are sometimes included and
sometimes not. As I told my students inclusion occurs only if the proof is “educa-
tional”. By this I meant only if the proof provides some insight into how to apply the
theory. Thus, the (rigorous) proof of Cauchy’s theorem is excluded but the proofs of its
many corollaries are included.

No matter how exhaustively a book is edited some errors or infelicities will al-
ways persist. Readers who detect any are invited to bring them to my attention at
lcopley@physics.carleton.ca. I invite as well any comments you may have whether
favourable or otherwise and more especially any suggestions on how to improve the
text.

mailto:lcopley@physics.carleton.ca
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1 Functions of a Complex Variable
1.1 Introduction

Physics is concernedwith phenomena that are describable in terms ofmeasurable
quantities that assume real values. This is the basis of our intuitive understanding of
the nature and signi�cance of real numbers. It suggests as well that physicists deal
primarily with functions of a real variable. Nevertheless, the theory of functions of a
complex variable is one of themost important cornerstones of mathematical physics.

The uses of complex analysis range from the pedestrian one of providing nota-
tional simpli�cation in the formulation of certain problems, (cyclotron dynamics for
example), to that of furnishing the most elegant and evocative way of expressing the
basic assumptions in certain physical theories. An example of the latter is the use of
dispersion relations in optics and in the quantum theory of scattering; another treats
momentum, energy and even angular momentum as complex variables to acquire an
enhanced understanding of the outcome of collisions between subatomic particles.
In between the pedestrian and the exotic are such applications as the evaluation of
real de�nite integrals, the solution of potential problems in two dimensions, and the
determination of the asymptotic behaviour of functions. Underlying them all is the
fact that complex analysis permits a complete determination of functions on the basis
of very limited detailed knowledge. Thus, it o�ers amuchmore powerful language for
the discussion of the properties of the functions of interest to physicists than does real
variable analysis.

1.2 Complex Numbers

What follows is a review of some foundational concepts of complex analysis. We start
with the de�nition of complex number and of the rules of complex arithmetic and
these may not look as familiar as the word “review” implies. That is because we shall
use formal de�nitions that emphasize the distinction that exists between the complex
and real number systems.

1.2.1 Complex Arithmetic

De�nition: A complex number z is an ordered pair of real numbers, x and y say,

z ≡ (x, y);

x is called the real part and y the imaginary part of z:

x ≡ Re z, y ≡ Im z.
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De�nition: Two complex numbers z1 ≡ (x1, y1) and z2 ≡ (x2, y2) are equal if and
only if their real and imaginary parts are separately equal; that is,

z1 = z2 if and only if x1 = x2 and y1 = y2 .

De�nition: If z1 ≡ (x1, y1) and z2 ≡ (x2, y2), then

z1 + z2 ≡ (x1 + x2, y1 + y2)
−z ≡ (−x, −y)

z1 − z2 = z1 +(− z2) ≡ (x1 − x2, y1 − y2) (1.2.1)
z1 · z2 ≡ (x1 x2 − y1 y2, x1 y2 + x2 y1).

Armedwith thesede�nitions of the fundamental operations, one can readily show
that the standard laws of real number arithmetic apply to complex numbers as well:
(i) the commutative and associative laws of addition,

z1 + z2 = z2 + z1
z1 +(z2 + z3) = (z1 + z2) + z3; (1.2.2)

(ii) the commutative and associative laws of multiplication,

z1 z2 = z2 z1
z1(z2 z3) = (z1 z2) z3 = z1 z2 z3; (1.2.3)

(iii) the distributive law,

(z1 + z2) z3 = z1 z3 + z2 z3 . (1.2.4)

De�nition: If z1 ≡ (x1, y1) and z2 ≡ (x2, y2) ≠ (0, 0), the quotient z = z1
z2

is that
complex number (x, y) for which

z1 = z z2 = (x x2 −y y2, x y2 + x2 y).

From the de�nition of equality we have

x1 = x x2 −y y2
y1 = x y2 +y x2

which is a system of two linear equations in two unknowns, x and y. Solving, we ob-
tain the unique expressions

x = x1 x2 +
y1 y2

x22 + y22
and y = x2

y1 − x1 y2
x22 + y22

. (1.2.5)

Notice that division by the complex number (0, 0) is meaningless.
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De�nition: Complex numbers of the form (x, 0) are called complex real numbers or
simply complex realswhile numbers of the form (0, y) are called pure imaginaries.

The operations of addition, subtraction,multiplication anddivisionwith complex
reals only lead to other complex reals. For example,

(x, 0) + (y, 0) = (x + y, 0)
(x, 0) · (y, 0) = (xy, 0).

Moreover, complex reals evidently obey exactly the same arithmetic laws as do their
real number counterparts. In other words, complex reals can be treated just as though
they were real numbers. It is important to recognize that this is a statement of isomor-
phism or equivalence, not of identity. As a consequence of the isomorphism it has
become customary to use the same symbol x to denote both the complex real (x, 0)
and its real number counterpart. Then, representing the pure imaginary (0, 1) with
the symbol i, we obtain the simpli�ed notation

(x, y) = x + iy, (1.2.6)

since

x + iy ≡ (x, 0) + (0, 1) · (y, 0) = (x, 0) + (0, y) = (x, y).

Notice that
i2 = (0, 1) · (0, 1) = (−1, 0) = −1

so that i may be thought of as the square root of the (complex) real number −1.
When using this notation, wemay treat x, y and i as though they are ordinary real

numbers provided that we always replace i2 by − 1. It is permissible to do so because
we understand the logical signi�cance of each symbol that appears in z = x + iy.
Speci�cally, we know there is an important distinction between the real number x and
the complex number (x, 0) but it is a distinction that admits interchangeable use of
their symbols for practical convenience. Moreover, thanks to the pure imaginary i, our
ordered pairs of real numbers remain ordered and real number arithmetic becomes
applicable.

We shall now introduce two de�nitions with no counterpart in the real number
system. The �rst one partially makes up for the fact that there is no order on the basis
of size among complex numbers.

The phrases “greater than” and “less than” have no meaning when applied to the
numbers but do in reference to theirmoduli.
De�nition: The modulus of z = x + iy, written |z|, is the real number

+
√
x2 + y2.

Notice that |z| = 0 if and only if x = 0 and y = 0.
De�nition: If z ≡ x + iy, then z* ≡ x − iy is the complex conjugate of z.
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One can readily show that the operation of complex conjugation commutes with
addition, subtraction, multiplication and division:

(z1 ± z2 )* = (z*1 ± z*2)
(z1 z2 )* = z*1 z*2

(z1 / z2 )* = z*1 / z*2 .

Equally readily shown are the important relationships

Re z = x = 1
2(z + z

*)

Im z = y = 1
2i (z − z

*) (1.2.7)

|z |2 = z · z* .

The third of these equations is, in fact, a special case of (1.2.5) since it can be rewritten
as

z−1 ≡ 1
z = z*
|z|2 . (1.2.8)

Moreover, it allows us to write the quotient of two numbers in a much more compact
form than that provided by (1.2.5):

z1
z2

= z1(z2 )−1 =
z1 z*2
| z2 |2

. (1.2.9)

The third relationship in (1.2.7) leads directly to three simple but very important
results involving moduli:

| z1 + z2 | 6 | z1 | + | z2 |; (1.2.10)

| z1 z2 | = | z1 || z2 |; (1.2.11)

| z1 − z2 | >
∣∣(| z1 | − | z2 |)∣∣ . (1.2.12)

For reasons which will soon be apparent, the last two results are usually referred to as
triangle inequalities.

1.2.2 Graphical Representation and the Polar Form

Since an ordered pair of real numbers (x, y) de�nes the Cartesian coordinates of a
point in a plane, it follows that there is a one to one correspondence between such
points and the set of complex numbers z ≡ x+ iy. Thus, to visualize complex numbers
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we canmakeuse of a complexplanewhose Cartesian axes correspond to x = Re z and
y = Im z and so are called the real and imaginary axis, respectively. The resulting
representation of a complex number (see Figure 1.1) is called an Argand diagram.

Jean-Robert Argand (1768-1822) was a Swiss mathematician and bookkeeper.
If we introduce polar coordinates in the complex plane via

x = r cos θ y = r sin θ,

we can write

z = r(cos θ + i sin θ) (1.2.13)

where

r =
√
x2 + y2 = |z| (1.2.14)

and

θ = arctan yx . (1.2.15)

The directed angle θ, measured from the positive real axis to the directed line joining

Figure 1.1: The complex number z = x + iy represented by a point with coordinates (x, y).

the origin to the point (x, y) in Figure 1.1, is called the argument of z and is denoted by
arg z. The argument of z is in�nitelymany-valued since if θ is a value, so is θ±2nπ, n =
1, 2, 3 ,. . . .

Hence,

arg z = θ ± 2nπ, n = 0, 1, 2, . . . (1.2.16)

with θ restricted to some range of length 2π. Normally, but by no means invariably,
this range is chosen to be −π < θ 6 π.
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De�nition: The principal value of arg z, Argz, is that restricted to the range

−π < Argz 6 π.

Evidently, a complex number z = x + iy can also be represented by a two-
dimensional vector of length |z| and components x and y. Thus, since complex num-
bers obey the same addition rule that applies to vectors in a plane, we can add them
graphically by means of the parallelogram rule.

From thediagrams inFigure 1.2,we see that thedistancebetween the twopoints z1
and z2 is | z1 − z2 |. Thus, since the sum of the lengths of two sides of a triangle is larger
than the length of the third side, we understand why equations (1.2.11) and (1.2.12) are
called triangle inequalities.

Figure 1.2: The use of the parallelogram law for the addition of vectors to determine graphically the
sum and di�erence of two complex numbers.

While the Cartesian representation is clearly the most useful one for working
out sums and di�erences of complex numbers, it is the polar representation which
should be employed when taking products, quotients and powers. For example, if
z1 = r1(cos θ1 +i sin θ1) and z2 = r2(cos θ2 +i sin θ2), then

z1 z2 = r1 r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]
= r1 r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] (1.2.17)

and

z1
z2

= z1 z*2
| z2 |2

= r1r2
[
cos(θ1 − θ2) + i sin(θ1 − θ2)

]
. (1.2.18)
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These two equations immediately yield a previously obtained result involvingmoduli,
(see equation (1.2.10)),

| z1 z2 | = | z1 || z2 | (1.2.19)

∣∣∣∣ z1z2
∣∣∣∣ = |z1||z2| (1.2.20)

as well as a new one involving arguments,

arg(z1 z2) = arg z1 +arg z2 (1.2.21)

arg
(
z1
z2

)
= arg z1 −arg z2 . (1.2.22)

The generalization of (1.2.17) reads

z1 z2 . . . zn = r1 r2 . . . rn[cos(θ1 + θ2 + . . . + θn) + i sin(θ1 + θ2 + . . . + θn)] (1.2.23)

as can be easily proven by induction. Specializing to the case z1 = z2 = . . . = zn = z,
this becomes

zn ≡ [r(cos θ + i sin θ) ]n = rn(cos nθ + i sin nθ). (1.2.24)

This result is known as de Moivre’s theorem and is valid for both positive and nega-
tive integer values of n.

Abraham de Moivre (1667-1754) was born in Vitry in France. A Protestant, he came
to England in about 1686 and worked as a teacher. He became known to the leading
mathematicians of his time and was elected a Fellow of the Royal Society in 1697. In
this capacity he helped to decide the famous controversy between Newton and Leib-
niz on the origins of the calculus. His principal work is The Doctrine of Chances (1718)
on probability theory, but he is best remembered for the fundamental formula given in
equation (1.2.23).

At this point it is convenient to note that equations (1.2.19) through (1.2.24) imply
that the sum cos θ + i sin θ possesses all the properties that we would be inclined to
associate with an exponential. In other words, if we de�ne

eiθ ≡ cos θ + i sin θ, (1.2.25)

then

ei θ1 · ei θ2 = ei(θ1 + θ2)

d
dθ e

iθ = i eiθ ,

ei0 = 1.
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Equation (1.2.25) is called Euler’s formula. In due course we shall derive it from the
formal de�nition of the exponential function ez. We have introduced it now to take
advantage of the evident simpli�cation it brings to thepolar representationof complex
numbers,

z = r eiθ .

It is useful to remember the following special values of eiθ:

e±iπ = −1, e±iπ/2 = ±i.

Leonhard Euler (1707-83) was born in Basel where he studied mathematics under
Jean Bernoulli. In 1727 he went to St. Petersburg where he became professor of physics
(1731) and then professor of mathematics (1733). In 1741 he moved to Berlin at the invi-
tation of Frederick the Great but returned to St. Petersburg in 1766 after a disagreement
with the king. He became blind but still continued to publish, remaining in Russia un-
til his death. He was a giant of 18th-century mathematics with over 800 publications,
almost all in latin, on every aspect of pure and applied mathematics, physics and as-
tronomy.

Next, consider the algebraic equation wn = z whose solutions are the nth roots
of the complex number z. If we set w = R eiφ and z = r eiθ, then, from de Moivre’s
theorem, we have

wn = Rn einφ = r eiθ = z.

Equality between two complexnumbers requires separate equality of theirmoduli and
arguments. Thus, we must have

Rn = r or R = r1/n ,

where the root is real and positive and therefore uniquely determined, and

nφ = θ + 2kπ or φ = θ/n + 2kπ/n, k = 0, ±1, ±2, . . . .

Successively substituting the numbers 0, 1, 2, . . . n − 1 for k, we obtain n distinct
values for z1/n. Substitution of other values of k only gives rise to repetitions of these
values. Thus, we conclude that, for |z| ≠ 0, z1/n has the n distinct values

z1/n = r1/n exp[i(θ + 2kπ)/n], k = 0, 1, . . . , n − 1. (1.2.26)

These n values lie on a circle of radius r1/n, centre at the origin, and constitute the
vertices of a regular n − sided polygon.
Example: w =

√
z has the two values

w0 = r1/2 exp(iθ/2)

w1 = r1/2 exp(iθ/2 + iπ) = −w0,
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where θ = arg z and r = |z|. These two values are symmetric with respect to the origin.
In the speci�c case of z = i, arg z = π

2 and |z| = 1, and so the two values of i1/2 are

w0 = exp(iπ/4) = 1√
2
+ i√

2
,

w1 = exp(i[π/4 + π]) = − 1√
2
− i√

2
= −w0 .

Notice that we used the principal value of arg i in our calculation of
√
i. This is the

conventional choice when evaluating the nth roots of complex numbers but any other
choice of value for arg z would yield the same set of numbers for z1/n but in a di�erent
order. Had we set arg i = π/2 ± 2π, for example, we would have obtained

w0 = exp(i[π/4 ± π]) = − 1√
2
− i√

2

w1 = exp(i[π/4 ± π + π]) = 1√
2
+ i√

2
.

Example: If z is a positive (complex) real, so that arg z = 0, then w = z1/3 has one
(complex) real value

w0 = |z|1/3 exp(0) = |z|1/3,

and two conjugate complex values

w1 = w0 exp(i2π/3) = w0

(
−12 + i

√
3

2

)
w2 = w0 exp(i4π/3) = w0

(
−12 −

i
√
3

2

)
.

Notice that this simple example illustrates the important distinction between a com-
plex real and its real number counterpart. The former has exactly three cube roots
while the latter has only one, the real number counterpart of w0.

1.2.3 Curves and Regions in the Complex Plane

A prerequisite for discussing sets of complex numbers or equivalently, sets of points
in the complex plane, is to agree upon a basic vocabulary. Thus, the purpose of this
section is to introduce some of the terminology whichwill appear throughout this and
subsequent chapters.

Since the distance between two points, z and z0, is |z − z0 |, it follows that a circle
C of radius r and with centre at the point z0 can be represented by the equation

|z − z0 | = r. (1.2.27)

Consequently, the inequality

|z − z0 | < r (1.2.28)
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holds for any point z inside C and thus it represents the interior of C. Such a region is
often called an open (circular) disc, while the region described by

|z − z0 | 6 r (1.2.29)

is called a closed (circular) disc, since it also includes the bounding circle C. Simi-
larly, the inequality

|z − z0 | > r (1.2.30)

represents the exterior of C while

r1 < |z − z0 | < r2 (1.2.31)

is the annulus bounded by the concentric circles |z − z0 | = r1, |z − z0 | = r2, r1 < r2.

Figure 1.3: The circle C, |z − z0 | = r, with centre at z0 and radius r.

And now we present a few formal de�nitions:
De�nition: A neighbourhood of a point z0 is the set of all points z contained in the
open disc |z − z0 | < ε where ε is a given positive number. A deleted neighbourhood
of z0 is one from which the point z0 itself is omitted: 0 < |z − z0 | < ε.
De�nition: A point z0 belonging to a set of points S is called an isolated point of S
if it has a neighbourhood that does not contain further points of S.
De�nition:A point z0 is called a limit point of a set of points S if every deleted neigh-
bourhood of z0 contains at least one point of S. (This implies that every deleted neigh-
bourhood of a limit point z0 actually contains an in�nite number of points of S for,
given ε > 0, the neighbourhood |z − z0 | < ε contains z1 ≠ z0, the neighbourhood
|z − z0 | < | z1 − z0 | < ε contains a point z2 ≠ z0 and so on, ad in�nitum.)
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Examples: The set of points z = n, n = 1, 2, 3, . . ., consists entirely of isolated points
and has no limit points in the �nite plane.

The set of points z = i/n, n = 1, 2, 3, . . ., also consists only of isolated points but
it does have a limit point. The limit point, z = 0, does not belong to the set.

In contrast to the �rst two examples, the set |z| < 1 has no isolated points; every
point of the set as well as every point on the unit circle |z| = 1 is a limit point.

Evidently, limit points need not belong to the set in question. This observation
prompts the next group of de�nitions.
De�nition: A set S is said to be closed if every limit point of S belongs to S.

An obvious example of a closed set is the closed circular disc |z| 6 1.
De�nition: A limit point z0 of S is an interior point if there exists a neighbourhood
of z0 which consists entirely of points of S. A limit point which is not an interior point
is a boundary point.

For example, the points lying on the circle |z| = 1 are boundary points of the discs
|z| 6 1 and |z| < 1, since no neighbourhood of a point on |z| = 1 lies entirely in either
set.
De�nition: A set which consists entirely of interior points is said to be an open set;
thus, every point of an open set has a neighbourhood every point of which belongs to
the set.

Obvious examples are the disc |z| < 1 and the points of the right or left half-plane,
Re z > 0 or Re z < 0.

As the set consisting of the disc |z| < 1 plus the point z =1 illustrates, a set need
not be either open or closed.
De�nition: The equation

z = z(t) ≡ x(t) + iy(t), t1 6 t 6 t2, (1.2.32)

where x(t) and y(t) are real functions of the real variable t, determines a set of points
in the complex plane called, interchangeably, an arc or curve.

Appropriate adjectives are required todistinguishbetweencurvesde�nedby func-
tions possessing varying degrees of “smoothness”. Thus, a continuous curve is one
forwhich x(t) and y(t) are continuous in the speci�ed range t1 6 t 6 t2. If, in addition,
x(t) and y(t) have continuous �rst derivatives there then we have a smooth curve.

We must also address the possibility of curves intersecting themselves or even
closing on themselves. This will occur when more than one value of t in the range
t1 6 t 6 t2 yields the same complex number x(t) + iy(t) in which case we say that
the curve has amultiple point. We shall be interested primarily in continuous curves
consisting of a �nite number of smooth arcs and possessing nomultiple points, except
possibly for a double point corresponding to the terminal values of t, t1 and t2. We
refer to such curves as simple curves and, should they possess the double point, as
simple closed curves. Obvious examples of the latter are a circle, which consists of
a single smooth arc, and a polygon, which consists of a �nite chain of straight line
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Figure 1.4: The simple curve on the left consists of three smooth arcs and so is piecewise smooth
with no self- intersections. The simple closed curve on the right consists of a single, smooth closed
arc with no self-intersections.

Figure 1.5: The points z1 and z2 as well as the pointsz3 and z4 can be connected by a simple curve
lying entirely within the shaded areas. When the pointsz1 and z3 are connected, a part of curve
necessarily lies outside the shaded areas.

segments. Thus, the adjective simple connotes both piecewise smoothness and an
absence of self-intersections.

The next group of de�nitions refers once more to unspeci�ed sets of points and
culminates with the important concept of domain.
De�nition:A set S is said to bebounded if there exists a positive real constantM such
that |z| < M for every point in S; (that is to say, S is bounded if all points in S lie within
a circle of �nite radius).
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De�nition: A set S is said to be connected if any two of its points can be joined by a
simple curve all of whose points are contained within the set.
De�nition: An open connected set of points is called a domain. The set obtained by
adding to a domain some (all) of its boundary points is a (closed) region.
Example: In Figure 1.5, the points belonging to either one of the shaded areas but not
lying on one of the boundary curves form a domain. However, the set consisting of
points belonging to both shaded areas, the union of the two domains, is not itself a
domain.

An apparently self-evident theorem states that a simple closed curve divides the
complex plane into two domains which have the curve as a common boundary. Of
these domains, one is bounded and is called the interior, the other is unbounded and
called theexterior. An immediateexample is o�eredby thedomains |z| < r and |z| > r
which are the interior and exterior, respectively of the circle |z| = r.
De�nition: A domain is said to be simply-connected if its boundary consists of a
simple closed curve. Otherwise, it is said to bemultiply connected. More precisely, a
domain is n-fold connected if its boundary consists of n simple closed curves with
no common points. Thus, for example, one of the domains in Figure 1.5 is simply
connected while the other is three-fold connected.

1.3 Functions of a Complex Variable

1.3.1 Basic Concepts

De�nition: Let S be an arbitrary point set in the complex plane. Suppose that to each
point z0 in S there corresponds a complex number (or numbers) w0 = f (z0). We then
say that w is a function of the complex variable z,

w ≡ f (z) for z in S, (1.3.1)

and that it de�nes amapping of S into the complex plane.
Since it is de�ned over a set of points in a plane, f (z) must be a function of the

two real variables x and y. Thus, separating its complex values into their real and
imaginary parts, we see that we can always write it in the form

w = f (z) = u(x, y) + iv(x, y), (1.3.2)

where u and v are real functions of the two real variables x and y. This suggests that
the properties of functions of a complex variable should be readily deduced from the
theory of functions of two real variables. However, we are quickly disabused of this
idea when we recall that the variables x and y are determined by

x = 1
2(z + z

*) y = 1
2i (z − z

*).
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Thus, an arbitrary pair of real functions combined according to

w = u(x, y) + iv(x, y)

will necessarily result in a function that depends explicitly on both z and z*. The lat-
ter dependence is unwanted: x and y must always occur in the unique combination
x + iy. Evidently, this requires the imposition of a restriction that limits the choice
of functions v(x, y) that can be paired with a speci�ed u(x, y) and vice versa. But if its
real and imaginary parts are so closely interrelated for some range of x andy, f (z)must
itself be restricted in theway it varies as a function of z. Aswe shall see, the required re-
striction is di�erentiability throughout a domain of the complex plane. That being
said, we shall postpone a formal de�nition of di�erentiability and introduce instead
the concept of a point at in�nity.

The function w = 1
z provides a well-de�ned, one-to-one mapping of the points of

the z − plane onto those of the w − plane with but two exceptions: the point z = 0 has
no image and the point w = 0 has no pre-image. For example, the unit circle |z| = 1
is mapped onto itself, |w| = 1; its exterior |z| > 1 is mapped onto the interior points
|w| < 1, w ≠ 0, and its interior |z| < 1, |z| ≠ 0 is mapped onto the exterior points
|w| > 1. This suggests that the two exceptions are closely related and that they can
be eliminated by de�ning the image of z = 0 to be the point at in�nity, denoted by
w = ∞. Then, since the inverse of ourmapping is z = 1

w , the point z = ∞ is the required
pre-image of w = 0.

The z−plane augmented by z = ∞ is referred to as the extended complex plane.
When we wish to emphasize the exclusion of z = ∞, we shall refer to the �nite com-
plex plane. The functionw = 1

z maps the extended complex plane onto itself without
exceptions. In particular, it maps circular discs with centre at the origin onto circular
discs with centre at the point at in�nity. Thus, a neighbourhood of the point z = ∞ is
denoted by |z| > R, where R is a given positive number. It is useful on occasion to think
of the extended complex plane as the surface of an “in�nite sphere”. In that context
the origin and point at in�nity are at opposite poles of the sphere and are joined by
the rays arg z = constant. All other straight lines in the plane correspond to “circles
of in�nite radius” intersecting at z = ∞.

1.3.2 Continuity, Di�erentiability and Analyticity

Real variable analysis providesuswith aprototypical format to follow inde�ningwhat
we shall mean by continuity and di�erentiability. Thus, for a function de�ned on a
domain D we de�ne continuity as follows.
De�nition: The function f (z) is continuous at the point z0 of D if, given any ε > 0,
there exists a δ such that

|f (z) − f (z0)| < ε
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for all points z in D satisfying
|z − z0 | < δ.

An alternative statement, which really de�nes what we shall mean by a limit, is that
f (z) is continuous at z0 if

lim
z→z0

f (z) = f (z0) for z in D. (1.3.3)

In geometrical terms this means that we can restrict f (z) to lie within a circle of radius
ε about f (z0) in the w − plane simply by requiring that z lie within a circle of radius
δ about z0 in the z − plane. This in turn reveals a critically important feature of lim-
its in complex analysis: the limit in (1.3.3) exists only if the number f (z0) is obtained
regardless of the path followed by z as it approaches z0.

The same path-independence is required of limits involving two ormore real vari-
ables. Therefore, it should comeasno surprise that if u(x, y) and v(x, y) are continuous
functions of x and y then

f (z) = u(x, y) + iv(x, y)

is a continuous function of z. The converse is also true. Thismeans that the imposition
of a requirement of continuity does not preclude the possibility of an explicit depen-
dence on z* as well as on z, the goal we set ourselves at the beginning of the preceding
section. Therefore let us move on and introduce di�erentiation.
De�nition: Let f (z) be a single-valued continuous function de�ned in a domain D. We
say that f (z) is di�erentiable at the point z0 of D if the limit

lim
z→z0

f (z) − f (z0)
z − z0

, z in D (1.3.4)

exists as a �nite number, independent of how z approaches z0. The limit, when it ex-
ists, is called the derivative of f (z) at z0 and is denoted by f ′(z0).

The path independence of this limit is a much more exacting condition than is
its counterpart in the de�nition of continuity. Consequently, continuity by no means
implies di�erentiability.
Examples: The function

f (z) = x + 2iy = 3
2 z −

1
2 z

*

is continuous everywhere in the �nite plane. However, forming the quotient pre-
scribed in (1.3.4), we obtain

f (z) − f (z0)
z − z0

= 3(z − z0) − (z − z0 )*
2(z − z0)

= 3
2 −

1
2
(z − z0 )*
(z − z0)

.

Setting z − z0 = |z − z0 | exp(iθ), θ = arg(z − z0), this becomes

f (z) − f (z0)
z − z0

= 3
2 −

1
2 exp(−2iθ)
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which obviously does not tend to a unique value as z → z0. In particular, if z → z0
parallel to the real axis then θ = 0 and the quotient tends to +1, and if z → z0 parallel
to the imaginary axis, θ = π

2 and so the quotient tends to +2. Thus, this function is not
di�erentiable anywhere.

Similarly, the continuous function f (z) = |z|2 is di�erentiable only at z0 = 0. For
if z ≠ 0, we have

f (z) − f (z0)
z − z0

= z z
* − z0 z*0
z − z0

= z* + z0
(z − z0 )*
(z − z0)

= z* + z0 exp(−2i arg(z − z0))

which again exhibits a dependence on arg(z − z0).
By way of contrast, the function f (z) = z2 is di�erentiable everywhere in the �nite

plane as can be seen from

f ′(z0) = lim
z→z0

z2 − z20
z − z0

= lim
z→z0

z + z0 = 2 z0 .

These examples suggest that our search for a condition which will guarantee that
functions have no explicit dependence on z* may be at an end. To con�rm that this is
the casewe shall determinenecessary and su�cient conditions for a function to bedif-
ferentiable; the question of z* independence will be resolved as a corollary. However,
before we do so, we should note that all the familiar rules of real di�erential calculus
continue to hold. Speci�cally,

d
dz (f ± g) =

df
dz ±

dg
dz (1.3.5)

d
dz (f · g) =

df
dz · g + f ·

dg
dz (1.3.6)

d
dz

(
f
g

)
= 1
g2

(
df
dz · g − f ·

dg
dz

)
(1.3.7)

d
dz f [g(z)] =

df
dg ·

dg
dz (1.3.8)

provided that, in each case, the derivatives on the right hand side exist.
As the next theorem details, the path independence of derivatives implies a rela-

tionship between the real and imaginary parts of a di�erentiable function.
Theorem: Suppose that f (z) = u(x, y) + iv(x, y) is de�ned and continuous in a neigh-
bourhood of z = x + iy. A necessary condition for the existence of f ′(z) is that all �rst
partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations,

∂u
∂x = ∂v∂y

∂u
∂y = − ∂v∂x , (1.3.9)

at the point (x, y).
Proof: If f (z) is di�erentiable at z, the limit

lim
∆z→0

f (z + ∆z) − f (z)
∆z ≡ f ′(z)
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must exist and be independent of how ∆z → 0. Since

f (z + ∆z) − f (z)
∆z = [u(x + ∆x, y + ∆y) − u(x, y)] + i[v(x + ∆x, y + ∆y) − v(x, y)]

∆x + i∆y

and since we may take ∆z to be real, so that ∆y = 0, it follows that

u(x + ∆x, y) − u(x, y)
∆x + i v(x + ∆x, y) − v(x, y)∆x

tends to a de�nite limit as ∆x → 0. Therefore, the partial derivatives ∂u
∂x and ∂v

∂x must
exist at the point (x, y) and the limit is

f ′(z) = ∂u∂x + i ∂v∂x . (1.3.10)

Similarly, if we take ∆z to be a pure imaginary, so that ∆x = 0, we �nd that ∂u∂y and ∂v
∂y

both exist at (x, y) and obtain the limit

f ′(z) = ∂v∂y − i
∂u
∂y . (1.3.11)

Since the two limits must be identical, we can equate real and imaginary parts to ob-
tain

∂u
∂x = ∂v∂y

∂u
∂y = − ∂v∂x

as required.
Baron Augustin Louis Cauchy (1789-1857) was born in Paris. He studied to become

an engineer but ill health obliged him to forego engineering and to teach mathematics
at the Ecole Polytechnique. Following the 1830 revolution he spent some years in exile
in Turin and Prague, returning to Paris in 1838. He did important work on partial dif-
ferential equations, the wave theory of light, the mathematical theory of elasticity, the
theory of determinants and group theory, but is primarily remembered as the founder of
the theory of functions of a complex variable.

Georg Friedrich Bernhard Riemann (1826-66) was a German mathematician who
studied under Carl Friedrich Gauss. He succeeded Gustav Dirichlet as professor of math-
ematics at Gottingen in 1859 but was forced to retire by illness in 1862 and subsequently
died in Italy of tuberculosis. His �rst publication (1851)was on the foundations of the the-
ory of functions of a complex variable. In this and a later paper (1857) he introduced the
concept of “Riemann surface” to deal with multi-valued functions. Meanwhile, in geom-
etry, he introduced the concept of an n-dimensional curved space which is fundamental
to the modern theory of di�erentiable manifolds and to the general theory of relativity
in physics. His name is also associated with the zeta-function which plays an important
role in number theory.

Have we stumbled across the relationship between u and v that will ensure that
the function of z they comprise does not have an explicit dependence on z* as well?
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To answer, we shall treat z and z* as independent variables and de�ne the partial
derivatives

∂f
∂z =

∂f
∂x
∂x
∂z +

∂f
∂y
∂y
∂z

∂f
∂ z* =

∂f
∂x

∂x
∂ z* +

∂f
∂y

∂y
∂ z* .

These lead almost immediately to the equalities

∂f
∂z =

1
2

[
∂u
∂x + ∂v∂y

]
+ i
2

[
∂v
∂x −

∂u
∂y

]
∂f
∂ z* =

1
2

[
∂u
∂x −

∂v
∂y

]
+ i
2

[
∂v
∂x +

∂u
∂y

]
.

Applying the Cauchy-Riemann equations we then obtain

∂f
∂z =

df
dz

∂f
∂ z* = 0. (1.3.12)

Thus, a function that is di�erentiable throughout some domain D cannot have an ex-
plicit dependence on z*.

Our prolonged search for a criterion to limit the range of our study is at an end. It
only remains to attach an identifying label to those functions which satisfy it.
De�nition: A single-valued continuous function f (z) is said to be an analytic func-
tion of z (or more simply, to be analytic) in a domain D if it is di�erentiable at every
point of D, save possibly for a �nite number of exceptional points. The exceptional
points are called the singular points or singularities of f (z) in D. If no point of D is
a singularity of f (z) then we say that it is holomorphic in D. Further, we say that f (z)
is holomorphic at a point z = z0 if it is holomorphic in some neighbourhood of z0.

The terms regular and (with even greater potential for confusion) analytic are used
by some authors as synonyms of holomorphic. Thus, some care is required when read-
ing other texts.

Our next theorem, an extension of the last one, identi�es su�cient conditions for
a function to be holomorphic. It is presented without proof.
Theorem: The continuous single-valued function f (z) = u(x, y)+ iv(x, y) is an analytic
function of z = x+ iy, holomorphic in a domain D, if the four partial derivatives ∂u

∂x ,
∂v
∂x ,

∂u
∂y and ∂v

∂y exist, are continuous , and satisfy the Cauchy-Riemann equations at each
point of D.
De�nition: An analytic function which is holomorphic in every �nite region of the
complex plane is said to be entire.

Such functions have no singularities in the �nite plane but as we shall see, this
has implications for their behaviour at in�nity.
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De�nition:Ananalytic function f (z) is holomorphic at z = ∞ if f (1/w) is holomorphic
at w = 0.
Examples: The function f (z) = 1

1−z is holomorphic in any domain that excludes the
point z = 1. Evidently, the derivative f ′(z) = 1

(1−z )2 is unde�ned at z = 1. On the other
hand, f (1/w) = w

w−1 is holomorphic atw = 0and so f (z) is holomorphic at z = ∞. Thus,
the full domain of holomorphy is the extended plane with the point z = 1 removed. In
contrast, any polynomial

f (z) = c0 + c1 z + . . . + cn zn , n > 1

is singular at z = ∞. However, this is their only singularity; they are entire functions.
De�nition: Two real functions u and v of the two real variables x and y are said to be
conjugate functions if f (z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy.

As a consequenceof theCauchy-Riemannequations, conjugate functions are solu-
tions of Laplace’s equation. To seewhy this is soweneedonly di�erentiate theCauchy-
Riemann equations,

∂2 u
∂ x2 = ∂2 v

∂x∂y
∂2 u
∂ y2

= − ∂
2 v

∂y∂x
∂2 u
∂y∂x = ∂

2 v
∂ y2

∂2 u
∂x∂y = − ∂

2 v
∂ x2 ,

and assume equality of the mixed second derivatives,

∂2 u
∂x∂y = ∂2 u

∂y∂x
∂2 v
∂x∂y = ∂2 v

∂y∂x .

We immediately obtain

∇2 u ≡ ∂2 u
∂ x2 + ∂

2 u
∂ y2

= 0,

and
∇2 v = ∂2 v

∂ x2 + ∂
2 v
∂ y2

= 0.

Since we obtain two solutions of Laplace’s equationmerely by separating any an-
alytic function of z into its real and imaginary parts, complex analysis has an evident
relevance to the solution of potential problems in two dimensions. The converse is
true also; in fact, an important insight can be gained at this point from the theory of
partial di�erential equations. As we know, a particular solution of a PDE is completely
and uniquely determined by specifying its behaviour at the boundary of the domain in
which the partial di�erential equation obtains. Thus, since u(x, y) and v(x, y) satisfy
the equations

∇2 u(x, y) = 0 ∇2 v(x, y) = 0

throughout the domain of the xy − plane in which f (x + iy) = u(x, y) + iv(x, y) is a
holomorphic function of z = x + iy, it follows that a knowledge of how f (z) behaves at
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the boundary of its domain of holomorphy is su�cient to determine how it behaves
everywhere else in that domain. Or, since the boundary iswhere the function ceases to
be holomorphic, we can assert that analytic functions are completely determined
by their singularities. This is the basis of themost important applications of complex
analysis. Consequently, our exploration of the theorywill be directed primarily toward
discovering how these determinations can be made in practice.

We conclude this section by noting that the Cauchy-Riemann equations can be
used to �nd the conjugate of any given harmonic function and hence determine an
analytic function that has the original harmonic function as either its real or imaginary
part.
Example: The function u(x, y) = x2 − y2 is harmonic and has derivatives ∂u

∂x = 2x and
∂u
∂y = −2y. Hence, the conjugate of u(x, y) must satisfy

∂v
∂y = 2x and ∂v

∂x = 2y.

Integrating the �rst of these with respect to y, we �nd

v(x, y) = 2xy + φ(x)

where φ(x) depends only on x. Substituting this expression into the second of our two
equations, we obtain φ′(x) = 0 and so conclude that φ(x) = c, constant. Thus, the
conjugate of u(x, y) = x2 − y2 is v(x, y) = 2xy + c and the analytic function which they
comprise is

f (z) = x2 − y2 +i(2xy + c) = z2 +ic,

where c is an arbitrary real constant.

1.4 Power Series

Many of the analytic functions one encounters in mathematical physics are de�ned
bymeans of power series. This section will provide an introduction to their properties
as well as a brief overview of the convergence theorems that apply to complex in�nite
series.

As usual we begin our discussion with a raft of de�nitions.
De�nition: A series of the form

∞∑
m=0

cm(z − z0 )m = c0 + c1(z − z0) + c2(z − z0 )2 + . . . , (1.4.1)

where z is a variable while c0, c1, c2, . . . , cm , . . . and z0 are all constants, is called a
power series about the point z = z0 (or, with centre at the point z = z0).
De�nition: A series of complex numbers

∞∑
m=0

wm = w1 +w2 +w3 + . . . + wm + . . .
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is said to converge to a limit S if, for each ε > 0, there exists an integer N such that

| Sn −S| < ε

for all n > N, where Sn is the series’ nth partial sum,

Sn =
n∑

m=0
wm .

The number S is called the value or sum of the series and we write

S =
∞∑
m=0

wm .

A useful test of convergence (or rather, divergence since it involves a necessary
but not su�cient condition for convergence) is provided by a theorem which we state
without proof.
Theorem: If the series

∞∑
m=0

wm converges, then

lim
m→∞

wm = 0. (1.4.2)

Thus, a series which does not satisfy (1.4.2) necessarily diverges.
De�nition: A series

∞∑
m=0

wm of complex numbers is said to be absolutely convergent

if the (real) series of moduli
∞∑
m=0
|wm | converges. If

∞∑
m=0

wm converges but
∞∑
m=0
|wm | di-

verges, the series is called conditionally convergent.
Theorem: If a series

∞∑
m=0

wm is absolutely convergent, then it converges.

Because of this theorem and the relative ease of working with the moduli of com-
plex numbers rather than the numbers themselves, one generally tries to establish
the convergence of a complex series by showing that it is absolutely convergent. The
following three tests are the most important means of doing this.
1. Comparison Test If one can �nd a convergent series of positive real terms

∞∑
m=0

um

such that |wm | 6 um for each m, then the series
∞∑
m=0

wm is absolutely convergent.

2.Ratio TestAssume thatwm ≠ 0 for allm and that the sequence of ratios |wm+1 / wm |
converges to a limit L. If L < 1, the series

∞∑
m=0

wm converges absolutely; if L > 1, the

series diverges; if L = 1, the test fails.
Should the sequence of ratios possess more than one limit point, the test can still

be usedbut it requires amore generalwording: if the largest value of lim
m→∞

|wm+1/wm| <

1 then the series
∞∑
m=0

wm converges absolutely ; if the smallest valueof lim
m→∞

|wm+1/wm| >

1 then the series diverges.
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3. Root Test Assume that the sequence of roots |wm |
1
m ,m = 1, 2, 3, . . ., converges to

a limit L. If L < 1, the series
∞∑
m=0

wmconverges absolutely; if L > 1, the series diverges;

if L = 1, the test fails. More generally, the series is absolutely convergent or divergent
according as the largest or smallest value of lim

m→∞
|wm |

1
m is respectively less than or

greater than one.
Application of these tests to power series leads to a simple characterization of

their convergence properties. For example, suppose that it is known that a givenpower
series

∞∑
m=0

cm(z − z0 )m converges when z is assigned the speci�c value z1. Then, since

lim
m→∞

| cm(z1 −z0 )m | = 0, there must exist a real positive number M such that

| cm(z1 − z0 )m | 6 M for all m.

Let us now assign z a second value z2 which is subject to the single constraint

| z2 − z0 | < | z1 − z0 |. (1.4.3)

We then have

|cm(z2 − z0)m| = |cm(z1 − z0)m| ·
∣∣∣∣ z2 − z0z1 − z0

∣∣∣∣m ≤ M ∣∣∣∣ z2 − z0z1 − z0

∣∣∣∣m
Therefore, the series

∞∑
m=0

cm(z2 − z0 )m converges absolutely by comparison with the

geometric series
∞∑
m=0

Mrm = M
1−r , r =

∣∣∣ z2−z0z1−z0

∣∣∣ < 1.
Since z2 was arbitrary, subject only to (1.4.3), we have just proven that if a power

series converges at a given point z1 then it converges absolutely for all z for which

|z − z0 | < | z1 − z0 |,

that is, at all points z lying closer to z0 than does z1. (See Figure 1.6). This result sug-
gests that we attribute to each power series a radius of convergence R de�ned to be
the smallest real number such that the distance from the centre z0 to any point z at
which the series converges is at most equal to R. It then follows that the power series
converges absolutely for all z for which |z − z0 | < R and diverges for all z for which
|z − zo | > R. Nothing de�nite can be said about the behaviour of a power series on its
circle of convergence, |z − z0 | = R. It may diverge at every point, converge at some
points and diverge at others or, converge (absolutely) at every point. If a power series
converges for all values of z, then we set R = ∞; if it converges only at z = z0, then
R = 0.

As the next theorem shows the ratio and root tests provide methods for explicitly
calculating the radius of convergence for a given power series.
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Figure 1.6: Convergence at a point z1 implies absolute convergence at any point z such that |z−z0 | <
| z1 − z0 | 6 R.

The Cauchy-Hadamard Theorem: The radius of convergence R of the power series
∞∑
m=0

cm(z − z0 )m is determined by its coe�cients cm and can be evaluated as follows:

R = lim
m→∞

∣∣∣∣ cmcm+1
∣∣∣∣ (1.4.4)

if the limit exists, (the improper limit +∞ is allowed), or

R = min lim
m→∞

1
| cm |

1
m

(1.4.5)

if the limit exists, (the improper limit +∞ is allowed).
Jacques Hadamard (1865-1963) was born in Versailles and educated in Paris. He

became a lecturer in Bordeaux (1893-97), the Sorbonne (1897-1909), and then Professor
at the College de France and the Ecole Polytechnique until his retirement in 1937. He
was a leading �gure in French mathematics throughout his career, working in complex
analysis, di�erential geometry and partial di�erential equations. He was still publishing
mathematical work in his eighties.

Power series will be used over and over again as our exposition of complex anal-
ysis unfolds. One of the reasons for this is provided by our next theorem.
Theorem: The sum of a power series is a holomorphic function within its circle of
convergence.

The standard proof of this theorem shows that the derivative of the power series

f (z) =
∞∑
m=0

cm(z − z0 )m
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can be obtained by di�erentiating the series term by term:

f ′(z) =
∞∑
m=0

m cm(z − z0 )m−1 .

It takes little additional e�ort to show that this series has the same radius of conver-
gence as does f (z).

By repeated application of this theorem we obtain a further important result.
Theorem:Within its circle of convergence, a power series

f (z) =
∞∑
m=0

cm(z − z0 )m

has derivatives of all orders, with the kth derivative given by

f (k)(z) =
∞∑
m=k

m(m − 1) . . . (m − k + 1) cm(z − z0 )m−k ,

all of which possess the same radius of convergence as does the original series. More-
over, we have

f (k)(z0) = k! ck

and so the original power series is the Taylor series of its sum:

f (z) =
∞∑
m=0

f (m)(z0)
m! (z − z0 )m .

In a subsequent section we shall prove the converse of this theorem. It is the con-
verse that is referred to as Taylor’s theorem and it states that a function f (z) may be
expanded in a unique power series

∞∑
m=0

cm(z − z0 )m , with non-zero radius of conver-

gence, about any point z0 at which it is holomorphic. Taken together, these two the-
orems tell us that a function f (z) may be expanded in a Taylor series about a point
z0 if and only if z0 lies within the function’s domain of holomorphy. Moreover, the
Taylor series is the only power series expansion about z0 that is possessed by f (z).
This important result is most explicitly exploited in a formulation of complex analysis
due to Weierstrass. It begins by de�ning an analytic function to be one which admits
expansion in a power series with non-zero radius of convergence.

Karl Theodor Wilhelm Weierstrass (1815-97) was a German mathematician, edu-
cated at the Universities of Bonn and Munster. He became professor at Berlin in 1856.
He published relatively little but became famous for his lectures on analysis. In addi-
tion to his contributions to complex function theory, he made important advances in the
theory of elliptic and abelian functions.

We shall now use power series to de�ne what are known as the “elementary func-
tions”.
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1.5 The Elementary Functions

1.5.1 Rational Functions

A polynomial in z,

w = c0 + c1 z + . . . + cn zn =
n∑

m=0
cm zm ,

is, as we have seen already, an entire function. Therefore, it may be regarded as a
power series about z = 0 that converges for all values of z. To obtain its power series
expansion about any other point z0, we need only replace z by z0 +(z − z0). The result
is another polynomial, in powers of (z−z0) this time, and so the radius of convergence
is again R = ∞.

The quotient of two polynomials

w = c0 + c1 z + . . . + cn zn

d0 + d1 z + . . . + dk zk

is called a rational function. It is an analytic functionwhose only singularities are the
zeros of the denominator. One of the simplest but at the same time, most important
rational functions is that de�ned by the geometric series

∞∑
m=0

zm. This is a power series

about z = 0 which, by the Cauchy-Hadamard theorem, has radius of convergence R =
1. If we consider its nth partial sum

Sn = 1 + z + z2 + . . . + zn

and subtract from it
z Sn = z + z2 + . . . + zn+1,

we �nd
Sn =

1 − zn+1
1 − z .

Thus, taking the limit as n →∞, we have
∞∑
m=0

zm = 1
1 − z , |z| < 1. (1.5.1)

This identity is the basis for a practical prescription for generating the power series
expansions possessed by an arbitrary rational function. The prescriptionwill be given
in a subsequent and more relevant section.

1.5.2 The Exponential Function

The exponential function exp z is de�ned to be the sum function of the series

exp z ≡ ez ≡
∞∑
m=0

zm
m! = 1 + z + z

2

2! +
z3
3! + . . . . (1.5.2)
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Applying the Cauchy-Hadamard theorem we �nd that the radius of convergence of
this series is in�nite. Thus, exp z is an entire function of z. This is con�rmed by term
by term di�erentiation of the series which yields a well-de�ned derivative

d
dz e

z = ez

for all �nite z. By multiplication of series one can also prove that the familiar multi-
plication law

ez · ew = ez+w

holds for complex z and w.
In Section 1.1.2 we arbitrarily introduced eiθ ≡ cos θ + i sin θ for reasons of nota-

tional convenience. Now that we have de�ned what is meant by an exponential func-
tion of a complex variable, we can derive this expression. Assigning z the pure imagi-
nary value iy, y real, in (1.5.2), we �nd

eiy =
∞∑
m=0

(iy )m
m! =

∞∑
n=0

(−1 )n
y2n
(2n)! + i

∞∑
n=0

(−1 )n
y2n+1

(2n + 1)! .

However, the latter two power series are known to be the Taylor series expansions of
the cosine and sine of the real variable y. Thus, as anticipated,

eiy = cos y + i sin y.

Consequently,

ez = ex+iy = ex eiy = ex(cos y + i sin y) (1.5.3)

or | ez | = ex and arg(ez) = y.
Since e2πi = 1, we have ez±2nπi = ez , n = 0, 1, 2, . . .. Thus, ez is a periodic function

of period 2πi. This means that every value which ez can assume is attained in the
in�nite strip −π < y 6 π, or in any strip obtainable from it by a translation parallel to
the imaginary axis.

Finally, we note that ez never vanishes for, if ez1 = 0, then e− z1 would be in�nite
which contradicts the fact that ez is entire.

1.5.3 The Trigonometric and Hyperbolic Functions

The sine and cosine functions of a complex variable are de�ned to be the sum-
functions of the series

∞∑
m=0

(−1 )m z2m+1
(2m + 1)! ≡ sin z,

∞∑
m=0

(−1 )m z2m
(2m)! ≡ cos z. (1.5.4)
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Since each of these power series has an in�nite radius of convergence, sin z and cos z
are entire functions. The other trigonometric functions are de�ned by

tan z ≡ sin z
cos z , cot z ≡ 1

tan z , cosec z ≡ 1
sin z , sec z ≡ 1

cos z . (1.5.5)

Di�erentiating the power series (1.5.4) term by term we �nd that

d
dz sin z = cos z, d

dz cos z = − sin z. (1.5.6)

Also, applying to eiz the same manipulations that led us to Euler’s formula we
obtain

e±iz = cos z ± i sin z (1.5.7)

or, equivalently,

cos z = 1
2(e

iz + e−iz), sin z = 1
2i (e

iz − e−iz). (1.5.8)

From these formulae, and the multiplication rule for ez, one can readily deduce that
all the trigonometric identities that hold for real variables do so for complex variables
as well. In particular,

sin2 z + cos2 z = 1
sin(z ± w) = sin z cosw ± cos z sinw

cos(z ± w) = cos z cosw ∓ sin z sinw. (1.5.9)

Many of the properties possessed by the trigonometric functions are most easily
discerned by expressing the functions in terms of their real and imaginary parts. Set-
ting z = x + iy, we have

sin z = 1
2i [e

i(x+iy) − e−i(x+iy)] = 1
2i [e

−y(cos x + i sin x) − ey(cos x − i sin x)],

or

sin z = cosh y sin x + i sinh y cos x, (1.5.10)

where we have used the real variable de�nitions

sinh y ≡ 1
2(e

y − e−y)

cosh y ≡ 1
2(e

y + e−y).

Similarly,

cos z = cosh y cos x − i sinh y sin x. (1.5.11)
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Evidently, sin z can only vanish if both sin x cosh y = 0 and cos x sinh y = 0. Since
cosh y > 1, we require sin x = 0 or x = nπ, n = 0, ±1, ±2, . . .. This in turn implies
that cos x ≠ 0 and hence, that sinh y = 0. The latter condition can only be met if
y = 0. Thus, we conclude that sin z vanishes if, and only if z = nπ, n = 0, ±1, ±2, . . ..
Similarly, cos z vanishes if, and only if, z = (n + 1

2 )π, n = 0, ±1, ±2, . . ..
Unlike their real variable counterparts, | sin z| and | cos z| are not bounded, let

alone bounded by unity. This too follows from equations (1.5.10) and (1.5.11) which
yield

| sin z |2 = sin2 x + sinh2 y (1.5.12)

| cos z |2 = cos2 x + sinh2 y (1.5.13)

both of which increase without limit as y → ∞. This behaviour re�ects a singularity
at the point at in�nity which the trigonometric functions have in common with the
exponential function.

Other properties that follow immediately from (1.5.10) and (1.5.11) are

(sin z )* = sin(z*) (cos z )* = cos(z*)
sin(−z) = − sin z cos(−z) = cos z

and, the very important periodicity conditions

sin(z ± 2nπ) = sin z, cos(z ± 2nπ) = cos z, n = 0, ±1, ±2, . . . .

The hyperbolic functions of a complex variable are de�ned by

sinh z = −i sin iz cosh z = cos iz
sin z = −i sinh iz cos z = cosh iz

and so their properties can be deduced from those of the trigonometric functions. In
particular, one �nds

sinh z = 1
2(e

z − e−z), cosh z = 1
2(e

z + e−z)

and,
cosh2 z − sinh2 z = 1.

1.5.4 The Logarithm

The natural logarithm of the complex variable z, denoted by

w = ln z,
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is de�ned for each |z| ≠ 0 by the equation

ew = z. (1.5.14)

We have already seen that the exponential function ez has period 2πi and hence,
that it maps each of the strips

(n − 1)π < Im z 6 (n + 1)π, n = 0, ±1, ±2, . . .

onto the entire complex plane (less the origin). Therefore, it should come as no sur-
prise that equation (1.5.14) admits an in�nite number of solutions each of which is a
logarithm of z. To see how this comes about in detail, set

w = u + iv and z = |z| ei arg z

so that (1.5.14) becomes
ew = eu · eiv = |z| ei arg z .

Thus, from the de�nition of equality,

v = arg z and eu = |z|.

But, since v and |z| are both real, with |z| > 0, the latter equation has the unique
solution u = ln |z|. Therefore, we �nally obtain

ln z = ln |z| + i arg z. (1.5.15)

Since arg z is only determined to within multiples of 2π, ln z is in�nitely many-valued
with successive values di�ering by 2πi.

The principal value of ln z, which is obtained by giving arg z its principal value,
will be denoted by Lnz. Thus,

Ln z = ln |z| + iArgz, −π < Argz 6 π (1.5.16)

and, ln z = Ln z ± 2nπi, n = 0, 1, 2, . . .. The principal value is identical with the real
logarithm when z is real and positive.

Since
lim
ε→0

[Ln(|z| ei(π−ε)) − Ln(|z| ei(−π+ε))] = 2πi,

Lnz is discontinuous across the negative real axis. It should be noted however that
the exact location of this line of discontinuity was determined by our choice for the
range of Argz in the de�nition of Lnz. Because of the discontinuity, the single valued
function Lnz can only be holomorphic in a domain that excludes the negative real
axis. Certainly, it is di�erentiable for |z| ≠ 0, Argz ≠ ±π as can be seen from

d
dzLnz =

∂
∂x ln

√
x2 + y2 + i ∂∂x tan

−1 y
x = x

x2 + y2
− i y
x2 + y2

= 1
z . (1.5.17)

Thus, its domain of holomorphy must be the domain 0 < |z| < ∞, −π < Argz < π
which is the cut plane obtained by removing the origin and negative real axis.
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1.5.5 The General Power zα

We de�ne the power zα, where z and α denote any complex numbers, to be

zα ≡ eα ln z , |z| ≠ 0 (1.5.18)

and its principal value to be eα Ln z.
Since ln z is in�nitely many-valued, zα might reasonably be expected to be so too.

In general, this is indeed the case; the only exceptions occur, as we have seen al-
ready, when α assumes integer or rational values. This is most easily discerned by
writing (1.5.18) in the form

zα = eα[Lnz+2kπi], k = 0, ±1, ±2, . . . . (1.5.19)

If α = n, n = ±1, ±2, . . . then, since e±2knπi = 1, equation (1.5.19) yields the single value

zn = |z |n einArgz ,

which is precisely what one obtains from the de Moivre theorem. If α = m/n, with the
integer n not a divisor of the integer m then, as expected, equation (1.5.19) yields the
n values

zm/n = |z |m/n exp
[
i mn (Argz + k2π)

]
, k = 0, 1, . . . , n − 1.

Finally, if α is a complex or real irrational number then e2kαπi ≠ 1 for any value of
k = ±1, ±2, . . . and so each value of k yields a distinct value of zα.

The principal value of zα (for non-integer α) is discontinuous across the negative
real axis. Hence, like Lnz, it is holomorphic only in the cut plane 0 < |z| < ∞, −π <
Argz < π.
Example:We conclude this Sectionwith an evaluation of whatmight appear to be the
epitome of a complex number, ii. From (1.5.19) we have

ii = ei ln i = ei[Lni+2kπi], k = 0, ±1, ±2, . . . .

But, |i| = 1 and Argi = π/2 so that Lni = π
2 i. Thus, i

i is in fact the in�nity of real
numbers

ii = exp
[
−π2 − 2kπ

]
, k = 0, ±1, ±2, . . .

and has the principal value e− π2 .

1.6 Multivalued Functions and Riemann Surfaces

Our de�nition of analyticity requires functions to be single-valued. However, as we
have just seen, some important elementary functions, ln z, zα , and any of the inverse
trigonometric and hyperbolic functions, are multivalued. Thus, one might suppose
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that we require two distinct theories of functions of a complex variable: one for an-
alytic functions and the other for a suitably de�ned class of multivalued functions.
Fortunately, this is not the case. As we will now show, a geometrical construction due
to Riemann can be used to ensure that the theory of analytic functions can be applied
to both single and multivalued functions.

The de�nition of the various principal value functions in the preceding Section
demonstrates that one can dissociate a multivalued function into a series of single
valued ones that are individually holomorphic in a cut plane. This provides us with
an important �rst clue as to how to proceed. A second and decisive clue is presented
by the way in which the multivalued character of a function manifests itself in the
behaviour of its single valued constituents.

For clarity, we shall consider the speci�c function

w = z1/2 = |z |1/2 exp
[
i
2 arg z

]
= |z |1/2 exp

[
i
2(Argz + 2kπ)

]
, k = 0, 1. (1.6.1)

We shall denote the values corresponding to k = 0 by w1 and those corresponding to
k = 1 by w2.

Let us see what happens to w as z describes a closed path encircling the ori-
gin. Starting from a point z0 = (| z0 |, θ0), we perform a complete anticlockwise cycle
around the origin, returning again to z0. The function w = z1/2 changes continuously
as we follow the closed curve but, after completion of a full cycle, z1/20 di�ers from its
initial value by a factor of (−1):

[z1/20 ]i = | z0 |
1/2 ei θ0 /2

[z1/20 ]f1 = | z0 |
1/2 ei(θ0 +2π)/2 = −| z0 |1/2 ei θ0 /2 = −[z1/20 ]i .

Moreover, to regain the initial value of z1/20 we see that we must perform yet another
complete cycle:

[z1/20 ]f2 = | z0 |
1/2 ei(θ0 +4π)/2 = | z0 |1/2 ei θ0 /2 = [z1/20 ]i .

This requirement of two complete cycles to regain the function’s initial value is clearly
a manifestation of the function’s double-valuedness.
De�nition: A point of the complex plane having the property that after the comple-
tion of any cycle around it a given function is not restored to its initial value is called
a branch point of the function. A branch point is of nth order if after making not
less than (n + 1) complete cycles around it we restore the function to its initial value.
Otherwise, a branch point is said to be of in�nite order.
Example: The point z = 0 is a branch point of order one of the function z1/2 . It fol-
lows that ζ = 0 is similarly a branch point of order one of ζ −1/2 and so z = ∞ is a
second branch point of order one of z1/2 . These are the only two branch points that
this function possesses.
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Figure 1.7: After one complete cycle about the origin the argument of z0 is increased by 2π.

We shall now follow the progress of z1/2 as z cycles around the branch point z = 0 in
a little more detail. If θ0 is assigned a speci�c value of −π < Argz 6 π, [z1/20 ]i assumes
one of the values possessed by the single valued function w1(k = 0). As we proceed
around the curve C in Figure 1.7 , z1/2 varies continuously through values that corre-
spond to w1 until we reach the negative real axis. On crossing the axis z1/2 still varies
continuously but its values are now those that correspond tow2(k = 1). A further cycle
around the curve sees z1/2 vary continuously through the values of w2 until the nega-
tive real axis is again encountered, at which point it re-assumes values corresponding
to w1. This is shown in Figure 1.8 in which we have used a unit circle on each of two
superposed planes to picture the two complete cycles.

In summary, z1/2 varies continuously through the values of w1 and w2 as z goes
from (| z0 |, θ0) to (| z0 |, θ0 +4π) because, even though w1 and w2 are separately dis-
continuous across the negative real axis,

lim
ε→0

[wk(|z|, π − ε) − wk(|z|, −π + ε)] = ±2i|z |1/2, k = 1, 2, (1.6.2)

the value of w1(w2) just above the axis is the same as the value of w2(w1) just below
it:

lim
ε→0+

w1(|z|, π − ε) = lim
ε→0+

w2(|z|, −π + ε) = i|z|1/2

lim
ε→0+

w2(|z|, π − ε) = lim
ε→0+

w1(|z|, −π + ε) = −i|z|1/2. (1.6.3)

This fact, plus the knowledge that w1 and w2 are holomorphic in the domain 0 < |z| <
∞, −π < Argz < π is all we require in order to construct a domain of de�nition on
which z1/2 will enjoy the bene�ts of analyticity.

The �rst step in the construction is to choose a curve joining the two branch points
of z1/2; a line starting from z = 0 and extending to z = ∞ is an obvious example.
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Figure 1.8: The value of w1(w2) just above the real axis is the same as the value of w2(w1) just be-
low it.

Next, we cut the complex plane by removing all the points that lie on this curve; the
curve is then referred to as a branch cut. This provides a domain of de�nition for two
single valued functions or brancheswhich together reproduce all the values that z1/2

can assume, except of course those corresponding to values of z lying on the cut. To
conform with our earlier conventions, we shall take the cut to lie along the negative
real axis. Our two branches are thus the familiar functions

w1 = |z |1/2 eiθ/2, −π < θ < π, 0 < |z| < ∞

w2 = −|z |1/2 eiθ/2, −π < θ < π, 0 < |z| < ∞ (1.6.4)

which are analytic throughout the cut plane. (Notice that we have opted to use θ in
place of Argz.)

To complete our construction we now superpose two cut planes joined edge to
edge at the cut, the upper edge of each being joined continuously with the lower edge
of the other. The two planes are then referred to as Riemann sheets and the surface
resulting from their superposition is called a Riemann surface. As the following ar-
gument shows, this surface provides a domain of holomorphy for z1/2.

Let arg z vary from −π to +π − ε for �xed |z|. Then, z describes a circle about the
origin on the top sheet and z1/2 assumes the values of w1. At the end of the circle,
(arg z = π), we cross to the second sheet where, as arg z increases from π+ε to 3π−ε, z
describes another circle about the origin and z1/2 assumes the values ofw2. At the end
of this circle, (arg z = 3π), we cross back to our starting point on the �rst sheet. Be-
cause of equation 1.6.3, z1/2 varies continuously along the whole of this path, tracing
out a complete circle of radius |z |1/2 in the w-plane. Thus, cuts are no longer neces-
sary and the function z1/2 is holomorphic over the whole Riemann surface, except at
the two branch points z = 0 and z = ∞.
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Figure 1.9: The Riemann surface for the function w = z1/2.

Since themapping aspect of functions of a complex variable can enhance our intuitive
appreciation, we note that we have just shown that the function z = w2 maps the w-
plane onto a two- sheeted Riemann surface for z.

Recall that the branch cut joining z = 0 and z = ∞ is a line of “man-made” singu-
larities for the two branchesw1 andw2 and as such, has an entirely arbitrary location.
Any simple curve connecting these two points could serve as an acceptable cut along
which the two Riemann sheets of z1/2 can be joined. For example, suppose that we
choose the ray arg z = θ0; (straight lines are always the easiest curves to deal with).
The two branches of z1/2 must then be de�ned as

w1 = |z |1/2 eiθ/2, θ0 < θ < θ0 +2π

w2 = −|z |1/2 eiθ/2, θ0 < θ < θ0 +2π;

that is, we merely change the range of variation of θ. A de�nition of z1/2 that makes it
holomorphic everywhere, except at its branchpoints z = 0 and z = ∞, is nowobtained
by constructing a two-sheeted Riemann surface, cut and joined along the line arg z =
θ0. Some of the values of z1/2 which occurred for z on the �rst Riemann sheet when
the cut wasmade along the negative real axis now correspond to the second Riemann
sheet and vice versa. This illustrates that the Riemann construction is merely a way
of classifying the values of a function in a single valued manner and the details of the
classi�cation are matters of convention.

For themore general case of the n-valued functions z1/n and zm/n , it can be readily
shown that z = 0 and z = ∞ are branch points of order (n−1) and that the appropriate
Riemann surface is a closed n-sheeted structure with the nth sheet reconnected to the
�rst. Such a surface is di�cult to visualize and impossible to sketch, except in the
most schematic way. Rather than try to do so the reader should keep in mind that the
surface is a mathematical construction whose sole purpose is to classify the n values.
On the kth sheet, for example, the function z1/n assumes the values of its kth branch

wk = |z |1/n exp
{
i
n [θ + 2(k − 1)π]

}
, −π < θ < π, 0 < |z| < ∞

wherewe have again chosen the branch cut to lie along the negative real axis. Thus, as
arg z increases through π, z crosses from the �rst to the second sheet and z1/n varies
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continuously from the values of w1 to those of w2. As arg z increases through 3π, z
again encounters the cut and so drops down from the second to the third sheet. This
process continuesuntilwe reach the nth sheet,which corresponds to (2n−3)π < arg z <
(2n − 1)π. As arg z increases through (2n − 1)π, z moves through the cut back up to
the �rst sheet and z1/n varies in a continuous fashion from the values of wn to those
of w1.

Paradoxically, the Riemann surface for the in�nitelymany valued logarithm func-
tion

ln z = ln |z| + i arg z = Lnz + 2kπi, k = 0, ±1, ±2, . . . (1.6.5)

is somewhat easier to visualize. The function’s branch points are readily seen to be
z = 0 and z = ∞ again. For example, if one completes a counterclockwise cycle about
the origin one leaves ln |z| unchanged but arg z is increased by 2π and so, ln z changes
value by an amount 2πi.Moreover, nomatter howmany times one encircles the origin,
the logarithm never regains its original value. Thus, in this case, z = 0 and z = ∞
are branch points of in�nite order. This means that a single valued de�nition of the
logarithm requires a Riemann surface consisting of an in�nite number of sheets, each
one joined to the one above and below it by a cut running from z = 0 to z = ∞.

Figure 1.10: A part of the Riemann surface for the logarithm. The path C encircles the branch point at
the origin and hence, necessarily crosses from one sheet to the next.

Choosing the cut to again lie along the negative real axis, the single valued
branches of ln z that correspond to this construction are

wk = ln |z| + iθ + 2πki, −π < θ < π, 0 < |z| < ∞, k = 0, ±1, ±2, . . . . (1.6.6)

These functions are holomorphic everywhere in the cut plane and the nth member of
the set, wn , takes on the same values that ln z assumes when (2n − 1)π < arg z <
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(2n + 1)π. Although each wk has a jump discontinuity of

lim
ε→0

[wk(|z|, π − ε) − wk(|z|, −π + ε)] = 2πi

across the cut, the value of wk just above the cut is the same as the value of wk+1 just
below it:

lim
ε→0+

wk(|z|, π − ε) = lim
ε→0+

wk+1(|z|, −π + ε).

Thus, with the upper lip of the cut in the kth sheet connected to the lower lip of the cut
in the (k + 1 )th sheet, the Riemann surface provides a domain of de�nition on which
ln z varies continuously through all the values it can assume and hence, on which
ln z is holomorphic everywhere, except for the two branch points z = 0 and z = ∞.

The preceding discussion provide a good basis fromwhich to tackle more compli-
cated functions.

For example, w = (z − a )1/2 has a branch point at z = a rather than z = 0 but
is otherwise identical in behaviour to z1/2. Thus, its Riemann surface is a closed, two-
sheeted structurewith the sheets cut and joined along anarbitrary line extending from
z = a to z = ∞. Figure 1.11 shows a more or less random choice for this line. To utilize
our experience with z1/2 we introduce the variable θa = arg(z − a). Then, the single
valued branches corresponding to our particular choice of branch cut are w1 = |z −
a |1/2 ei θa /2 and w2 = −|z − a |1/2 ei θa /2 with |z| < ∞, |z − a| > 0 and θ0 −2π < θa < θ0,
which completes the de�nition of a Riemann surface for this function.

Figure 1.11: A possible choice of branch cut for the function w = (z − a )1/2.

Amore interesting as well as more challenging example is posed by the function w =
[(z − a)(z − b) ]1/2 . To identify its branch points we introduce the variables ra = |z − a|
, rb = |z − b|, θa = arg(z − a) and θb = arg(z − b) as shown in Figure 1.12. Only two of
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these four variables are needed to specify z but, by using all four, we can write w in
the suggestive form

w = (ra rb )1/2 exp
[
i
2(θa + θb)

]
= [r1/2a ei θa /2][r1/2b ei θb /2]. (1.6.7)

From our experience with z1/2 we can assert that z = a and z = b are both branch
points of order one. This is readily con�rmed by performing a cycle around either,
but not both, of the two points. If we encircle z = a on a curve that does not enclose
z = b, θa increases by 2π while θb increases and then decreases and �nally returns to
its initial value. Thus, after one full cycle, w changes its sign and after two full cycles
it returns to its initial value.

Figure 1.12: The de�nition of the variables ra , rb , θa , θb.

It is both interesting and important to notice that a cycle enclosing both z = a and
z = b causes no change in w. This is because both θa and θb increase by 2π causing a
change in the argument of w of

1
2(θa + θb)→

1
2(θa + θb +4π) =

1
2(θa + θb) + 2π. (1.6.8)

This implies that z = ∞ is not a branch point although going on past experience alone,
we might mistakenly have assumed that it is. To con�rm this, we set z = 1

ζ and note
that w = [ 1ζ 2 −1 ]

1/2 → ± 1ζ as ζ → 0. Thus, although w is singular at z = ∞(ζ = 0), and
double valued in any neighbourhood of that point, it is unchanged by a cycle about it
and so z = ∞ is not a branch point.

The next step in de�ning a Riemann surface for this function is to choose a branch
cut joining z = a and z = b. As Figure 1.13 illustrates, this may be done in two distinct
ways:
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(a) a curve of �nite length terminating at z = a and z = b;
(b) a curve which terminates at z = a and z = b but passes through z = ∞ in between.

Figure 1.13: In the diagram on the left the z plane is cut along the straight line segment that joins
z = a and z = b. In the one on the right the plane is cut along two straight lines that meet at the
point at in�nity.

To discuss these two options as clearly as possible, we shall specialize to the function

w = (z2 −1 )1/2 = [(z − 1)(z + 1) ]1/2 = (r+ r− )1/2 ei(θ+ + θ−)/2

whose branch points are at z = ±1. Given past conventions, the two obvious choices
for a branch cut for this function are the real axis segments
(a) −1 6 x 6 1, and
(b) x 6 −1, x > 1
as shown in Figure 1.14. (This cut structure is also relevant to the function w = ln z+1

z−1
which we will encounter in subsequent sections of the book.) Since each of these is a
straight line, the corresponding branches of (z2 −1 )1/2 are given by

w1,2 = ±(r+ r− )1/2 ei(θ+ + θ−)/2,

with θ+ and θ− restricted to prevent us crossingwhichever cutwehave decided towork
with. The cut along −1 6 x 6 1 is avoided if either θ+ is restricted to −π < θ+ < π or θ−
is restricted to 0 < θ− < 2π. However, althoughw1 andw2 are discontinuous across the
cut, they must be continuous everywhere else. In particular, they must be continuous
across the line segments x < −1 and x > 1. This latter restriction can only be satis�ed if
θ+ and θ− have the same range of variation; (cf. equation 1.6.8 and the discussion that
ledup to it). To conformwith convention,we therefore require −π < θ± < π. The closed,
two-sheeted Riemann surface that corresponds to this choice of cut is now completely
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speci�ed by assigning to (z2 −1 )1/2 the values w1 = |z−1 |1/2 |z+1 |1/2 ei(θ+ + θ−)/2, −π <
θ± < π, |z ± 1| > 0 for z on the �rst sheet, and the values w2 = −w1 for z on the second
sheet of the surface.

Figure 1.14: Two obvious choices for the branch cut for the function (z2 −1 )1/2 .

Figure 1.15: The values assumed by (z2 −1 )1/2 along the real axes of its two Riemann sheets when
the branch cut is chosen to lie along −1 6 x 6 1.

It is instructive to calculate the values assumed by (z2 −1 )1/2 for values of z close to
the real axis on the two Riemann sheets. This is done below and the results displayed
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in Figure 1.15. For −1 6 x 6 1, y = 0±, we have θ− = 0±, θ+ = π∓ and so

w1 =
√
1 − x2 e±iπ/2 = ±i

√
1 − x2.

For x < −1, y = 0±, we have θ− = θ+ = ± π∓ and

w1 =
√
x2 −1 e±πi = −

√
x2 −1.

For x > 1, y = 0±, we have θ− = θ+ = 0± and

w1 = +
√
x2 −1.

If the cut is chosen to lie along the line segment x 6 −1, x > 1, there is only
one way to avoid crossing it: θ+ and θ− must be restricted to the ranges 0 < θ+ < 2π
and −π < θ− < π. This conclusion follows from noting that, with this choice of cut,
r+1/2 ei θ+ /2(r−1/2 ei θ− /2) behaves like z1/2 when its cut is taken to lie along the positive
(negative) real axis. Thus, in this case, the Riemann surface is completely speci�ed
by de�ning the branches of (z2 −1 )1/2 to be w1 = |z − 1 |1/2 |z + 1 |1/2 ei(θ+ + θ−)/2, and
w2 = −w1, 0 < θ+ < 2π, −π < θ− < π and |z − 1| > 0. The values assumed by (z2 −1 )1/2

near the real axes of this surface are shown in Figure 1.16.

Figure 1.16: The values assumed by (z2 −1 )1/2 along the real axes of its two Riemann sheets when
the branch cut is chosen to lie along x 6 −1, x > +1.

As Figures 1.15 and 1.16 a�rm, both Riemann surfaces are closed. Moreover, they are
constructed in such a way that one changes sheets after any cycle that encloses only
one of the branch points but is returned to one’s starting point after a cycle that en-
closes both branch points.

It is now easy to generalize to the case w =
√
(z − a1)(z − a2) . . . (z − an). If n is

even, there are n branch points located at z = a1, a2, . . . , an while, if n is odd, there
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are n + 1 branch points including the point at in�nity. The branch points must be
joined pair-wise by branch cuts and then a closed two-sheeted Riemann surface can
be constructed by means of two interconnections along each cut. Assuming straight
line branch cuts, the surface is completely speci�ed simply by de�ning the branches
of the function to be

w1 = (ra1 . . . ran )1/2 ei(θa1 +...+θan )/2, w2 = −w1, rai = |z − ai |, θai = arg(z − ai),

with each of θa1 , . . . , θan restricted to ranges of length 2π as determined by the partic-
ular choice of cuts that has been made.

Figure 1.17: If z moves from the point z1, inside a closed curve C on the top sheet of a surface for√
(z − a1)(z − a2)(z − a3)(z − a4) so that it crosses to the bottom sheet via the cut enclosed by C,

it can cross back to the top sheet via the second cut and thus end up at the point z2 , outside C ,
without intersecting C itself.

We conclude with a couple of examples of the kind of curious phenomena that can
occur with Riemann surfaces.

On a surface for a function with four or more branch points in the �nite plane
one can move continuously from the inside to the outside of a closed curve without
actually crossing the curve itself. How this comes about is shown in Figure 1.17 using
a surface for the function

√
(z − a1) . . . (z − a4).

Of more practical interest is the behaviour exhibited by the function

w = z
1/2 +ia
z1/2 −ia

, a > 0

which is singular when z1/2 = ia. The Riemann surface de�ned for z1/2 can be used for
this function aswell. Thus, we see thatw has a singularity at z = − a2 on the�rst sheet
of the surface but on the second sheet it has a zero there. This illustrates that while
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a function may have a singularity (which is not a branch point) on some sheets of a
Riemann surface, it may be perfectly well-behaved at the same point(s) on the other
sheets.

We have devoted what might seem to be an inordinate amount of space to multi-
valued functions. This has not been done because the subject is di�cult but because,
on the contrary, it is relatively simple once it is recognized that to attempt to visualize
Riemann surfaces as three dimensional objects will only impede understanding; the
surfaces merely provide a classi�cation scheme, a means of separating and ordering
the many values. Thus, what almost amounts to an overexposure at this juncture is
intended to make the reader feel if not at home, then at least comfortable with the
concepts of branch cuts, sheets and surfaces when they reappear in subsequent sec-
tions.

1.7 Conformal Mapping

The mapping de�ned by an analytic function w = f (z) has the property that it is con-
formal (angle-preserving) except at points where f ′ (z) = 0. As we shall see, this has
an important application in the solution of two dimensional boundary value problems
by transforming a given complicated region into a simpler one.

To see how conformality comes about, consider a smooth curve C passing through
the point z 0 in the z − plane. A function w = f (z) that is holomorphic at z = z0 will
map z0 onto a point w = w0 and C onto a curve Cw passing through w0. Next, consider
a near-by point z1 on C and its image w1 = f (z1) on Cw. Denoting z − z0 by ∆z and
w − w0 by ∆w, we take the limit

∆w
∆z

which by de�nition is the derivative f ′(z0). Examining �rst the modulus and then the
argument of this limit, we obtain

|∆w|
|∆z| = |f

′ (z0) | (1.7.1)

and

φ0 − θ0 ≡ [arg ∆w − arg ∆z] = (arg ∆w∆z ) = arg f ′ (z0) ≡∝ (1.7.2)

where θ0 and φ0 are the angles that the tangents to the curves C and Cw make with
the real axis in their respective planes. This means that C is rotated through an angle
α = arg f ′(z0) when it is mapped onto Cw but this angle of rotation is the same for all
curves passing through z0. Thus, the angle formed by two intersecting curves at z0
remains unchanged both in magnitude and direction. At the same time, (1.7.1) tells us
that the magni�cation of an in�nitesimal arc of C that occurs when it is mapped onto
Cw is |f ′ (z0) | and so is the same for all curves passing through z0. This means that
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an in�nitesimal circle about z0 is mapped onto an in�nitesimal circle about w0 and
the ratio of the radii is |f ′ (z0) |.These two geometrical properties, invariance of angles
and of the shape of in�nitesimal circles, are what de�ne a conformal transformation.
Thus, we have established the
Theorem: If f (z) is holomorphic at z0 and f

′
(z0) ≠ 0, then the mapping z → w =

f (z) is conformal at z0.
An immediate application follows from the orthogonality of the straight lines

u = constant and v = constant in the w − plane. The conjugate harmonic functions
u (x, y) = constant and v (x, y) = constant must form a system of orthogonal curves
(called level curves) in the z − plane. But they are also solutions of Laplace’s equa-
tion in two dimensions, ∇2u = 0 and ∇2v = 0. Thus, if u (x, y) is an electrostatic
potential then u (x, y) = constant represents an equipotential surface and the curve
v (x, y) = constant represents a line of force.

The practical signi�cance of conformal mapping stems from the following
Theorem:Aharmonic functionϕ (x, y) remainsharmonicunder a changeof variables
resulting from a one to one conformal mapping de�ned by an analytic function

w = f (z) .

The proof is straightforward. If ϕ (x, y) is harmonic (∇2∅ = 0) within the domain of
holomorphyD ofw = f (z) then it has a conjugateψ (x, y) such thatΦ (x, y) = ϕ (x, y)+
iψ (x, y) is an analytic function of z = x + iy in D. Since w = f (z) is holomorphic with
a non-vanishing derivative in D, it maps D onto a domain Dw in the w − plane where
there exists a unique inverse function z = F (w) which has the derivative

dF
dw = 1

df/dw
and maps Dw onto D conformally. Hence, Φ (F (w)) is an analytic function of w in Dw.
Its real part is

ϕ (x (u, v) , y (u, v))

and is a harmonic function of u and v in Dw. The theorem is used as follows. Sup-
pose that it is required to solve Laplace’s equation in a given domain D subject to the
imposition of speci�c values on the boundary ofD. Itmay be possible to identify a con-
formal mapping which transforms D into a simpler domain such as a circular disc or a
half-plane. Thenwe can solve Laplace’s equation in thew−plane subject to the trans-
formed boundary conditions. The resulting solution transformed back to Dwill be the
solution of the original problem. The catch is one needs to have a detailed knowledge
of themapping properties of a great many analytic functions. Catalogues of mappings
have been compiled and can be consulted for exactly this purpose.

Just to illustrate this technique we shall consider one particular example of what
are known as linear fractional transformations,

w = az + bcz + d , (ad − bc ≠ 0) . (1.7.3)
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The reason for the condition ad − bc ≠ 0 is to ensure that w′ ≠ 0. We state without
proof the
Theorem: Every linear fractional transformation maps the totality of circles and
straight lines in the z − plane onto the totality of circles and straight lines in the
w − plane.

Our example is the function

w = bz = b
x2 + y2 (x − iy) = u + iv.

A standard approach to exploring the properties of amapping is to �nd the level curves
in the z − plane that map onto lines of constant u or constant v in the w − plane. In
this case the straight lines u = c = constant have the pre-image

x2+y2=bc x or(
x − b

2c

)2
+ y2 = b2

4c2 .

This is the equation of circles with centres at ( b2c , 0) and radii |b|2|c| which con�rms the
theorem above. Notice that the centre of the circle maps onto the point w = 2c and
more generally, the interior of the circle is mapped onto the half-plane u > c while the
exterior is mapped onto u < c if c > 0.

In a similar vein, the lines v = k = constant correspond to the level curves

x2 + y2 = −bk y or

x2 + (y + b
2k )

2
= b2
4k2 .

These are circleswith centres at (0, − b
2k ) and radii |b|2|k| . Notice that they are orthogonal

to the previous set of circles. Notice also that the axes u = 0 and v = 0 are the images of
x = 0 and y = 0, respectively but with the origin mapped onto the point at in�nity and
vice versa. Once again, the interior of the circles maps onto v > k while the exterior
maps onto v < k if k > 0.

An example that makes use of this analysis is one consisting of an in�nite metal
cylinder of radius R maintained at electric potential V and resting on top of but sep-
arated by a line of insulation from a grounded metal sheet lying in the y = 0 plane.
Since the circular cross-section of the cylinder can be located in the upper half plane
with centre at (0, R), it will bemapped by w = b

z onto the line v = − b
2R . Thus, if we take

b = 2R2, the line will be v = −R. As we have seen, the real axis y = 0 maps onto the
real axis v = 0 and the exterior of the cylinder above the sheet maps onto the area be-
tween v = 0 and v = −R. Thus, the original problem is mapped onto a parallel plate
capacitor with one plate at potential V and located at v = −R and the other grounded
and located at v = 0. We can write down the solution there immediately:

ϕ = −VR v.
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But, under our mapping, v = − 2R2
x2+y2 y = − 2R2

r sin θ where we have switched to polar
coordinates. Therefore, the solution to the original problem is

ϕ (r, θ) = 2RV
r sin θ.

This is the real part of the complex potential Φ (z) = i 2RVz . Thus, the equipotential
surfaces are given by

2RV
r sin θ= constant

while the lines of force are described by

ImΦ (z) = 2RV
r cos θ = constant.

Figure 1.18: The function w = b/z maps the circle centered at y = −b
2k and passing through the origin

onto the straight line ν = k.
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2 Cauchy’s Theorem
2.1 Complex Integration

We shall now confront the problem of de�ning an integral over a single complex
variable z when the z-plane is, in fact, a two-dimensional continuum. There are in-
�nitelymanyways of integratingbetween twovalues of z and, at this juncture,wehave
no way of knowing whether they will or should yield the same number. The solution,
suggested by the correspondence between complex numbers and two-dimensional
vectors, is to de�ne an integral along a particular path or contour joining the two
points in question.

We shall require that all contours be simple curves. Thus, a contour joining the
points a and b, and consisting of k smooth arcs, can be speci�ed by two piecewise
smooth real functions x(t), y(t) of the real variable t such that

z = z(t) ≡ x(t) + iy(t), t0 6 t 6 tk (2.1.1)

with z(t0) = a and z(tk) = b. So de�ned, a contour is recti�able with a length

L =
k∑
i=1

ti∫
ti−1

[(
dx
dt

)2
+
(
dy
dt

)2
]1/2

dt (2.1.2)

where the sum is over the contour’s constituent arcs.
De�nition: Let C denote a contour with end-points a and b as shown in Figure 2.1
Sub-divide C into n segments by introducing the n+ 1 points a = z0, z1, z2, . . . , zn = b.
Then, introduce an additional set of points ζ1, ζ2, . . . , ζn taken along C in such a way
that ζj lies between zj−1 and zj. We now form the sum

In =
n∑
j=1

f (ζj)(zj − zj−1) (2.1.3)

where f (z) is the function to be integrated. If this sum approaches a limit I as n → ∞
in such a way that

|zj − zj−1| → 0 (2.1.4)

for all j, and if this limit is independent of the manner in which we have chosen the
points zj and ζj, then I is said to be the contour integral of f (z) along C and is written
as

I ≡
∫
C

f (z)dz. (2.1.5)
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Figure 2.1: A contour of integration C joining the points a and b.

Separating f (z) and z into their real and imaginary parts, we can rewrite the sum
in (2.1.3) as

In =
n∑
j=1

[u(ξj , ηj)(xj − xj−1) − v(ξj , ηj)(yj − yj−1) + i[v(ξj , ηj)(xj − xj−1)+u(ξj , ηj)(yj − yj−1)]

(2.1.6)

where we have set ζj = ξj + iηj. The limiting procedure de�ned by (2.1.4) implies that
|xj − xj−1| → 0 and |yj − yj−1| → 0 for all j. Thus, (2.1.6) tells us that the integral I can
be expressed in terms of real line integrals:

I =
∫
C

(udx − vdy) + i
∫
C

(vdx + udy). (2.1.7)

This, in turn, can be transformed into a real de�nite (Riemann) integral with respect
to the parameter t. Using the parameterization (2.1.1) we can write (2.1.7) as

I =
tk∫
t0

(
u dxdt − v

dy
dt

)
dt + i

tk∫
t0

(
v dxdt + u

dy
dt

)
dt. (2.1.8)

Since dx
dt + i

dy
dt =

dz
dt , we may also write this as

I =
tk∫
t0

(u + iv)dzdt dt =
tk∫
t0

f (z(t))dz(t)dt dt. (2.1.9)

This allows us to use the theory of real integral calculus to determine the condi-
tions under which I will exist. Since C is a simple curve it is su�cient to demand that
f (z) be continuous on C. This ensures that the points at which the constituent arcs of
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C join, which are points of discontinuity for the derivatives dx
dt and dy

dt , will cause no
trouble.

There are a number of properties of the contour integral that follow from (2.1.9) by
virtue of the corresponding properties of real de�nite integrals. For example,
(i) the integral is linear with respect to the integrand,∫

C

[αf1(z) + βf2(z)]dz = α
∫
C

f1(z)dz + β
∫
C

f2(z)dz, (2.1.10)

(ii) the integral is additive with respect to the contour,∫
C1+C2

f (z)dz =
∫
C1

f (z)dz +
∫
C2

f (z)dz, (2.1.11)

where C1 + C2 denotes the simple curve consisting of C1 followed by C2,
(iii) reversing the orientation of the path replaces the integral by its negative,∫

C(a→b)

f (z)dz = −
∫

C(b→a)

f (z)dz, (2.1.12)

(iv) the following inequalities hold,∣∣∣∣∣∣
∫
C

f (z)

∣∣∣∣∣∣ ≤
∫
C

∣∣f (z)∣∣ |dz| ≤ max
∣∣f (z)∣∣ · L(C), (2.1.13)

where L(C) is the length of C.

This last result is known as the Darboux Inequality and will prove to be very useful.
To derive it one invokes the generalized triangle inequality,

|In| 6
n∑
j=1

|f (ζj)| · |zj − zj−1| 6 max |f (z)| ·
n∑
j=1

|zj − zj−1|

plus the de�nition of L(C) given in equation (2.1.2). Then, on taking the limit n → ∞,
one immediately obtains (2.1.13).
Examples: Before presenting general theorems on the integration of functions of a
complex variable, we shall work out a few examples using the rather limited set of
tools currently at our disposal. We start with the integral

I =
∫
C

cos zdz

whichwewish to evaluate for two contours possessing the same end-points, z = 0 and
z = 1 + i. The particular contours we shall use are shown in Figure 2.2.
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Figure 2.2: Two contours of integration.

Since cos z = cosh y cos x − i sinh y sin x, equation (2.1.7) yields

I =
∫
C

[cosh y cos xdx + sinh y sin xdy] + i
∫
C

[− sinh y sin xdx + cosh y cos xdy].

Along the contour C1 x = y. Therefore,

I1 =
∫
C1

cos zdz = (1 + i)
1∫

0

cosh x cos xdx + (1 − i)
1∫

0

sinh x sin xdx.

Integrating by parts, we have
1∫

0

cosh x cos xdx = cosh x sin x

∣∣∣∣∣10 −
1∫

0

sinh x sin xdx

1∫
0

sinh x sin xdx = − sinh x sin x

∣∣∣∣∣10 +
1∫

0

cosh x cos xdx.

Thus,

I1 =
1
2(1 + i)[cosh x sin x + sinh x cos x]

∣∣∣∣∣10 − 1
2(1 − i)[sinh x cos x + cosh x sin x]

∣∣∣∣∣10
= cosh1 sin 1 + i sinh1 cos 1 = sin(1 + i).

The contour C2 consists of two smooth arcs. Along the �rst of them y = 0 and
dy = 0 while along the second, x = 1 and dx = 0. Thus,

I2 =
∫
C2

cos zdz =
1∫

0

cos xdx +
1∫

0

sinh y sin 1dy + i
1∫

0

cosh y cos 1dy.



50 | Cauchy’s Theorem

Integrating, we have

I2 = sin x

∣∣∣∣∣10 + cosh y

∣∣∣∣∣10 sin 1 + i sinh y
∣∣∣∣∣10 cos 1

= cosh1 sin 1 + i sinh1 cos 1 = sin(1 + i).

We see that I has the same value for the two paths followed. In fact, we have ob-
tained the same value that results from using inde�nite integration as would be sug-
gested by the rules of real variable calculus:

I1 = I2 =
1+i∫
0

cos zdz = sin z

∣∣∣∣∣1+i0 = sin(1 + i).

Both of these observations, the path-independence of the integral and the appli-
cability of the “fundamental theorem of calculus”, are explained by Cauchy’s The-
orem. As we shall see, they must obtain in any simply connected domain in which
the integrand is holomorphic and, in the present case, that means everywhere in the
�nite plane.

Notice that the path-independence of the integral of cos z implies that if we had
integrated around a closed contour, C1+(−C2) for example, the result would have been
zero. This should be contrasted with our next example which involves the function z*.
Choosing the unit circle taken in the counterclockwise direction as the contour, we
can set z = eiθ, −π 6 θ < π. This means the contour integral is

I =
∫
C

z*dz =
π∫

−π

e−iθ ieiθdθ = 2πi.

Since z* = 1
z on this particular contour, we have also evaluated∫

C

1
z dz = 2πi.

As we shall see, Cauchy’s Theorem provides an explanation of this result too. Be-
cause z* is not an analytic function, its integrals are path dependent everywhere in the
complex plane. Consequently, its integral around a closed contour is non-zero and, in
fact, each closed contour yields a di�erent non-zero value. On the other hand, 1

z is an
analytic function with a single singularity at z = 0. Its closed contour integrals only
admit two values 2πi if the contour encloses z = 0; 0 if it does not.

As a �nal example we shall evaluate

I =
∫
C

(z − z0)ndz, n = 0, ±1, ±2, . . .
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with C being a circle taken in the counterclockwise direction about z = z0 with an
arbitrary radius r. On the contour we can set z = z0 + reiθ , −π 6 θ < π. Thus,

I =
π∫

−π

rneinθ ireiθdθ = irn+1
π∫

−π

ei(n+1)θdθ,

or,

I =
{

2πi, n = −1
0, n = 0, 1, ±2, ±3, . . .

(2.1.14)

If it is feasible to use inde�nite integration to evaluate contour integrals of analytic
functions, we should be able to reproduce this result for I by applying the formula∫

C

f (z)dz = F(b) − F(a), (2.1.15)

where F(z) is an antiderivative (inde�nite integral) of f (z), dF(z)dz = f (z), and a and b
are the end-points of the contour C. An antiderivative of f (z) = (z − z0)n is

F(z) =
{

ln(z − z0), n = −1
1
n+1 (z − z0)

n+1, n ≠ −1
(2.1.16)

Therefore, integrating f (z) around a closed contour for the case n ≠ −1, we obtain
the value zero because the antiderivative is single valued and the end-points coincide.
This value ariseswithout regard towhether z0 is containedwithin the contour C. Thus,
for any closed contour C we have∫

C

(z − z0)ndz = 0, n = 0, 1, ±2, ±3, · · ·

For n = −1, the antiderivative is multivalued with a branch point at z0. Therefore, we
must distinguish between contours that enclose z0 and those that do not. A closed
contour that encircles z0 must cross from one sheet of the Riemann surface for ln(z −
z0) to an adjacent one. Since we are integrating in a counterclockwise direction, this
means that the argument of zwill increase by 2π aswe proceed from the end-point z =
a on the initial sheet to z = b on the sheet above. Therefore, rather than having a = b,
we now have |a| = |b| and arg(b) − arg(a) = 2π and so, F(b) − F(a) = 2πi in (2.1.15).
Notice that this result is quite independent of the detailed nature of the contour; it
need only be closed and contain z0. If, on the other hand, z0 is not contained within
C, the contour must return to its starting point on the initial sheet, no matter how the
branch cut from z = z0 to z = ∞ is chosen. Since the end-points once more coincide,
the value of the integral is zero. Thus, in summary, we have for any closed contour C∫

C

1
z − z0

dz =
{
2πi, z0 inside C
0, z0 outside C
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The ease with which we have generalized the results in (2.1.14) by means of indef-
inite integration underlines the importance of �nding out precisely when we can or
cannot make use of it. The answer is provided by Cauchy’s Theorem which, in a very
real sense, is the basis of the entire theory of analytic functions.

2.2 Cauchy’s Theorem

2.2.1 Statement and Proof

Cauchy’s Theorem: If f (z) is holomorphic in a simply connected, bounded domain
D, then ∫

C

f (z)dz = 0 (2.2.1)

for every simple closed path C in D.
We shall run through anover-simpli�edproof thatmakes the theoremplausible as

well as renews the correspondence between complex numbers and vectors in a plane.
It is implicitly based on Green’s Theorem in two dimensions,∫

C

(Pdx + Qdy) =
∫ ∫

S

(
∂Q
∂x −

∂P
∂y

)
dxdy,

or equivalently, on Stokes’ Theorem,∫
C

A · dl =
∫ ∫

S
(∇ × A) · dS,

where S is the surface bounded by C.
From equation (2.1.7) we have∫

C

f (z)dz =
∫
C

(udx − vdy) + i
∫
C

(udy + vdx). (2.2.2)

Let us consider the �rst term on the right hand side and divide the area S into strips
parallel to the imaginary axis as shown in Figure 2.3. It then follows that

∫
C

u[x, y(x)]dx =
b∫
a

u[x, y1(x)]dx +
b∫
a

u[x, y2(x)]dx = −
b∫
a

(u[x, y2(x)] − u[x, y1(x)])dx.

Thus,

∫
C

u[x, y(x)]dx = −
b∫
a

y2(x)∫
y1(x)

∂u
∂y dydx = −

∫ ∫
S

∂u
∂y dxdy. (2.2.3)
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Figure 2.3: A closed contour C containing surface area S which is divided into in�nitesimal strips
that parallel the imaginary axis.

The other terms on the right hand side of (2.2.2) may be similarly transformed to give∫
C

f (z)dz =
∫ ∫

S

[(
−∂u∂y −

∂v
∂x

)
+ i
(
∂u
∂x −

∂v
∂y

)]
dxdy. (2.2.4)

However, the integrand of the surface integral vanishes by virtue of the Cauchy-
Riemann equations. Therefore, ∫

C

f (z)dz = 0.

The steps taken in the derivation of (2.2.3) are valid only if ∂u
∂y is a continuous

function of x and y. Hence, this particular proof requires an assumption that is not
given in the statement of the theorem; namely, that f ′(z) is continuous throughout the
domain D. However, Cauchy’s Theoremwill enable us to establish that a holomorphic
function possesses continuous derivatives of all orders which suggests that such an
assumption must be super�uous. This was con�rmed �rst by E. Goursat whose proof
of Cauchy’s Theorem can be found in, for example, Copson’s Theory of Functions of a
Complex Variable.

To continuewith the story of Augustin Louis Cauchy, he was appointed to the French
Academy in 1816 after it had been purged following the restoration of the Frenchmonar-
chy. At the same time he was made professor at the Polytechnic and his lectures there
on algebraic analysis, calculus and the theory of curves were published as text books.
However, the revolution of 1830meant that he had to go into exile. He returned to France
in 1837 but because he refused to take a loyalty oath he was denied a teaching appoint-
ment. It was not until 1851 and by special dispensation from the Emperor that he was
permitted to occupy a chair in mathematics without taking the oath of allegiance. Dur-
ing this period his productivity was extraordinary; from 1830 to his death in 1857, he
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published over 600 original papers and about 150 reports. Included in this prodigious
body of work was the foundation of complex analysis.

The most immediate consequences of Cauchy’s Theorem are su�cient to explain
the observations we made while evaluating the example integrals in the last Section.
We shall conclude the present Section with their description.

2.2.2 Path Independence

Let C1 and C2 be any two curves having the same end-points and lying in a simply con-
nected domain inwhich the function f (z) is holomorphic.We denote by (−C2) the con-
tour obtained from C2 by reversing the direction of integration. Then, since C1 + (−C2)
is a closed contour, we may apply Cauchy’s Theorem together with (2.1.11) and (2.1.12)
to obtain

0 =
∫

C1+(−C2)

f (z)dz =
∫
C1

f (z)dz +
∫

(−C2)

f (z)dz =
∫
C1

f (z)dz −
∫
C2

f (z)dz.

Hence, ∫
C1

f (z)dz =
∫
C2

f (z)dz. (2.2.5)

Since C1 and C2 are arbitrary,wehave established that the integral of f (z) between
two points a and b is path independent in any simply connected domain that includes
a and b and excludes the singularities of f (z). Under such conditions we may denote
the integral by

b∫
a

f (z)dz

since the speci�cation of a contour is irrelevant. Thus, in our example involving cos z

we need only have written
1+i∫
0
cos zdz for the integrals in question since any integral

of this function is path independent everywhere in the �nite plane.
Path independence can also be established for integrals around closed contours

inmultiply-connecteddomains. Suppose thatwehave a function f (z) that is holomor-
phic in a doubly connected domain like that shown in Figure 2.4. Nothing is assumed
about the behaviour of f (z) in the area interior to the inner boundary of the domain
but presumably it is singular at one or more points of this region. We introduce two
contours C1 and C2 connected by a narrow tube consisting of the straight lines L1 and
L2. The exact location of these curves is arbitrary so long as they all lie fully within
the outer boundary and C1 and C2 both encircle the inner boundary of the domain. By
construction, f (z) is holomorphic at all pointswithin and on the simple closed curve
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C = C1 + L1 + C2 + L2. Thus, C is contained in a simply connected domain in which
f (z) is everywhere holomorphic and we can apply Cauchy’s Theorem to obtain∫

C1

+
∫
L1

+
∫
C2

+
∫
L2

f (z)dz = 0. (2.2.6)

Figure 2.4: (upper panel) C1 and C2 are connected by L1 and L2 to form a single closed contour;
(bottom panel) L1 and L2 are removed leaving C1 and C2 as closed contours encircling the inner
boundary of the domain

However, the contributions fromL1 andL2 cancel if wenow let the separation between
them tend to zero. Therefore, in this limit, (2.2.6) becomes∫

C1

+
∫
C2

f (z)dz = 0,

with C1 and C2 being closed contours traversed in opposite directions. Reversing the
direction of one of them we �nally obtain∫

C1

f (z)dz =
∫
C2

f (z)dz. (2.2.7)

This is an important result and one that was anticipated in our example involving
the function f (z) = (z − z0)−1. It shows that an integral has the same value for all
closed contours that contain the same singularities of its integrand. This means that
any contour can be arbitrarily deformed so long as we do not cross a singularity of the
integrand without changing the value of the integral. Hence, we need not specify a
contour very precisely, only its relationship to the singularities of the function being
integrated.
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Ageneralization of the argument leading to equation (2.2.7) shows that if our func-
tion f (z) has an n-fold connected domain of holomorphy then we can write∫

C

f (z)dz =
∫
C1

f (z)dz +
∫
C2

f (z)dz + . . . +
∫
Cn−1

f (z)dz (2.2.8)

where each of the n − 1 “holes” in the domain is enclosed by one of the contours Cj,
j = 1, 2, . . . n − 1, and all are enclosed by the contour C. The integrals in (2.2.8) are all
taken in the same (counterclockwise) direction. Figure 2.5 shows an appropriate set of
contours for a four-fold connected domain.

Figure 2.5: A four-fold connected domain of holomorphy for the function f (z);
∫
C f (z)dz =

∫
C f (z)dz +∫

C2 f (z)dz +
∫
C3 f (z)dz.

2.2.3 The Fundamental Theorem of Calculus

Let f (z) be a function which is holomorphic in some simply connected domain D. It
then follows that the integral

F(z) =
z∫

z0

f (ζ )dζ , for �xed z0 in D, (2.2.9)

de�nes for all z in D a unique functionwhich is independent of the path of integration
from z0 to z. Since D is a domain, there must exist a neighbourhood N of z that lies
entirely within it. Let z + ∆z be a point in N and let us form the quotient

F(z + ∆z) − F(z)
∆z = 1

∆z

z∫
z0

f (ζ )dζ − 1
∆z

z∫
z0

f (ζ )dζ = 1
∆z

z+∆z∫
z

f (ζ )dζ

= f (z)∆z

z+∆z∫
z

dζ + 1
∆z

z+∆z∫
z

[f (ζ ) − f (z)]dζ . (2.2.10)
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By construction, the straight line joining z to z + ∆z must lie within D and so can be
used as a contour for the integrals in (2.2.10). The �rst integral on the right hand side
of the �nal equality is then easily evaluated by parameterizing this straight line and
yields

z+∆z∫
z

dζ = ∆z.

Thus, (2.2.10) can be rewritten as

F(z + ∆z) − F(z)
∆z = f (z) + 1

∆z

z+∆z∫
z

[f (ζ ) − f (z)]dζ . (2.2.11)

However, using the same straight line contour and the Darboux inequality we have∣∣∣∣∣∣ 1∆z
z+∆z∫
z

[f (ζ ) − f (z)]dζ

∣∣∣∣∣∣ ≤ max
∣∣f (ζ ) − f (z)∣∣

which, because f (z) is continuous in D, tends to zero as ∆z approaches zero in any
direction. Therefore,

dF
dz ≡ lim

∆z→0

F(z + ∆z) − F(z)
∆z = f (z). (2.2.12)

In other words,

F(z) =
z∫

z0

f (ζ )dζ , z0 and z in D,

is an antiderivative of f (z) and is itself holomorphic in D. Hence, for all paths in D
joining any two points a and b of D, we can write

b∫
a

f (z)dz =
b∫

z0

f (z)dz −
a∫

z0

f (z)dz = F(b) − F(a). (2.2.13)

Thus, we have �nally identi�ed the circumstances under which we can employ indef-
inite integration to evaluate integrals. This is a practical boon of some importance
since recognizing functions as being the derivatives of other functions is the only gen-
erally applicable integration technique one ever learns.
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2.3 Further Consequences of Cauchy’s Theorem

2.3.1 Cauchy’s Integral

The most important of all the consequences of Cauchy’s Theorem is an integral repre-
sentation that is basic to the further development of the theory of analytic functions.
It also has a number of physical applications.
Theorem: Let f (z) be holomorphic in a simply connected domain D and let C be any
simple closed curve within D. If z is a point within C, then

f (z) = 1
2πi

∫
C

f (ζ )
ζ − z dζ , (2.3.1)

the integration being taken in the counterclockwise direction.
Proof:Using one of themanipulations that helped us prove the fundamental theorem
of calculus we rewrite the integral in (2.3.1) in the form∫

C

f (ζ )
ζ − z dζ = f (z)

∫
C

dζ
ζ − z +

∫
C

f (ζ ) − f (z)
ζ − z dζ . (2.3.2)

We have already evaluated the �rst integral on the right hand side of (2.3.2). For any
closed contour encircling the point ζ = z,∫

C

dζ
ζ − z = 2πi. (2.3.3)

Since the integrand of the second integral is holomorphic everywherewithin C, except
possibly at ζ = z, we can use equation (2.2.7) to replace C by a small circle γ about z
with radius r su�ciently small that it lies entirely within C. Thus,

∫
C

f (ζ ) − f (z)
ζ − z dζ =

∫
γ

f (ζ ) − f (z)
ζ − z dζ = i

π∫
−π

[f (z + reiθ) − f (z)]dθ (2.3.4)

where we have used the fact that on γ, ζ = z + reiθ , −π 6 θ < π.
Since f (z) is continuous, we have |f (ζ ) − f (z)| < ε whenever |ζ − z| < δ(ε). If we

choose the radius r to be less than δ(ε), then Darboux’s inequality applied to (2.3.4)
yields ∣∣∣∣∣∣

∫
γ

f (ζ ) − f (z)
ζ − z dζ

∣∣∣∣∣∣ ≤ 2πε.
Hence, by taking r small enough, this modulus can be made smaller than any preas-
signed number. On the other hand, the value of the integral must be independent of r.



Further Consequences of Cauchy’s Theorem | 59

Figure 2.6: The contours used in equation (2.3.4).

Therefore, ∫
γ

f (ζ ) − f (z)
ζ − z dζ = 0

which, together with equations (2.3.3) and (2.3.4), dictates that (2.3.2) read∫
C

f (ζ )
ζ − z dζ = 2πif (z)

as required.
As well as being one of the most useful results in mathematical physics, Cauchy’s

Integral is one of the most remarkable. If a function is holomorphic within and on a
simple closed curve C, its value at every point within C is determined solely by its
values on that curve. By means of a simple extension, we see that this implies that a
function must be completely determined by its values at the boundary of its domain
of holomorphy and hence, by its singularities. We �rst encountered this idea in Sec-
tion 1.6 and will return to it often throughout the remainder of this Chapter.

A purely practical use of Cauchy’s Integral is in the evaluation of closed contour
integrals. Examples: Consider the function f (z) = z2+1

z2−1 and suppose that we wish to
integrate it around the circles |z −1| = 3/2, |z| = 3/2, |z +1| = 3/2. As a �rst step, we
use partial fractions to write f (z) as

f (z) = z
2 + 1
2

[
1

z − 1 −
1

z + 1

]
.

Next, we note that z2 + 1 is holomorphic on and within all three of the proposed con-
tours. Thus, we may use (2.3.1) to evaluate the integrals

I+ =
∫
C

z2 + 1
z − 1 dz I− =

∫
C

z2 + 1
z + 1 dz
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for each C.
In the case of |z −1| = 3/2, z = 1 is included, and z = −1 excluded by the contour.

Thus, I+ = 2πi[z2 +1]z=1 = 4πi by Cauchy’s Integral, I− = 0 by Cauchy’s Theorem, and
so ∫

|z−1|=3/2

z2 + 1
z2 − 1dz =

1
24πi = 2πi.

In the case of |z| = 3/2, z = ±1 are both enclosed by the contour. Thus, I± =
2πi[z2 + 1]z=±1 = 4πi, and so ∫

|z|=3/2

z2 + 1
z2 − 1dz = 0.

With |z + 1| = 3/2, z = 1 is now excluded and z = −1 included. Thus, I+ = 0,
I− = 4πi and ∫

|z+1|=3/2

z2 + 1
z2 − 1dz = −2πi.

Since Cauchy’s Integral plays such a central role in complex analysis, we shall
adopt the convention that every integration along a closed contour will be taken in
the counterclockwise direction or, such that the interior of the contour is always on
the left hand side.
2.3.2 Cauchy’s Derivative Formula

Our next theorem is almost as remarkable as the last and every bit as foreign to our
experience with functions of a real variable. It asserts that the existence of the deriva-
tive of a function in some simply connected domain necessarily implies the existence
of derivatives of all orders in that domain.
Theorem: If f (z) is holomorphic in a simply connected domainD, then all of its deriva-
tives exist and are themselves holomorphic in D. Moreover, if z is any point in D, then

f ′(z) = 1
2πi

∫
C

f (ζ )
(ζ − z)2 dζ

f”(z) = 2!
2πi

∫
C

f (ζ )
(ζ − z)3 dζ

...

f (n)(z) = n!
2πi

∫
C

f (ζ )
(ζ − z)n+1 dζ

... (2.3.5)
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where C is any simple closed curve in D which encloses z.
Proof: By de�nition,

f ′(z) = lim
∆z→0

f (z + ∆z) − f (z)
∆z

and so, using Cauchy’s Integral (2.3.1), we have

f ′(z) = lim
∆z→0

1
2πi

∫
C

[
f (ζ )

ζ − z − ∆z −
f (ζ )
ζ − z

]
dζ
∆z

= lim
∆z→0

1
2πi

∫
C

f (ζ )
(ζ − z − ∆z)(ζ − z)dζ .

Hence,

f ′(z) − 1
2πi

∫
C

f (ζ )
(ζ − z)2 dζ = lim

∆z→0

1
2πi

∫
C

f (ζ )
[

1
(ζ − z − ∆z)(ζ − z)

]
dζ

= lim
∆z→0

1
2πi ∆z

∫
C

f (ζ )
(ζ − z − ∆z)(ζ − z)2 dζ .

The modulus of the integrand on the left hand side of this expression is∣∣∣∣ f (ζ )
(ζ − z − ∆z)(ζ − z)2

∣∣∣∣ =
∣∣f (ζ )∣∣

|ζ − z − ∆z| |ζ − z|2
≤

∣∣f (ζ )∣∣
(|ζ − z| − |∆z|) |ζ − z|2

.

Replacing |ζ − z| by its minimum valuem, and |f (ζ )| by its maximum valueM for ζ on
C, we can apply the Darboux inequality to obtain∣∣∣∣∣∣f ′(z) − 1

2πi

∫
C

f (ζ )
(ζ − z)2 dζ

∣∣∣∣∣∣ ≤ 1
2π lim

∆z→0
|∆z| ML

(m − |∆z|)m2 = 0

where L is the length of the contour. Thus, we have proved

f ′(z) = 1
2πi

∫
C

f (ζ )
(ζ − z)2 dζ

and, by using induction, one can readily establish that, in general,

f (n)(z) = n!
2πi

∫
C

f (ζ )
(ζ − z)n+1 dζ .

The fact that the derivative of a holomorphic function is itself holomorphic is all
that one needs to prove a converse of Cauchy’s Theorem. It is called Morera’s Theo-
rem.
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Theorem: If f (z) is continuous in some simply connected domain D and if the integral∫
C

f (z)dz

vanishes for any closed contour C in D, then f (z) is holomorphic in D.
Proof: The vanishing of an integral along any closed path within a simply connected
domain is su�cient to establish the path independence of an integral between any
two points in the domain. Thus, as in the Fundamental Theorem of Calculus,

F(z) =
z∫

z0

f (ζ )dζ , for �xed z0 in D,

de�nes a unique function for all z in D. Moreover, since f (z) is continuous throughout
D, the proof of the Fundamental Theorem applies here as well since, of the various
properties possessed by holomorphic functions, only those of continuity and path in-
dependent integrationwere used in the proof of the Fundamental Theorem. Thus, F(z)
is an anti-derivative of f (z), dF(z)dz = f (z), for all z in D. This means that F(z) is holomor-
phic throughout D and, by the preceding theorem, so is its �rst derivative f (z).

2.3.3 The MaximumModulus Principle

Our next theorem further illustrates the surprising properties possessed by analytic
functions. Although not as dramatic in appearance as are its predecessors, this the-
orem has a number of important applications a particular example of which can be
found in the derivation of the Method of Steepest Descents in Section 6.3.
Theorem: The modulus of an analytic function f (z) cannot have a local maximum
within the domain of holomorphy of the function.
Proof: Let z0 be an arbitrary point in the function’s domain of holomorphy. By def-
inition, there must exist a neighbourhood of z0 which also lies entirely within that
domain. Let C denote a circle, of radius r and centre at z = z0, lying within that neigh-
bourhood. Then, invoking Cauchy’s Integral, we have

f (z0) =
1
2πi

∫
C

f (z)
z − z0

dz.

Using the Darboux Inequality, this implies that∣∣f (z0)∣∣ ≤ 1
2πmax

∣∣∣∣ f (z)z − z0

∣∣∣∣ · 2πr, for z on C.

Since |z − z0| = r, this simpli�es to

|f (z0)| 6 max |f (z)|, for z on C.
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Thus, there exists at least onepoint onC such that |f (z)| > |f (z0)|. Sincewemaychoose
r to be arbitrarily small, this means that in any neighbourhood of z0, no matter how
small, there always exists at least one point at which

|f (z)| > |f (z0)|. (2.3.6)

Hence, |f (z)| cannot have a local maximum at z0.
A number of corollaries follow almost immediately. By applying the theorem to

exp[f (z)] and exp[if (z)], we �nd that neither∣∣∣ef (z)∣∣∣ = eRe f (z) nor |eif (z)| = eIm f (z)

can have a local maximum in the domain of holomorphy of f (z). Since the real ex-
ponential function is monotonic, this implies that the real and imaginary parts of an
analytic function (which is to say, any harmonic function of two real variables) cannot
have local maxima in the function’s domain of holomorphy (harmonicity).

Similarly, applying the theorem to 1
f (z) , we �nd that |f (z)|, as well as Re f (z) and

Im f (z), cannot have a localminimum in the domain of holomorphy of f (z), except at
points z = z0 where f (z0) = 0.

2.3.4 The Cauchy-Liouville Theorem

We conclude this Section with a theorem that places a limit on how well-behaved an
analytic function can be.

The theorem is named after Joseph Liouville as well as the ubiquitous Augustin-
Louis Cauchy. Liouville (1809-82) was born in St. Omer, France and studied engineering
at the Ecole Polytechnique and the Ecole des Ponts et Chausees. However, it was as a
mathematician and mathematical physicist that he made his mark. An individual of ex-
ceptional intellectual breadth, hemade signi�cant contributions in theoretical dynamics
and celestial mechanics, in the theory of di�erential equations, in algebra and algebraic
function theory and in number theory where he introduced newmethods of investigating
transcendental numbers. Not surprisingly for someone with such extensive knowledge,
he founded the Journal deMathematiques and edited it for almost 40 years. It continues
to be one of the leading French mathematical journals.
Theorem: A bounded entire function must be a constant.
Proof: Using the Derivative Formula (2.3.5), we set

f ′(z) = 1
2πi

∫
C

f (ζ )
(ζ − z)2 dζ

where, because f (z) is entire, C may be chosen to be a very large circle of radius R,
centred at z. Darboux’s inequality then yields

|f ′(z)| 6 1
2π

max |f (ζ )|
R2 2πR < KR , for ζ on C,
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where K is the assumedupper bound on |f (z)|, |f (z)| < K for all values of z. Thus, given
any value of z, we can make |f ′(z)| smaller than any preassigned number ε simply by
taking R su�ciently large. Therefore,

f ′(z) = 0

for all values of z. This in turn implies that f (z) is a constant for, given any two points
z1 and z2, the Fundamental Theorem of Calculus yields

0 =
z2∫
z1

df (ζ )
dζ dζ = f (z2) − f (z1)

or, f (z2) = f (z1).

Two obvious corollaries of this theorem are that “not-constant” functions that are
bounded at in�nity must have at least one singularity in the �nite plane while those
that are entire must be singular at the point at in�nity. Thus, the sine and cosine func-
tions are not unbounded by coincidence but rather, by virtue of their holomorphy.

2.4 Power Series Representations of Analytic Functions

2.4.1 Uniform Convergence

Absolute convergence is not su�cient to guarantee the legitimacy of some of the op-
erations that we shall want to perform on power series. Stated in the simplest terms,
this failure is due to the rate of convergence of an absolutely convergent series being
itself a function of z and, quite conceivably, a very sensitive one. Thus, for example,
the series resulting from term by term integration of an absolutely convergent series
may not converge at all, let alone to the integral of the sum function.

The problem is best illustrated by considering the geometric series
∞∑
m=0

zm = 1
1 − z = S(z), |z| < 1,

whose circle of (absolute) convergence is |z| = 1. The error committed in approximat-
ing its sum function by the nth partial sum of the series is

Rn(z) =
∣∣S(z) − Sn(z)∣∣ = ∣∣∣∣∣

∞∑
m=n+1

zm
∣∣∣∣∣ =
∣∣∣∣ zn+11 − z

∣∣∣∣ .
This becomes arbitrarily large for z su�ciently close to one. Consequently, the closer
we are to z = 1, the more terms must be included in the partial sum and hence, the
larger n must be, in order that the error Rn(z) be less than some preassigned number.
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Figure 2.7: The geometric series
∞∑
m=0

zm converges absolutely in the open disc |z| < 1 and uniformly

in any closed disc |z| 6 r < 1.

In more mathematical language, if the only restriction on z is that it be con�ned to
|z| < 1 then, given any ε > 0, one cannot �nd an N that depends only on ε such that
Rn(z) < ε for all n > N(ε). On the other hand, if we impose the further restriction that
z be con�ned to the closed disc |z| 6 r < 1, such an N can be found because we have
now speci�ed exactly how close one can get to the dangerous point z = 1. Indeed,
choosing N so that Rn(r) < ε for all n > N(ε) we also ensure that Rn(z) < ε for all
n > N(ε) and all z in |z| 6 r. Thus, the geometric series converges in a z-independent
or uniformmanner in any closed disc with radius less than one.
De�nition: Consider the series

∞∑
m=0

fm(z) = f0(z) + f1(z) + . . .

Let F(z) be the sum and Sn(z) the nth partial sum of the series. If, given any ε > 0, there
exists a number N(ε), independent of z, such that

|F(z) − Sn(z)| < ε

for all n > N(ε) and all z in some region R of the complex plane, then the series is
uniformly convergent in R.

The following theorem generalizes our experience with the geometric series. It is
stated without proof.
Theorem: A power series

∞∑
m=0

cm(z − z0)m, with non-zero radius of convergence R, is

uniformly convergent in every closed disc |z − z0| 6 r with r < R.
The importance of uniform convergence and hence of the preceding theorem is

made manifest throughout this Section. To begin with, consider the generic series of
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functions
∞∑
m=0

fm(z) = F(z)

which we will assume to be uniformly convergent in some region R. Let C be a simple
curve of length L that lies entirely inR. Then, provided that all integrals exist, we can
show that ∫

C

F(z)dz ≡
∫
C

∞∑
m=0

fm(z)dz =
∞∑
m=0

∫
C

fm(z)dz. (2.4.1)

Setting Sn(z) =
n∑

m=0
fm(z), we can rewrite (2.4.1) as

∫
C

F(z)dz ≡
∫
C

lim
n→∞

Sn(z)dz = lim
n→∞

∫
C

Sn(z)dz. (2.4.2)

In other words, we must prove that the order of the limit and the integration can be
reversed. Darboux’s Inequality makes the proof almost immediate since it yields∣∣∣∣∣∣

∫
C

[F(z) − Sn(z)]dz

∣∣∣∣∣∣ ≤ max
∣∣F(z) − Sn∣∣ · L, for z on C. (2.4.3)

Because, and only because the curve C lies in the region where the series that sums to
F(z) is uniformly convergent, we can make the right hand side of (2.4.3) smaller than
any preassigned number ε by taking n su�ciently large. Thus, the series on the right
and side of (2.4.1) converges to the integral on the left.

Uniform convergence also makes term by term di�erentiation permissable. In-
deed, the next theorem, due to Weierstrass, goes a step further and, in doing so,
supercedes the theorem in Section 1.4 which established that every power series de-
�nes a holomorphic function within its circle of convergence.
Theorem: Let F(z) =

∞∑
m=0

fm(z). If each term fm(z) of the series is holomorphic within a

domain D and if the series is uniformly convergent throughout every regionR interior
to D, then F(z) is holomorphic within D and

dF(z)
dz =

∞∑
m=0

dfm(z)
dz (2.4.4)

where the series on the right hand side of (2.4.4) is also uniformly convergent.
Proof: Since the functions fm(z) are all holomorphic, we have∫

C

F(z)dz =
∞∑
m=0

∫
C

fm(z)dz = 0
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for any closed contour C in D and so, by Morera’s Theorem, (the proof that F(z) is
continuous is left to the reader), F(z) is holomophic in D.

Let z be an arbitrary point in D and C be a closed contour lying entirely in D and
encircling z. Integrating along C, we have

1
2πi

∫
C

F(ζ )
(ζ − z)2 dζ ≡

1
2πi

∫
C

∞∑
m=0

fm(ζ )
(ζ − z)2 dζ =

∞∑
m=0

1
2πi

∫
C

fm(ζ )
(ζ − z)2 dζ .

Thus, using the Derivative Formula (2.3.5), we �nd

dF(z)
dz =

∞∑
m=0

dfm(z)
dz

as required. It now only remains to establish that the convergence of this series is uni-
form.

Let Sn(z) =
n∑

m=0
fm(z) so that (2.4.4) can be rewritten in the form

dF(z)
dz ≡ d

dz

[
lim
n→∞

Sn(z)
]
= lim
n→∞

dSn(z)
dz .

Using the Derivative Formula again, we have∣∣∣∣dF(z)dz − dSn(z)dz

∣∣∣∣ =
∣∣∣∣∣∣ 1
2πi

∫
C

[F(ζ ) − Sn(ζ )]
(ζ − z)2 dζ

∣∣∣∣∣∣
where we are free to choose C to be a circle with centre at the point z and radius R,
provided that R is su�ciently small that the circle lies entirely within D. Applying Dar-
boux’s Inequality, we have∣∣∣∣dF(z)dz − dSn(z)dz

∣∣∣∣ ≤ max
∣∣F(ζ ) − Sn(z)∣∣

R , for ζ on C. (2.4.5)

Since lim
n→∞

Sn(z) = F(z) uniformly in any region interior to D and since R is �nite, we
can make the right hand side of (2.4.5) smaller than any preassigned number ε > 0 by
taking n larger than some number N(ε) that depends only on ε. Therefore, the series
in (2.4.4) converges uniformly to dF(z)

dz .

2.4.2 Taylor’s Theorem

TheWeierstrass Theorem tells us that every power series with non-zero radius of con-
vergence de�nes a homomorphic function within its circle of convergence. The con-
verse is one of the key theorems of complex analysis. It is called Taylor’s Theorem.

Brook Taylor (1685-1731) was born in Edmonton, England and read mathematics
at St. John’s College, Cambridge. In 1715 he published a monograph entitled Methodus
Incrementorum which contained his theorem on power series expansions.
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Figure 2.8: The radius of convergence R of the Taylor Series for f (z) about z = z0 is equal to the
distance from z0 to the nearest singularity of f (z).

Theorem: Let f (z) be holomorphic in a simply connected domain D and z = z0 be
any point in D. Let R be the radius of the largest circle with centre at z0 and having its
interior in D. Then, there is a power series

∞∑
m=0

cm(z − z0)m (2.4.6)

which converges uniformly to f (z) in every closed disc |z − z0| 6 r < R. Furthermore,
the coe�cients of the series are given by

cm = f
(m)(z0)
m! = 1

2πi

∫
C

f (z)
(z − z0)m+1

dz (2.4.7)

where C is a simple closed curve in D enclosing z = z0. This series, the Taylor series
for f (z) about z = z0, is unique ; (it is the only power series representation of f (z) with
centre z = z0).
Proof: Let C1 be the circle |z− z0| = R1 where R1 < R. Since f (z) is holomorphic within
and on C1, we may invoke Cauchy’s Integral to write

f (z) = 1
2πi

∫
C1

f (ζ )
ζ − z dζ (2.4.8)

where z is any point enclosed by C1. Recalling the properties of the geometric series,
we expand the denominator in (2.4.8) as

1
ζ − z =

1
(ζ − z0) − (z − z0)

= 1
ζ − z ·

1
1 − z−z0

ζ−z0
= 1
ζ − z0

∞∑
m=0

(z − z0)m
(ζ − z0)m

. (2.4.9)
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Since ζ is on C1 and z within C1, we are guaranteed that
∣∣∣ z−z0ζ−z0

∣∣∣ ≤ r < 1 and hence,
that the series in (2.4.9) is uniformly convergent. Substituting (2.4.9) into (2.4.8) and
integrating term by term, we �nd

f (z) = 1
2πi

∞∑
m=0

(z − z0)m
∫
C1

f (ζ )
(ζ − z0)m+1

dζ . (2.4.10)

However, we also know that

1
2πi

∫
C1

f (ζ )
(ζ − zo)m+1

dζ = 1
2πi

∫
C

f (ζ )
(ζ − z0)m+1

dζ = 1
m! f

(m)(z0)

where we have invoked path independence to replace C1 by any closed contour C in D
that encloses z = z0. Thus, (2.4.10) can be rewritten in the required form

f (z) =
∞∑
m=0

f (m)(z0)
m! (z − z0)m . (2.4.11)

The radius of convergence of this series is determined by how large we can make
the radius of C1. Thus, it is equal to the radius R of the largest circle with centre at
z = z0 that has its interior entirely in D or, in other words, it is equal to the distance
from z = z0 to the nearest singularity of f (z). For, if the radius R1 > R, C1 would either
pass through or encircle a singularity of f (z) and the Cauchy Integral would no longer
provide a representation of f (z).

To prove that the Taylor series is unique, suppose that f (z) can be represented
by some other power series, f (z) =

∞∑
m=0

cm(z − z0)m with cm ≠ 1
m! f

(m)(z0) for at least

one value of m, in some neighbourhood of z = z0. Since it is uniformly convergent in
a closed neighbourhood of z = z0, we can perform term by term di�erentiation any
number of times. Doing so m times and setting z = z0, we obtain cm = 1

m! f
(m)(z0) for

arbitrary m, which completes the proof of the theorem.
Examples: While we have already encountered examples of Taylor series in Section
1.5, a few more are appropriate at this point if only to punctuate a steady stream of
theorems.

Consider the function f (z) = z−1 whose derivatives are f (m)(z) = (−1)mm!z−m−1,
m = 1, 2, . . . The only singularity of f (z) is at z = 0. Thus, it possesses a Taylor series
about any other point z = z0, with circle of convergence |z − z0| = |z0|. In particular, if
we choose z = 1 as the centre, the Taylor series is

1
z =

∞∑
m=0

(−1)m(z − 1)m

which is valid for all z in |z − 1| < 1.
Next, consider the function f (z) = Ln(1 + z) which has branch points at z = −1

and z = ∞. If we choose the branch cut to lie along the negative real axis, (actually,
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the only restriction we need to place on the choice of cut is that it not intersect the
unit circle except at the branch point z = −1), f (z) will be holomorphic within the unit
circle and sowill possess a Taylor series representation about z = 0. Themth derivative
is easily found to be

f (m)(z) = (−1)m−1(m − 1)!
(1 + z)m .

Thus, the Taylor series with centre z = 0 is

Ln(1 + z) =
∞∑
m=1

(−1)mzm
m = z − z

2

2 + z
3

3 − + . . . (2.4.12)

Either by applying the ratio test or simply by noting that the nearest singularity to
z = 0 is z = −1, we see that this representation of Ln(1 + z) is valid for all |z| < 1.

If we replace z by −z and multiply both sides of (2.4.12) by −1, we obtain

−Ln(1 − z) =
∞∑
m=1

zm
m = z + z

2

2 + z
3

3 + . . . (2.4.13)

This too is valid for all |z| < 1 and therefore corresponds to a cut joining the twobranch
points of Ln(1 − z), z = 1 and z = ∞, along the positive real axis.

Adding (2.4.12) and (2.4.13) yields a third series,

Ln
(
1 + z
1 − z

)
= 2

∞∑
m=1

z2m−1
2m − 1 = 2

(
z + z

3

3 + z
5

5 + . . .
)
,

for all |z| < 1. By construction, this series de�nes the principal branch of ln
( 1+z
1−z
)
, for

|z| < 1, when the two branch points z = ±1 are joined by a cut that passes through
the point at in�nity. If the branch points were joined along the real axis segment
−1 6 x 6 1, Ln

( 1+z
1−z
)
would not possess a Taylor series about z = 0. However, as

we shall soon see, it would still be possible to provide it with another type of power
series representation, valid for |z| > 1 and with centre z = 0. This latter type of series,
expanded about a singular point, is called a Laurent series; we shall construct one
in the next example.

The rational function

f (z) = 2z + 1
z3 + z2 = 1

z2 ·
(
2z + 1
z + 1

)
is singular at z = 0 and z = −1 and therefore cannot be represented by a Taylor series
about either point. However, it factors into the product of an inverse power of z and a
function

g(z) = 2z + 1
z + 1
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which is holomorphic within |z| < 1 and hence, can be expanded in a Taylor series
there. Thus, we can determine a power series expansion about z = 0 for f (z) which
will be valid for 0 < |z| < 1 but, unlike a Taylor series, it will contain both direct and
inverse powers of z.

By a simple partial fraction decomposition, we can write

g(z) = 2 − 1
1 + z .

Replacing z by −z in the geometric series, we then have

g(z) = 2 −
∞∑
m=0

(−1)mzm , |z| < 1

= 1 + z − z2 + z3 − + . . .

Hence, f (z) has the representation

f (z) = 1
z2 + 1

z − 1 + z − z
2 + − . . .

=
2∑
m=1

1
zm +

∞∑
m=0

(−1)m−1zm , 0 < |z| < 1.

Since this expression contains only powers of z, it is a power series about z = 0; it is
the Laurent series for f (z) in the annulus 0 < |z| < 1.

2.4.3 Laurent’s Theorem

As the last two examples intimate, it is often desirable and sometimes necessary to
expand a function about one of its singularities. Moreover, the second of these ex-
amples suggests that it should be possible to �nd an extension of Taylor’s Theorem
which will cover such an eventuality. The required theorem is due to Laurent and,
as its statement will make clear, it handles the problem by assuming nothing about
the behaviour of the function at the point that is chosen as the centre of the power
series. In fact, it replaces the very limiting condition that this point lie within a simply
connected domain of holomorphy of the function with one that requires merely that
it be the centre of an annulus that is contained within the domain of holomorphy, the
domain remaining unrestricted with respect to multiple connectedness.
Theorem: If f (z) is holomorphic in the annulus 0 6 R1 < |z − z0| < R2 6∞, then

f (z) =
∞∑
m=0

am(z − z0)m +
∞∑
m=1

bm
(z − z0)m

≡
∞∑

m=−∞
cm(z − z0)m , (2.4.14)

with

am = 1
2πi

∫
C

f (ζ )
(ζ − z)m+1 dζ , bm = 1

2πi

∫
C

(ζ − z)m−1f (ζ )dζ , m = 0, 1, 2, . . .
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Figure 2.9: The contour Γ consists of the circles Γ1 , Γ2 and γ connected by parallel straight line
segments.

or, equivalently,

cm = 1
2πi

∫
C

f (ζ )
(ζ − z)m+1 dζ , m = 0, ±1, ±2, . . . , (2.4.15)

where C is any contour lying within the annulus and enclosing the point z = z0. The
series is uniformly convergent in any closed annulus R1 < R3 6 |z − z0| 6 R4 < R2.
Proof: Working within the ζ -plane, let us de�ne circles Γ1 and Γ2 centred at ζ = z0
with radii ρ1 and ρ2 such that R1 < ρ1 < |z − z0| < ρ2 < R2. Next, we de�ne a small
circle γ centred at ζ = z and contained entirely within the annulus bounded by Γ1 and
Γ2. We now consider the closed contour Γ constructed from Γ1, Γ2 and γ as shown in
Figure 2.9

The quotient f (ζ )ζ−z is holomorphic everywhere within and on Γ and so, by Cauchy’s
Theorem, we have ∫

Γ

f (ζ )
ζ − z dζ = 0. (2.4.16)

The parallel straight line segments of Γ can lie arbitrarily close to each other and thus
give contributions which cancel. Therefore, (2.4.16) can be rewritten as∫

Γ2

f (ζ )
ζ − z dζ −

∫
Γ1

f (ζ )
ζ − z dζ −

∫
γ

f (ζ )
ζ − z dζ = 0 (2.4.17)

where, in compliance with our convention, all three integrals are taken in the coun-
terclockwise direction.
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From Cauchy’s Integral, we know that the integration around γ yields 2πif (z).
Therefore, (2.4.17) becomes

f (z) = 1
2πi

∫
Γ2

f (ζ )
ζ − z dζ −

1
2πi

∫
Γ1

f (ζ )
ζ − z dζ . (2.4.18)

The �rst integral in (2.4.18) can be expanded in positive powers of (z − z0) exactly as
was done in the proof of Taylor’s Theorem. The result is

1
2πi

∫
Γ2

f (ζ )
ζ − z dζ =

∞∑
m=0

am(z − z0)m (2.4.19)

where

am = 1
2πi

∫
Γ2

f (ζ )
(ζ − z0)m+1

dζ . (2.4.20)

An expansion of the second integral can be obtained as follows. We set

1
ζ − z =

−1
(z − z0) − (ζ − z0)

= −1
(z − z0)

· 1(
1 − ζ−z0

z−z0

) = −1
(z − z0)

·
∞∑
m=1

(
ζ − z0
z − z0

)m−1
.

This sum is uniformly convergent for
∣∣∣ ζ−z0z−z0

∣∣∣ ≤ r < 1. Therefore, since |ζ − z0| = ρ1 and
ρ1 < |z − z0| < ρ2, we can integrate term by term to obtain

1
2πi

∫
Γ1

f (ζ )
ζ − z dζ = −

∞∑
m=1

bm
(z − z0)m

(2.4.21)

where

bm = 1
2πi

∫
Γ1

(ζ − z0)m−1f (ζ )dζ . (2.4.22)

We now observe that the integrals in (2.4.20) and (2.4.22) are independent of the
path of integration provided that it lies in the annulus R1 < |ζ − z0| < R2 and en-
closes ζ = z0. Therefore, using equations (2.4.19) through to (2.4.22), we can rewrite
equation (2.4.18) as

f (z) =
∞∑

m=−∞
cm(z − z0)m (2.4.23)

where, for all m = 0, ±1, ±2, . . .,

cm = 1
2πi

∫
C

f (ζ )
(ζ − z0)m+1

dζ (2.4.24)
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C being any contour that encloses z0 and lies in the annular region of holomorphy of
f (z).

The expansions in equations (2.4.19) to (2.4.21) all converge absolutely for all z
within the annulus ρ1 < |z−z0| < ρ2, and uniformly for all zwithin the closed annulus
ρ1 < R3 6 |z−z0| 6 R4 < ρ2. However, ρ1 and ρ2 are arbitrary, subject to the condition
R1 < ρ1 < ρ2 < R2. Therefore, it follows that the Laurent series (2.4.23) converges
absolutely to f (z) in R1 < |z − z0| < R2 and uniformly to f (z) in any closed annulus
interior to R1 < |z − z0| < R2.

The Laurent series representation of a given function associated with a given an-
nulus is unique: there is exactly one series (2.4.14) that converges to f (z) in R1 < |z −
z0| < R2. If f (z) has more than one distinct annulus of holomorphy with centre at
z = z0, it has a correspondingly distinct Laurent representation in each one of them.
This is best brought home by means of an example.
Examples: The function f (z) = cosec z is singular at the points z = nπ, n = 0, 1, 2, . . ..
Therefore, there is an in�nity of distinct annuli with centre at z = 0 in which cosec z
is holomorphic, namely

nπ < |z| < (n + 1)π, n = 0, 1, 2, . . . .

Each annulus admits a unique and distinct Laurent series about z = 0, thus providing
cosec z with in�nitely many such representations.

To illustrate the use of equations (2.4.14) and (2.4.15) in the determination of a
Laurent series, consider the function (z2 − 1)−1/2. As we have seen, this has branch
points at z = ±1. We can choose the cut between these two points to run along the real
axis segment −1 6 x 6 1 so that the function’s principal branch is

f (z) = |z + 1|−1/2|z − 1|−1/2e−i/2(θ++θ−), −π < θ± < π.

This is holomorphic everywhere except on the cut. Therefore, it must possess a Lau-
rent representation in the annulus 0 < |z| < ∞ given by

(z2 − 1)−1/2 =
∞∑
m=0

amzm +
∞∑
m=1

bmz−m

with

am = 1
2πi

∫
C

(ζ 2 − 1)−1/2
ζm+1 dζ , bm = 1

2πi

∫
C

ζm−1(ζ 2 − 1)−1/2dζ

where C is any contour in 0 < |ζ | < ∞ that encloses ζ = 0.
To evaluate the coe�cients am we choose C to be a circle of arbitrarily large radius.

It is then easily shown by means of an application of the Darboux Inequality that the
integral vanishes; thus, am = 0 for all m = 0, 1, 2, . . ..

For the evaluation of bm, we choose the “dog bone” contour shown in Figure 2.10.
It consists of in�nitesimally small circles centred at z = ±1 and two parallel straight
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Figure 2.10: The “dogbone” contour used to evaluate the Laurent series coe�cients for (z2 − 1)1/2.

lines running just above and below the cut on the real axis. The contribution to bm
from the circles is vanishingly small as one can again showwith the help of Darboux’s
Inequality. Thus, using the fact that the principal branch of (z2 − 1)−1/2 assumes the
values (1− x2)−1/2e−iπ/2 just above the cut, and (1− x2)−1/2e+iπ/2 just below it, we have

bm = 1
2πi

 +1∫
−1

xm−1eiπ/2√
1 − x2

dx +
−1∫

+1

xm−1e−iπ/2√
1 − x2

dx

 = 1
π

+1∫
−1

xm−1√
1 − x2

dx.

This vanishes for even values of m, while for odd values of m, we can write

bm = 2
π

1∫
0

xm−1√
1 − x2

dx = 2
π

π/2∫
0

sinm−1θdθ = π2
(m − 1)!

2m−1
(m−1

2 !
)2 .

Thus, setting m = 2k + 1, we have

(z2 − 1)−1/2 =
∞∑
k=0

(2k)!
22k(k!)2

1
z2k+1

= 1
z +

1
2
1
z3 + 3

8
1
z5 + 5

16
1
z7 + . . . , 1 < |z| < ∞.

Had we chosen the branch cut to lie along the real axis segments −∞ < x 6 −1
and 1 6 x < ∞, (z2 − 1)−1/2 would not possess a Laurent series representation about
z = 0 but it would have a Taylor series that converges for |z| < 1. For completeness we
shall evaluate its coe�cients as well.

With this choice of cut the principal branch is de�ned by

f (z) = |z + 1|−1/2|z − 1|−1/2e−i/2(θ++θ−), 0 < θ+ < 2π, −π < θ− < π.

It is holomorphic everywhere in the cut plane and so possesses the Taylor series

(z2 − 1)−1/2 =
∞∑
m=0

cmzm , |z| < 1
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Figure 2.11: The “dogbone” contour used to evaluate the Taylor series coe�cients for (z2 − 1)1/2.

with

cm = 1
2πi

∫
C

(ζ 2 − 1)−1/2
ζm+1 dζ

where C is any contour in the cut plane that encloses ζ = 0. We shall choose another
dog bone contour as shown in Figure 2.11.

Once again the contributions from the in�nitesimally small circles vanish. Thus,
since (z2 − 1)−1/2 assumes the values ±(x2 − 1)−1/2 for 1 6 x < ∞, y = 0±, and ∓(x2 −
1)−1/2 for −∞ < x 6 −1, y = 0±, we have

cm = 1
2πi

−1∫
−∞

(x2 − 1)−1/2
xm+1 dx − 1

2πi

−∞∫
−1

(x2 − 1)−1/2
xm+1 dx

+ 1
2πi

+1∫
+∞

(x2 − 1)−1/2
xm+1 dx − 1

2πi

∞∫
+1

(x2 − 1)−1/2
xm+1 dx.

This vanishes if m is odd while, if m = 2k, it yields

c2k =
2i
π

∞∫
1

(x2 − 1)−1/2
x2k+1

dx = 2i
π

π/2∫
0

sin2kθdθ = i (2k)!
22k(k!)2

.

Thus, our �nal result is

(z2 − 1)−1/2 = i
∞∑
k=0

(2k)!
22k(k!)2

z2k = i
[
z + 1

2 z
2 + 3

8 z
4 + 5

16 z
6 + . . .

]
, |z| < 1.

2.4.4 Practical Methods for Generating Power Series

If one had to go through such a lengthy procedure as that used in the preceding ex-
amples, the task of determining power series representations would be rather daunt-
ing. Fortunately, there are a number of practical methods available that obviate direct
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application of Taylor’s or Laurent’s Theorem. These are best introduced by means of
examples which we will label according to the type of function that each addresses.
Examples:
1. Rational Functions: Every rational function f (z) = P(z)

Q(z) , where P(z) and Q(z) are
polynomials, can be decomposed into a sum of a polynomial (if the degree of P is
greater than or equal to the degree of Q) and a �nite number of partial fractions of the
form a

(bz−c)n , where a, b and c are complex constants and n is an integer. The number
z = c

b is a root of the polynomial Q and thus is a singularity of the function f (z). Our
starting point then is to learn how to expand the fraction

g(z) = 1
bz − c , b ≠ 0

about an arbitrary point z = z0.
If bz0 − c = 0, g(z) has only one expansion about z = z0: the Laurent series

g(z) = 1/b
z − c/b , |z − c/b| > 0.

If bz0 − c ≠ 0, we can employ a simple trick that was used in the proof of both
Taylor’s and Laurent’s Theorem. We write

1
bz − c = 1

b(z − z0) + bz0 − c
= 1
(c − bz0)[ b(z−z0)c−bz0 − 1]

= 1
b(z − z0)[1 − c−bz0

b(z−z0) ]
. (2.4.25)

The last two expressions in (2.4.25) are completely equivalent and allow us to use
the geometric series to obtain alternative power series representations about z = z0
with mutually exclusive domains of convergence. Speci�cally, we have

g(z) = −1
c − bz0

∞∑
m=0

(
b(z − z0)
c − bz0

)m
= −

∞∑
m=0

bm
(c − bz0)m+1

(z − z0)m , |z − z0| < |z0 − c/b| (2.4.26)

and

g(z) = 1
b(z − z0)

∞∑
m=0

(
c − bz0
b(z − z0)

)m
=

∞∑
m=0

(c − bz0)m
bm+1

1
(z − z0)m+1

, |z − z0| > |z0 − c/b|. (2.4.27)

Thus, inside the circle |z−z0| = |z0−c/b| there is a Taylor series representation (2.4.26)
for g(z) while outside the circle there is the Laurent series representation (2.4.27). The
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Figure 2.12: The function g(z) = (bz − c)−1 is holomorphic within the disc |z − z0| < |z0 − c/b| and the
annulus |z − z0| > |z0 − c/b| and so possesses respectively, a Taylor and a Laurent expansion about
z = z0 in these two domains.

common boundary of these two domains, the circle itself, is dictated by the location
of the singularity of g(z), z = c/b. (See Figure 2.12).

Somuch for partial fractions corresponding to simple roots.Higher order fractions
of the form

g(z) = 1
(bz − c)n , n > 2

require little additional e�ort. We simply note that

1
(bz − c)n = 1

(n − 1)!
(−1)n−1
bn−1

dn−1
dzn−1

1
(bz − c) . (2.4.28)

Thus, oncewe have found the uniformly convergent power series for 1
bz−c term by term

di�erentiation will do the rest.
As a concrete example, consider the function

f (z) = 2z2 + 9z + 15
z3 + z2 − 8z − 12

and suppose thatwewish to �nd all of its power series representations about the point
z = 0. The denominator has a double root, z = −2, and a simple root, z = 3. Therefore,
drawing circles with center at the origin which pass through these two singularities,
we see that f (z) possesses three expansions about z = 0:
1. a Taylor series for |z| < 2,
2. a Laurent series for 2 < |z| < 3, and
3. a second Laurent series for |z| > 3.

To determine these three series we perform a partial fraction decomposition andwrite

f (z) = 1
(z + 2)2 + 2

z − 3 .
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Then, applying (2.4.26) and (2.4.27), we have

1
z − 3 = −

∞∑
m=0

zm
3m+1 , |z| < 3

1
z − 3 =

∞∑
m=0

3m
zm+1 , |z| > 3

and,

1
z + 2 =

∞∑
m=0

(−1)m
2m+1 z

m , |z| < 2

1
z + 2 =

∞∑
m=0

(−2)m
zm+1 , |z| > 2.

Invoking (2.4.28), we �nd

1
(z + 2)2 =

∞∑
m=1

(−1)m+1
2m+1 mzm−1, |z| < 2

1
(z + 2)2 =

∞∑
m=0

(−2)m(m + 1)
zm+2 , |z| > 2.

Thus, the three series representations are

i. f (z) =
∞∑
m=0

[
(−1)m(m + 2)

2m+2 − 2
3m+1

]
zm , |z| < 2

ii. f (z) =
∞∑
m=0

(−2)m(m + 1)
zm+2 − 2

∞∑
m=0

zm
3m+1 , 2 < |z| < 3

iii. f (z) = 2
∞∑
m=0

[3m − (−2)m−2m] 1
zm+1 , |z| > 3.

Notice that term by term di�erentiation provides a useful methodwhenever one seeks
a series for a function f (z) and one already knows the corresponding expansion for
F(z) where f (z) = c dn

dzn F(z), c = a constant, for some n.
2. Exponential, Trigonometric and Hyperbolic Functions: Because of the simplic-
ity of the di�erentiation rules that apply to these functions, determining Taylor series
for them is seldomaproblem.However, their Laurent series are a very di�erentmatter.
One useful technique is to make use of the Cauchy product of two series,( ∞∑

m=0
am

)
·
( ∞∑
m=0

bm

)
=

∞∑
m=0

m∑
k=0

akbm−k =
∞∑
m=0

m∑
k=0

am−kbk . (2.4.29)

As a concrete example we shall determine the Laurent series representation of cosec z
in the annulus 0 < |z| < π.
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The function sin z
z has the Taylor series

sin z
z = 1 − z

2

3! +
z4
5! − + . . . =

∞∑
m=0

(−1)mz2m
(2m + 1)! , |z| < ∞

and so is entire. Therefore, its inverse z
sin z is holomorphic within the disc |z| < π and

must possess a Taylor series there. Thus, we set

z
sin z =

1
∞∑
m=0

(−1)mz2m
(2m+1)!

=
∞∑
m=0

cmzm .

Cross-multiplying, we then have

1 =
(∑
m=0

(−1)mz2m
(2m + 1)!

)
·
( ∞∑
m=0

cmzm
)

(2.4.30)

=
∞∑
m=0

m∑
k=0

(−1)k
(2k + 1)! cm−kz

m+k . (2.4.31)

Since power series representations are unique, we can equate coe�cients of like pow-
ers of z appearing on either side of equation (2.4.31). This yields the in�nite set of
equations

c0 = 1
c1 = 0

−c0
3! + c2 = 0
−c1
3! + c3 = 0

c0
5! −

c2
3! + c4 = 0

c1
5! −

c3
3! + c5 = 0

−c0
7! + c25! −

c4
3! + c6 = 0 . . . .

whose solutions are

c0 = 1, c1 = 0, c2 =
1
6 , c3 = 0,

c4 =
7

360 , c5 = 0, c6 =
31

15120 , c7 = 0, . . . .

Thus, we �nd that

z
sin z = 1 + z

2

6 + 7
360 z

4 + 31
15120 z

6 + . . . , |z| < π
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and hence, that

cosec z = 1
z +

1
6 z +

7
360 z

3 + 31
15120 z

5 + . . . , 0 < |z| < π. (2.4.32)

A seconduseful technique and in fact, onewhich is useful indealingwith any type
of function, is substitution. The next two examples will illustrate what is involved.

From the Laurent expansion (2.4.32) about z = 0 the substitution z → z + kπ,
k = ±1, ±2, . . . immediately yields the local expansion of cosec z about any of its other
singularities:

cosec(z + kπ) = (−1)k cosec z = 1
(z + kπ) +

1
6(z + kπ) +

7
360(z + kπ)

3 + . . . ,

0 < |z + kπ| < π.

Just as simple is the conversion of the Taylor series

sinh z = z + z
3

3! +
z5
5! + . . . , |z| < ∞

into the Laurent series

sinh 1
z = 1

z +
1

3!z3 + 1
5!z5 + . . . , |z| > 0

under the substitution z → 1
z . The simplicity of these examples is characteristic of all

applications of the substitution technique.
3. Logarithms: Because the derivatives of many logarithms are rational functions,
term by term integration is an obvious technique to use in determining their power
series expansions. We have already generated the Taylor series representation

Ln
(
1 + z
1 − z

)
= 2

∞∑
m=1

z2m−1
2m − 1 = 2

(
z + z

3

3 + z
5

5 + . . .
)
, |z| < 1 (2.4.33)

which corresponds to a choice of branch cut running along the real axis segments
−∞ < x 6 −1 and 1 6 x < ∞. This is the only power series about z = 0 possessed by
Ln
( 1+z
1−z
)
when its branch points z = ±1 are joined in this way. However, if one makes

the other obvious choice, a cut along the segment −1 6 x 6 1, y = 0, then Ln
( 1+z
1−z
)

again possesses only one expansion about z = 0 but this time it is a Laurent series in
the annulus |z| > 1. To determine this series we note that

d
dz Ln

(
1 + z
1 − z

)
= 1
1 + z +

1
1 − z =

2
1 − z2 .

The power series expansions of 1
1±z in the annulus |z| > 1 are readily found from equa-

tion (2.4.27). We have

1
1 + z =

∞∑
m=0

(−1)m
zm+1 and 1

1 − z = −
∞∑
m=0

1
zm+1 , |z| > 1
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and hence,

d
dz Ln

(
1 + z
1 − z

)
= −2

∞∑
m=0

1
z2m+2 = −2

[
1
z2 + 1

z4 + 1
z6 + . . .

]
, |z| > 1.

Integrating term by term we then obtain

Ln
(
1 + z
1 − z

)
= 2
[
1
z +

1
3z3 + 1

5z5 + . . .
]
+ c = 2

∞∑
m=1

1
2m − 1

1
z2m−1 + c, |z| > 1

where c is a constant of integration. Since

Ln
(
1 + z
1 − z

)
= ln |1 + z||1 − z| + i[arg(z + 1) − arg(z − 1) + π], −π < arg(z ± 1) < π

we see that c must be set equal to +iπ in order to obtain the correct value as |z| → ∞.
Thus, absorbing the +iπ into the argument of the logarithm, we �nally obtain

Ln
(
z + 1
z − 1

)
= 2

∞∑
m=1

1
2m − 1

1
z2m−1 = 2

(
1
z +

1
3z3 + 1

5z5 + . . .
)
, |z| > 1. (2.4.34)

2.5 Zeros and Singularities

As we have seen, if a function f (z) is holomorphic within a simply connected domain
D then it can be expanded in a Taylor series about any point z = z0 of D and

f (z) =
∞∑
m=0

cm(z − z0)m , cm = 1
m!

dm
dzm f (z)

∣∣∣∣
z=z0

. (2.5.1)

De�nition: If f (z) vanishes at z = z0, this point is called a zero of f (z). Moreover, f (z)
is said to have a zero of ordern at z = z0 if

f (z0) =
df (z)
dz

∣∣∣∣z=z0 = . . . = dn−1
dzn−1 f (z)

∣∣∣∣
z=z0

= 0, dn
dzn f (z) |z=z0 ≠ 0, (2.5.2)

that is, if the �rst n coe�cients of the Taylor series (2.5.1) are all zero but the (n+ 1)th

coe�cient is non-zero.
Thus, if there is an nth order zero at z = z0, the Taylor series (2.5.1) assumes the

form

f (z) = cn(z − z0)n + cn+1(z − z0)n+1 + . . .

= (z − z0)n
∞∑
k=0

cn+k(z − z0)k

= (z − z0)ng(z), (2.5.3)



Zeros and Singularities | 83

where g(z) is holomorphic and non-zero at z = z0. Its holomorphy implies that g(z) is
continuous and hence, that it is non-vanishing in some neighbourhood |z − z0| < R
as well as at z = z0. Speci�cally, if g(z0) = κ, then there must exist an R such that
|g(z) − g(z0)| < κ

2 for |z − z0| < R. Invoking a triangle inequality, we then have

|g(z)| > |{|g(z0)| − |g(z) − g(z0)|}| >
κ
2

for the same range |z − z0| < R and so g(z) certainly does not vanish there. Therefore,
f (z) itself must be non-vanishing in the deleted neighbourhood 0 < |z − z0| < R. This
establishes that the zeros of an analytic function are isolated. Thus, if the zeros
of an analytic function f (z) have a limit point z = zl, then either f (z) ≡ 0 or f (z) is
singular (discontinuous) at z = zl.

Notice that the order of a zero can be determined by calculating

lim
z→z0

f (z)
(z − z0)n

for successive values of n = 1, 2, 3, . . .; the lowest n for which this is non-vanishing is
the order of the zero.
De�nition: If a function f (z) has an isolated singularity at a point z = z0 then there
must exist a �nite deleted neighbourhood of that point, 0 < |z − z0| < R for some R, in
which f (z) is holomorphic.

Such a neighbourhood constitutes an annulus on which Laurent’s Theorem is ap-
plicable and so, for z in this neighbourhood, f (z) can be represented by a Laurent
expansion about z = z0:

f (z) =
∞∑
m=0

am(z − z0)m +
∞∑
m=1

bm
(z − z0)m

, 0 < |z − z0| < R. (2.5.4)

The negative powers of (z − z0) in this expansion determine the character of the sin-
gularity at z = z0. There are two cases corresponding to two new de�nitions.
1. A Finite Number of Negative Powers: Suppose that bm = 0,m > n but bn ≠ 0 for
some n. The series in (2.5.4) then becomes

f (z) = bn
(z − z0)n

+ bn−1
(z − z0)n−1

+ . . . + b1
(z − z0)

+
∞∑
m=0

am(z − z0)m . (2.5.5)

The function f (z) is said to have a pole of order n at z = z0. The sum of negative
powers

bn
(z − z0)n

+ bn−1
(z − z0)n−1

+ . . . + b1
(z − z0)

is called the principal part of f (z) at z = z0; it becomes in�nite as z → z0.
The representation of f (z) in (2.5.5) can be rewritten as

f (z) = (z − z0)−nh(z) (2.5.6)
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where h(z) is holomorphic and non-zero at z = z0,

h(z) = bn + bn−1(z − z0) + . . . + b1(z − z0)n−1 +
∑
m=0

∞
am(z − z0)m+n .

Thus, the order of the pole can be determined by evaluating

lim
z→z0

(z − z0)n f (z)

for successive values of n = 1, 2, . . .; the lowest n for which this limit exists is the
order of the pole.
2. In�nitelyManyNegative Powers:When there is an in�nite number of coe�cients
bm that are non-zero, f (z) is said to have an isolated essential singularity at z = z0.
De�nition: A function f (z) is said to be meromorphic in a domain D if it has no sin-
gularities other than poles in D.

The di�erence between a pole and an essential singularity is re�ected most dra-
matically in the behaviour exhibited by a function in the neighbourhood of each type
of singularity. From (2.5.6) it is clear that if f (z) has a pole at z = z0 then |f (z)| → ∞
as z → z0 in any manner. Thus, in a small neighbourhood of a pole, a function must
be uniformly large. To see what may happen at an essential singularity, consider the
function

e1/z =
∞∑
m=0

1
m!zm , |z| > 0,

which has an isolated essential singularity at z = 0. If we let z → 0 along
1. the negative real axis, |e1/z| → 0,
2. the positive real axis, |e1/z| →∞,
3. the imaginary axis, |e1/z| remains constant but arg(e1/z) → ∞ so that e1/z oscil-

lates wildly.

Thus, we cannot assign a speci�c value to e1/z at z = 0 since it evidently takes on
every possible non-zero value in anyneighbourhoodof that point. As thenext theorem
shows, this behaviour is characteristic of essential singularities.
Picard’s Theorem: If a function f (z) has an isolated essential singularity at z = z0
then, in an arbitrarily small neighbourhood of z = z0, f (z) assumes in�nitely many
times every complex value, with at most one exceptional value.

The one exceptional value in the case of e1/z is zero.
This last theorem is named for the French mathematician Charles Emile Picard

(1856-1941) who was especially noted for his work in complex analysis and integral and
di�erential equations.

As we have seen already, a function which has an in�nite sequence of zeros with
a limit point z = zl must either be singular at that point or be identically zero. We now
recognize that if the function is not identically zero then, since it also does not tend
uniformly to in�nity as z → zl, the limit point is an isolated essential singularity.
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So far we have restricted our discussion to singularities in the �nite plane. How-
ever, we can also use Laurent expansions to investigate the behaviour of functions at
in�nity. The usual �rst step in any investigation of what happens at the point at in�n-
ity is to make the substitution z = 1

ζ followed by an examination of how the function
in question behaves as ζ → 0. Therefore, we say that f (z) is holomorphic, or has a
pole of order n, or has an essential singularity at z = ∞ according as f (1/ζ ) has the
corresponding property at ζ = 0. Thus, if f (z) has a pole of order n at z = ∞, then
f (1/ζ ) must have a Laurent expansion about ζ = 0 of the form

f (1/ζ ) =
∞∑
m=0

amζm + b1ζ + b2ζ 2 + . . . + bnζ n , 0 < |ζ | < 1
R

for some R. Hence, f (z) admits the Laurent expansion

f (z) =
∞∑
m=0

am
zm + b1z + b2z2 + . . . + bnzn , R < |z| < ∞ (2.5.7)

about z = 0. Evidently, the principal part of f (z) at in�nity is the polynomial

fP(z) = b1z + b2z2 + . . . + bnzn .

Similarly, if f (z) has an isolated essential singularity at z = ∞, it must have a
Laurent expansion about z = 0 of the form

f (z) =
∞∑
m=0

am
zm +

∞∑
m=1

bmzm , R < |z| < ∞ (2.5.8)

for some R, and the principal part at z = ∞ is the entire function

fP(z) =
∞∑
m=0

bmzm .

Finally, if f (z) is holomorphic at z = ∞ its principal part there will be zero and it
will possess a Laurent expansion about z = 0 of the form

f (z) =
∞∑
m=0

am
zm , R < |z| < ∞. (2.5.9)

In each of the three cases (2.5.7) to (2.5.9), R is the distance from the origin to the
furthest �nite singularity of the function.

Suppose now that we expand f (z) about a point z = z0 located such that R < |z0| <
∞. Since, for each m,

1
zm = (−1)m

(m − 1)!
1

(z − z0)m
∞∑
k=0

zk0
(z − z0)k

(k + m − 1)!
k!
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which has no positive powers of (z − z0), and since the principal part of f (z) at z = ∞,
fP(z), is always entire, the series must assume the form

f (z) =
∞∑
m=0

αm
(z − z0)m

+
∞∑
m=1

βm(z − z0)m , |z0| − R < |z − z0| < ∞ (2.5.10)

with
∞∑
m=1

βm(z − z0)m = fP(z) and βm = 0 for all m > 1 if f (z) is holomorphic at z = ∞,

βm = 0 for all m > n, βn ≠ 0 if f (z) has a pole of order n at z = ∞, βm ≠ 0 for an in�nite
number of values of m if f (z) has an essential singularity at z = ∞. In other words,
any Laurent expansion whose outer radius of convergence is in�nite yields both the
nature of the singularity, if any, and the function’s principal part at z = ∞.

Before we consider some examples it remains to point out that there are two prin-
cipal types of non-isolated singularities. Themost obvious of these is abranchpoint,
every neighbourhood of which contains a segment of a cut where all branches of the
function are discontinuous. The second type is a non-isolated essential singularity
which is simply the limit point of an in�nite sequence of isolated singularities (usually
poles).
Examples: It is fairly obvious from (2.5.10) that any polynomial of nth degree has a
pole of order n at z = ∞. On the other hand, since the degree of its numerator is less
than the degree of its denominator, the rational function

f (z) = 1
z(z − 2)5 + 3

(z − 2)3

is holomorphic at z = ∞. Its only singularities are a simple pole at z = 0 and a �fth
order pole at z = 2.

The location and nature of the singularities of the last function were easily de-
termined at a single glance. However, a function’s appearance can sometimes be de-
ceiving. For example, knowing that sin z

z is holomorphic at the origin, one might be
tempted to claim that

f (z) =
(
3
z2 −

1
z

)
sin z − 3

z2 cos z

has a second order pole at z = 0. Such a claim would be erroneous. Using

sin z = z − z
3

3! +
z5
5! − + . . .

cos z = 1 − z
2

2! +
z4
4! − + . . . ,

we see that f (z) possesses the Taylor series

f (z) = 8
5! z

2 − 24
7! z

4 + 48
9! z

6 − + . . . = 4
∞∑
m=1

(−1)m+1m(m + 1)
(2m + 3)! z2m , |z| < ∞
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about z = 0. Thus, f (z) is an entire function with a second order zero at z = 0 and, of
course, an essential singularity at z = ∞.

Next, consider the function sin 1
z whose zeros z = 1

nπ , n = ±1, ±2, . . ., have a limit
point at z = 0. Our earlier analysis suggests that z = 0 is an isolated essential singu-
larity of sin 1

z and we easily con�rm this by noting that the function has the Laurent
expansion

sin 1
z =

∞∑
m=0

(−1)m
(2m + 1)!

1
z2m+1 , |z| > 0.

The zeros of tan 1
z are the same as those of sin 1

z . However, in this case z = 0 is not
only the limit point of a sequence of zeros, it is also the limit point of a sequence of
poles located at z = 2

nπ , n = ±1, ±3, . . . Therefore, for tan 1
z , z = 0 is a non-isolated

essential singularity.
The assertion that “analytic functions are determined by their singularities”

should be becoming a familiar refrain. The next theorem provides an example of how
the “determination” occurs for a relatively simple class of functions.
Theorem: A function f (z) which is meromorphic throughout the extended plane is
necessarily a rational function.
Proof: Since f (z) has no singularities other than poles, and since an in�nite num-
ber of poles implies the existence of a non-isolated essential singularity, it follows
that the poles must be �nite in number. Suppose that these are located at the points
z1, z2, . . . , zm and ∞.

The principal part of f (z) at z = zk may be written

bk1
z − zk

+ bk2
(z − zk)2

+ . . . +
bknk

(z − zk)nk
,

where nk is the order of the pole at z = zk, while the principal part at z = ∞ is of the
form

b1z + b2z2 + . . . + bnzn .

Therefore, let us consider the function

D(z) = f (z) −
m∑
k=1

[
bk1
z − zk

+ . . . +
bknk

(z − zk)nk

]
− [b1z + . . . + bnzn].

Since D(z) has a Taylor expansion about every point in the extended plane, including
the points z1, z2, . . . , zm and z = ∞, it is a bounded, entire function. Thus, by Liou-
ville’s Theorem, D(z) = b0, a constant. This means that f (z) has the partial fraction
representation

f (z) =
m∑
k=1

[
bk1
z − zk

+ . . . +
bknk

(z − zk)nk

]
+ b0 + b1z + . . . + bnzn
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and so, is a rational function.
To complete this Section we now visit a second theorem on meromorphic func-

tions, one that involves their zeros as well as their poles.
Theorem: Let f (z) be meromorphic in a simply connected domain D and g(z) be any
functionwhich is holomorphic in D. Further, let C be a closed contour in Dwhich does
not pass through any of the poles or zeros of f (z). If f (z) has, within C, Z zeros at z = aj
of order mj , j = 1, 2, . . . , Z, and P poles at z = bk of order nk , k = 1, 2, . . . , P, then

1
2πi

∫
C

g(z) f
′(z)
f (z) dz =

Z∑
j=1

mjg(aj) −
P∑
k=1

nkg(bk). (2.5.11)

Proof: Let zk be either a zero or a pole of f (z) of order mk or nk, respectively. Then, in
the neighbourhood of this point, we can set

f (z) = (z − zk)lkφ(z)

whereφ(z) is holomorphic andnon-zero at zk, and lk = mk if zk is a zero,while lk = −nk
if zk is a pole. Di�erentiating, we have

f ′(z) = lk(z − zk)lk−1φ(z) + (z − zk)lkφ′(z)

and therefore,

f ′(z)
f (z) = lk

z − zk
+ φ
′(z)
φ(z) = lk

z − zk
+ (a holomorphic function).

Since g(z) is holomorphic throughout D, Cauchy’s Integral and Cauchy’s Theorem
then yield

1
2πi

∫
Ck

g(z) f
′(z)
f (z) dz =

lk
2πi

∫
Ck

g(z)
z − zk

dz = g(zk)lk (2.5.12)

for any closed contour Ck which encircles zk alone of all the zeros and poles of f (z).
Let us now consider a curve C in D which encloses all such contours Ck. Since

g(z) f
′(z)
f (z) is singular only at thepoints z1, z2, . . . , zn,we canuse the generalizedCauchy

Theorem, equation (2.2.8), to write∫
C

g(z) f
′(z)
f (z) dz =

Z+P∑
k=1

∫
Ck

g(z) f
′(z)
f (z) dz. (2.5.13)

Thus, combining (2.5.12) and (2.5.13), we �nd

1
2πi

∫
C

g(z) f
′(z)
f (z) dz =

Z∑
j=1

mjg(aj) −
P∑
k=1

nkg(bk)
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as required.
An interesting special case obtains when g(z) ≡ 1. Equation (2.5.11) then reads

1
2πi

∫
C

f ′(z)
f (z) dz = M − N (2.5.14)

where M =
Z∑
j=1
mj is the number of zeros and N =

P∑
k=1
nk is the number of poles of f (z)

inside C, zeros and poles being counted with their proper multiplicities. Since

d
dz ln f (z) =

f ′(z)
f (z) ,

we can write this result in the form∫
C

f ′(z)
f (z) dz = ∆C[ln f (z)] = 2πi(M − N)

where ∆C denotes the variation of ln f (z) around the contour C.Writing ln z = ln |f (z)|+
i arg(f (z)) and noting that ln |f (z)| is single-valued, we see that equation (2.5.14) in fact
states that

∆C[arg(f (z))] = 2π(M − N) (2.5.15)

which means that as z describes the simple closed path C, the argument of f (z)
changes by an integer multiple of 2π according to the number of zeros and poles of
f (z) contained within C.

This result is known as the principle of the argument.
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3 The Calculus of Residues
3.1 The Residue Theorem

A very important application of the theory of analytic functions involves the eval-
uation of real de�nite integrals. The key ingredients in the evaluation procedure are
the concept of a residue and an associated theorem. Thus, our �rst task is to familiar-
ize ourselves with both.
De�nition: Let f(z) be holomorphic in some deleted neighbourhood of z = z0, 0 < |z−
z0| < R say, and let C be any closed contour within this neighbourhood and enclosing
z = z0. Then, the integral

1
2πi

∫
C

f (z)dz = Res[f (z0)] (3.1.1)

is independent of the choice of C and is called the residue of f (z) at z = z0.
Since f (z) is holomorphic in 0 < |z − z0| < R, it must possess the Laurent series

representation

f (z) =
∞∑

m=−∞
cm(z − z0)m , 0 < |z − z0| < R,

cm = 1
2πi

∫
C

f (ζ )
(ζ − z0)m+1

dζ (3.1.2)

where C is any closed contour in the annulus 0 < |ζ − z0| < R that encloses ζ = z0.
Comparing (3.1.1) and (3.1.2) we see that an equivalent de�nition of the residue of f (z)
at z = z0 is

Res[f (z0)] = c−1. (3.1.3)

Equation (3.1.3) applies only to points in the �nite plane. However, our �rst de�-
nition (3.1.1) can be applied at in�nity as well, provided one does so with care. If f (z)
is holomorphic or has an isolated singularity at z = ∞, it must be possible to de�ne
a large circle C that encloses all the �nite singularities of f (z). The circle C lies in an
annulus R < |z| < ∞ in which f (z) is holomorphic and it encloses the point at in�nity.
Thus, (3.1.1) may be used with this curve to de�ne

Res[f (∞)] = −1
2πi

∫
C

f (z)dz (3.1.4)

where the minus sign is due to an anticlockwise circuit with respect to z = ∞ being
a clockwise circuit with respect to the origin. Let us now apply the transformation
z = 1

ζ to the integral in (3.1.4). Since this transformation again reverses the sense of
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the integration, and dz = −dζ
ζ 2 , we obtain

Res[f (∞)] = −1
2πi

∫
C′

f (ζ −1)dζζ 2 (3.1.5)

where C′ is a small circle about ζ = 0. From Cauchy’s Integral we then have

Res[f (∞)] = lim
ζ→0

[
−f (ζ −1)
ζ

]
= lim
z→∞

[−zf (z)], (3.1.6)

provided this limit exists.
This formula brings out an interesting distinction between residues at in�nity

and residues at points in the �nite plane. If f (z) is holomorphic at z = z0, then
Res[f (z0)] = 0 by Cauchy’s Theorem. But if f (z) is holomorphic at in�nity, then in
general Res[f (∞)] ≠ 0. For example, the rational function f (z) = c

z has Res[f (0)] = c
and Res[f (∞)] = −c even though it is clearly holomorphic at the latter point. Cauchy’s
Residue Theorem implies a relationship between a function’s residue at in�nity and
its residues in the �nite plane which in turn, determines whether the former will
vanish.
Theorem: If f (z) is holomorphic on and within a closed contour C except for a �nite
number of isolated singularities at z = z1, z2, . . . , zn inside C, then∫

C

f (z)dz = 2πi
n∑
k=1

Res[f (zk)]. (3.1.7)

Proof: The proof of this theorem involves little more than an application of the gener-
alized Cauchy Theorem.

As we did for our last theorem, we individually enclose each singularity z = zk
with a small circle Ck contained within C. Then, since f (z) is holomorphic within and
on the boundary of the (n + 1)-fold connected domain bounded by C, C1, . . . , Cn , we
can apply equation (2.2.8) and write∫

C

f (z)dz =
n∑
k=1

∫
Ck

f (z)dz.

Invoking the de�nition of a residue, equation (3.1.1), this immediately yields∫
C

f (z)dz = 2πi
n∑
k=1

Res[f (zk)]

as required.
If a function’s singularities are all isolated, then it follows from (3.1.4) and (3.1.7)

that
Res[f (∞)] = −

∑
k

Res[f (zk)]
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where the sum is taken over all singular points in the �nite plane. Thus, it is the func-
tion’s behaviour throughout the �nite plane that determines whether its residue at
in�nity will vanish.

An immediate application of the residue theorem is the evaluation of closed con-
tour integrals. Provided that the integrandpossesses only isolated singularitieswithin
(or alternatively, without) the contour, the evaluation is reduced to the considerably
less arduous task of calculating residues.

3.2 Calculating Residues

The basis of all residue calculus techniques is equation (3.1.3) which identi�es the
residue of a function f (z) at the point z = z0 with the coe�cient of the �rst inverse
power of (z − z0) in the Laurent expansion of f (z) about z = z0. The most direct ap-
proach and the only one available when z = z0 is an essential singularity is to use one
of thepracticalmethods (see Section 2.4.4) available for generating power series and
determine the one coe�cient we need. However, if z = z0 is a pole of order n , there is
an alternative approach which is frequently but by no means invariably more conve-
nient. It is based on the fact that within the annulus of convergence, 0 < |z − z0| < R,
of the Laurent expansion of f (z) about z = z0, we may set

f (z) = (z − z0)−ng(z) (3.2.1)

where g(z) is holomorphic within |z − z0| < R and is non-zero at z = z0. Putting (3.2.1)
into the de�ning equation (3.1.1), we have

Res[f (z0)] =
1
2πi

∫
C

g(ζ )
(ζ − z0)n

dζ = 1
(n − 1)!

dn−1
dzn−1 g(z)

∣∣∣∣
z=z0

where we have used Cauchy’s Di�erentiation Formula (2.3.5) in the last step. Thus,
substituting for g(z) we obtain

Res[f (z0)] = lim
z→z0

1
(n − 1)!

dn−1
dzn−1 [(z − z0)

n f (z)]. (3.2.2)

In the case of a simple pole (n = 1) this expression reduces to

Res[f (z0)] = lim
z→z0

(z − z0)f (z) (3.2.3)

and, in the case of a function of the form f (z) = g(z)
h(z) with h(z0) = 0, dh(z0)dz ≠ 0 and

g(z0) ≠ 0, (3.2.3) in turn reduces to

Res[f (z0)] =
g(z0)
h′(z0)

. (3.2.4)
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Simple poles arising from simple zeros are su�ciently common that this last special
case will become memorized through use.
Examples: Consider the rational function

f (z) = z2 − 3z + 5
(z − 2)2(z + 1) .

By performing a partial fraction decomposition,

f (z) = 1
(z − 2)2 + 1

z + 1 ,

we can read o� the values of the residues at z = 2 and z = −1. Since the second term is
holomorphic at z = 2, there can be no term involving the power (z−2)−1 in the Laurent
expansion of f (z) about z = 2. Therefore, Res[f (2)] = 0. Similarly, since the �rst term
is holomorphic at z = −1, we have Res[f (−1)] = 1. These results can be veri�ed by
using equation (3.2.2) . For example,

Res[f (2)] = lim
z→2

d
dz

[
z2 − 3z + 5
z + 1

]
= lim
z→2

z2 + 2z − 8
(z + 1)2 = 0.

Next, suppose that we wish to calculate the residue of

f (z) = e3z
(z + 2)(z − 1)4

at z = 1 where it has a fourth-order pole. Use of (3.2.2) would involve the calculation
of the third derivative of e3z

(z+2) which, while not overly di�cult, is su�ciently lengthy
to pose some risk of error. On the other hand, the Laurent series approach in this case
is relatively straightforward and hence, less likely to give rise to lost minus signs or
factors of two.

We need to expand both e3z and (z + 2)−1 about z = 1. The exponential is entire
and has the mth derivative

dm
dzm e

3z
∣∣∣
z=1

= 3me3x
∣∣
x=1 = 3me3.

Therefore,

e3z = e3
∞∑
m=0

3m
m! (z − 1)

m , |z − 1| < ∞.

The function (z + 2)−1 is holomorphic in |z − 1| < 3 and so admits the Taylor series

1
z + 2 = 1

3

∞∑
m=0

(−1)m
3m (z − 1)m , |z − 1| < 3.

Now, to obtain the coe�cient of (z − 1)−1 in the Laurent expansion of f (z) = e3z
(z−1)4(z+2)

about z = 1, we need only determine the coe�cient of (z − 1)3 in the product series

e3z
z + 2 =

[
e3

∞∑
m=0

3m
m! (z − 1)

m

][
1
3

∞∑
m=0

(−1)m
3m (z − 1)m

]
= e

3

3

∞∑
m=0

m∑
k=0

3k
k!

(−1)m−k
3m−k

(z − 1)m .
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Thus,

Res[f (1)] = e
3

3

3∑
k=0

32k−3
k! (−1)3−k = e

3

3

[
33
3! −

3
2! +

1
3 −

1
33

]
= 89
81 e

3.

Suppose now that we wish to integrate

f (z) = tan z
z

around the circle |z| = 2. Writing f (z) in the form

f (z) = (sin z)/z
cos z

we see that it is holomorphic at z = 0 but possesses �rst order poles at z = ±π/2 arising
from the �rst order zeros of cos z at these two points. We can use equation (3.2.4) to
calculate the residues at the poles; we �nd

Res[f (π/2)] = sin(π/2)/(π/2)
d
dz cos z

∣∣∣
z=π/2

= −2π

Res[f (−π/2)] = − sin(−π/2)/(π/2)
d
dz cos z

∣∣∣
z=−π/2

= 2
π .

Without further e�ort, the Residue Theorem gives us the following value for the inte-
gral in question: ∫

|z|=2

tan z
z dz = 2πi

[
2
π −

2
π

]
= 0.

A somewhat more di�cult and more interesting problem is posed by the integral

I =
∫
C

1
z sin

1
z cosec zdz

where C is the unit circle, |z| = 1. Both 1
z and cosec z have �rst order poles at z = 0,

but sin 1
z has an essential singularity there. Therefore, we have no choice in this case:

the Laurent series method of calculating residues is the only one that is applicable.
We require the expansions of cosec z and sin 1

z about z = 0. These were found in
Section 2.2.4 and are

sin 1
z =

∞∑
m=0

(−1)m
(2m + 1)!

1
z2m+1 , |z| > 0

cosec z = 1
z +

z
6 + 7

360 z
3 + 31

15120 z
5 + . . . , 0 < |z| < π.
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Because of the presence of the 1
z factor in the integrand, we now must �nd the coe�-

cient of (z)0 in the Cauchy product of these two series. This is easily accomplished and
yields the convergent series

1
6
(−1)0
1! + 7

360
(−1)1
3! + 31

15120
(−1)2
5! + . . . .

Therefore, our integral has the value∫
|z|=1

1
z sin

1
z cosec zdz = 2πi

[
1
6 −

7
3!360 + 31

5!15120 − + . . .
]
.

Themost important application of the Residue Theorem is in the evaluation of certain
types of real de�nite integrals.

3.3 Evaluating De�nite Integrals

3.3.1 Angular Integrals

Integrals of the type
2π∫
0

f (cos θ, sin θ)dθ

can often be addressed successfully by making the substitution eiθ = z. One then has

cos θ = 1
2

(
z + 1

z

)
, sin θ = 1

2i

(
z − 1

z

)
, dθ = dziz

and hence,
2π∫
0

f (cos θ, sin θ)dθ =
∫
C

F(z)dz

where C is the unit circle |z| = 1. Of particular interest are integrands f (cos θ, sin θ)
that are rational functions of cos θ and sin θ. The corresponding functions F(z) will
themselves be rational functions of z and so the Residue Theorem can be applied to
give

2π∫
0

f (cos θ, sin θ)dθ =
∫
C

F(z)dz = 2πi
∑
C

Res[F(z)] (3.3.1)

where the sum is taken over those poles of F(z) that lie inside the unit circle.
Example: Let us evaluate the integral

I ≡
2π∫
0

sin2θ
a + b cos θ dθ, a > |b| > 0
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where the restriction on a and b is needed to prevent the integrand from becoming
unde�ned at any point on the interval of integration.

On making the recommended change of variable, the integral becomes

I =
∫
C

(z2 − 1)2
(2iz)2

1
a + b

2z (z2 + 1)
dz
iz = i

2b

∫
C

(z2 − 1)2

z2
(
z2 + 2a

b z + 1
)dz

where C is the unit circle, |z| = 1. The integrand

F(z) = (z2 − 1)2

z2
(
z2 + 2a

b z + 1
)

has adouble pole at z = 0and simple poles at z = ζ1 and z = ζ2 where ζ1 = −a
b +
√

a2
b2 − 1

and ζ2 = −a
b −
√

a2
b2 − 1 are the roots of the quadratic z2 + 2a

b z+1 = 0. Since the product
ζ1ζ2 must equal unity, only the root with the smallest absolute value can lie within the
unit circle. With a > |b| > 0, this is evidently ζ1. Thus, we need only �nd the residues
of F(z) at z = ζ1 and z = 0.

From equation (3.2.3) we have

Res[F(ζ1)] = lim
z→ζ1

(z − ζ1)F(z) = lim
z→ζ

(z2 − 1)2
z2(z − ζ2)

= (ζ1 − ζ −11 )2
(ζ1 − ζ2)

= (ζ1 − ζ2) = 2
√
a2
b2 − 1,

where we have made use of ζ1ζ2 = 1 and hence, ζ −11 = ζ2.
Then, using equation (3.2.2), we �nd

Res[F(0)] = lim
z→0

d
dz [z

2F(z)] = lim
z→0

d
dz

[
(z2 − 1)2

z2 + 2a
b z + 1

]
or,

Res[F(0)] = lim
z→0

(
z2 + 2a

b z + 1
)
4z(z2 − 1) − (z2 − 1)2

(
2z + 2a

b
)(

z2 + 2a
b z + 1

)2 = −2ab .

Thus, we �nally obtain

I = i
2b2πi

∑
C

Res[F(z)] = −πb

[
−2ab + 2

√
a2
b2 − 1

]
= 2π
b2 [a −

√
a2 − b2].

3.3.2 Improper Integrals of Rational Functions

Real integrals with an in�nite interval of integration are called improper and are de-
�ned by the limiting procedure

∞∫
−∞

f (x)dx = lim
a→−∞

0∫
a

f (x)dx + lim
b→∞

b∫
0

f (x)dx. (3.3.2)
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If both of these limits exist, we can set

∞∫
−∞

f (x)dx = lim
R→∞

R∫
−R

f (x)dx. (3.3.3)

This is not an alternative de�nition of the improper integral; the limit in (3.3.3) may
exist even if the integral does not. For example,

lim
R→∞

R∫
−R

xdx = lim
R→∞

x2
2

∣∣∣R
−R

= 0

but lim
b→∞

b∫
0
xdx is unbounded and therefore, so is

∞∫
−∞
xdx. However, since our interest

is in the evaluation of integrals that are presumed to exist, we shall always be able to
invoke (3.3.3).
Theorem: Let f (z) satisfy the following conditions:
i f (z) is meromorphic in the upper (lower) half-plane,
ii f (z) has no poles on the real axis,
iii zf (z)→ 0 uniformly as |z| →∞, for 0 ≤ arg z ≤ π(−π ≤ arg z ≤ 0),

iv
∞∫
−∞
f (x)dx exists, where f (x) = lim

y→0
f (x + iy).

Then,
∞∫

−∞

f (x)dx = 2πi
∑
+

Res[f (z)] (3.3.4)

 ∞∫
−∞

f (x)dx = −2πi
∑
−
Res[f (z)]

 (3.3.5)

where
∑
+

(∑
−

)
denotes the sum over all the poles of f (z) in the upper (lower) half-

plane.
Proof: As shown in Figure 3.1, we de�ne a semicircular contour CR , centre the origin
and radius R , with R being su�ciently large that CR and the real axis segment −R ≤
x ≤ R together enclose all the upper half-plane poles of f (z). Then, by the Residue
Theorem

R∫
−R

f (x)dx +
∫
CR

f (z)dz = 2πi
∑
+

Res[f (z)]. (3.3.6)
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Figure 3.1: The contour used in the integration performed in equation (3.3.6).

From (iii) , we must have |zf (z)| < ε(R) for all points on CR , where ε(R) is a positive
number that depends only on R and tends to zero as R →∞. Thus,∣∣∣∣∣∣

∫
CR

f (z)dz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
π∫

0

f (Reeθ)Reiθ idθ]

∣∣∣∣∣∣ < ϵ(R)
π∫

0

dθ

and, as R → ∞, the integral around CR tends to zero. Therefore, if (iv) is satis�ed it
follows that

∞∫
−∞

f (x)dx = lim
R→∞

R∫
−R

f (x)dx = 2πi
∑
+

Res[f (z)].

If the conditions in the statement of the theorem hold in the lower half-plane
rather than the upper, then the semi-circular contour must be chosen to lie in that
half-plane and equation (3.3.6) becomes

−
R∫

−R

f (x)dx +
∫
CR

f (z)dz = 2πi
∑
−

Res[f (z)]. (3.3.7)

The minus sign in front of the integral along the real axis is necessary to preserve a
counter-clockwise direction of integration. Thus, in the limit as R →∞, we obtain

∞∫
−∞

f (x)dx = −2πi
∑
−

Res[f (z)].

The condition xf (x) → 0 as |x| → ∞ is not in itself su�cient to guarantee the ex-

istence of
∞∫
−∞
f (x)dx. Thus, conditions (iii) and (iv) are both required in the statement

of the theorem.
A particular class of functions which satisfy all four conditions are the rational

functions f (z) = P(z)/Q(z) where
i the degree of Q exceeds that of P by at least 2 , and
ii Q has no real zeros.
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We shall illustrate the use of the theorem by evaluating two improper integrals whose
integrands are rational functions of this type.

Consider the integral

I =
∞∫
0

x2
(x2 + 4)2(x2 + 9)dx

which, because its integrand is an even function of x, can be rewritten as

I = 1
2

∞∫
−∞

x2
(x2 + 4)2(x2 + 9)dx.

The numerator of
f (z) = z2

(z2 + 9)(z2 + 4)2

has degree 2, while its denominator has degree 6. In addition, the denominator has
simple zeros at z = ±3i and second order zeros at z = ±2i. Thus, the conditions of the
theorem are satis�ed and sowe need only calculate the residues of f (z) at its two poles
in the upper half- plane to evaluate I.

Using equation (3.2.3) , we have

Res[f (3i)] = lim
z→3i

z2
(z + 3i)(z2 + 4)2 = 3i

50

while, from (3.2.2) ,

Res[f (2i)] = lim
z→2i

d
dz

[
z2

(z2 + 9)(z + 2i)2

]
= lim
z→2i

(z2 + 9)(z + 2i)22z − z2[2z(z + 2i)2 + 2(z2 + 9)(z + 2i)]
(z2 + 9)2(z + 2i)4 = − 13i200 .

Equation (3.3.4) then yields

I = 1
2

∞∫
−∞

f (x)dx = πi
[
3i
50 −

13i
200

]
= π
200 .

Next, consider the integral

I =
∞∫
0

1
x4 + a4 dx, a > 0.

We again take advantage of the evenness of the integrand to write

I = 1
2

∞∫
−∞

1
x4 + a4 dx
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and then consider the analytic properties of the function f (z) = (z4 + a4)−1. As
in the preceding example the degree of the denominator exceeds that of the nu-
merator by four and none of the zeros of the denominator are real. Indeed, the
zeros, which are poles of f (z), are all simple and are located at the points z =
aeiπ/4, aei3π/4, aei5π/4, aei7π/4. Of these, only the �rst two are in the upper half-plane.

The simple form of f (z) makes equation (3.2.4) the most convenient method for
calculating its residues. We �nd

Res[f (α)] = lim
z→α

1
d
dz (z4 + a4)

= 1
4α3

where α denotes either aeiπ/4 or aei3π/4. Thus, Res[f (aeiπ/4)] = e−i3π/4
4a3 = − e

iπ/4

4a3 and
Res[f (aei3π/4)] = e−i9π/4

4a3 = e−iπ/4
4a3 which yields, from equation (3.3.4),

I = 1
2

∞∫
−∞

f (x)dx = πi
4a3

[
e−π/4 − eiπ/4

]
= π
2a3 sin

π
4 = π

2
√
2a3

.

3.3.3 Improper Integrals Involving Trigonometric Functions

Fourier transforms play an important role in the description of wave motion, from
acoustics through optics to quantum mechanics. Concomitant with this importance
is a need for pro�ciency in the evaluation of real improper integrals of the form

∞∫
−∞

f (x)eikxdx,
∞∫
0

f (x) cos kxdx,
∞∫
0

f (x) sin kxdx.

Thus, a signal application of complex analysis follows from the recognition that if the
complex analogue of f (x), f (z), satis�es the conditions stated in the theorem proved
in the preceding subsection, the �rst of these integrals can be evaluated by means of
the formula

∞∫
−∞

f (x)eikxdx =


2πi

∑
+
Res[f (z)eikz], k > 0

−2πi
∑
−
Res[f (z)eikz], k < 0.

(3.3.8)

Separating both sides of this equation into their real and imaginary parts, we obtain
statements that address the other two integrals:

∞∫
−∞

f (x) cos kxdx =


−2π

∑
+
Im{Res[f (z)eikz]}, k > 0

2π
∑
−
Im{Res[f (z)eikz]}, k < 0.

(3.3.9)
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and,

∞∫
−∞

f (x) sin kxdx =


2π
∑
+
Re{Res[f (z)eikz]}, k > 0

−2π
∑
−
Re{Res[f (z)eikz]}, k < 0.

(3.3.10)

The recognition referred to above is that if k > 0 and if z lies on a semi-circle CR
in the upper half-plane, then |eikz| = |eikx|e−ky = e−ky ≤ 1 and, hence |f (z)eikz| ≤ |f (z)|
for all z on CR . Similarly, if k < 0 and CR is in the lower half-plane, then we again
have |f (z)eikz| = |f (z)|e−|k||y| ≤ |f (z)| for all z on CR . Thus, using one or the other of
the contours of the preceding theorem according to the sign of k , the contribution
from integration along CR goes to zero even faster than before as R →∞and equation
(3.3.8) results. Indeed, since eikz evidently acts as a “convergence factor”, one might
surmise that equation (3.3.8) applies to a wider class of functions than that de�ned by
the conditions of Section 3.3.2. A theorem known as Jordan’s Lemma con�rms this
expectation.
Theorem: If CR is a semi-circle in the upper (lower) half-plane, centre the origin and
radius R, and if f (z) satis�es the conditions
i f (z) is meromorphic in the upper (lower) half-plane,
ii f (z)→ 0 uniformly as |z| →∞ for 0 ≤ arg z ≤ π(−π ≤ arg z ≤ 0),

then,
∫
CR e

ikz f (z)dz → 0 as R →∞where k is any real positive (negative) number.
Proof: By (ii) we have, for all points on CR , |f (z)| < ε(R) where ε(R) is a positive num-
ber that depends only on R and tends to zero as R →∞. Now, for z on CR ,

|eikz| = |eikR(cos θ+i sin θ)| = e−kR sin θ .

Hence, ∣∣∣∣∣∣
∫
CR

f (z)eikzdz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
π∫

0

f (Reiθ)eikRe
iθ
iReiθdθ

∣∣∣∣∣∣ < ϵ(R)
R∫

0

e−kR sin θRdθ

= 2Rϵ(R)
π/2∫
0

e−kR sin θdθ

where the last step follows from the symmetry of sin θ about θ = π/2. But, (sin θ)/θ
decreases steadily from 1 to 2

π as θ increases from 0 to π
2 . Thus, if 0 ≤ θ ≤ π/2, sin θ ≥

2θ
π . Hence,∣∣∣∣∣∣

∫
CR

f (z)eikzdz

∣∣∣∣∣∣ ≤ 2Rϵ(R)
π/2∫
0

e−2kRθ/pidθ = πϵ(R)k [1 − e−kR] < πϵ(R)k ,

from which the theorem follows.
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We owe this theorem to Camille Jordan (1838-1922) whose Cours d’analyse was an
in�uential textbook for the French school of analysts. His fame rested much more on
his contributions to group theory than on those to analysis however. He was the leading
group theorist of his day, applying group theory to geometry and linear di�erential equa-
tions. Camille Jordan was born in Lyons and was rewarded for his accomplishments by
appointments as Professor at the Ecole Polytechnique and the College de France.

Jordan’s Lemma makes evident the proof of the following theorem.
Theorem: Let f (z) be subject to the following conditions:
i f (z) is meromorphic in the upper half-plane,
ii f (z) has no poles on the real axis,
iii f (z)→ 0 uniformly as |z| →∞, for 0 ≤ arg z ≤ π.

Then, for k > 0,
∞∫

−∞

f (x)eikxdx = 2πi
∑
+

Res[f (z)eikz]. (3.3.11)

If k < 0, and if f (z) is meromorphic in the lower half-plane and tends to zero uniformly
as |z| →∞ for −π ≤ arg z ≤ 0, then

∞∫
−∞

f (x)eikxdx = −2πi
∑
−

Res[f (z)eikz]. (3.3.12)

A particular set of functions that evidently satisfy the conditions of this theorem
is the rational functions f (z) = P(z)/Q(z), where
i the degree of Q(z) exceeds that of P(z) by at least one, and
ii Q(z) has no real zeros.

Example: Consider the integral

I =
∞∫
0

cos kx
x2 + a2 dx, a > 0.

Invoking the evenness of its integrand, we can set

I = 1
2

∞∫
−∞

cos kx
x2 + a2 dx.

The function f (z) = (z2 + a2)−1 has simple poles at z = ±ai. Using equation (3.2.4) we
�nd the residues at these poles

Res[f (z)eikz]z=±ai = lim
z→±ai

eikz
2z = ∓i e

∓ka

2a .
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Therefore, applying our new theorem, we have

I = 1
2

∞∫
−∞

f (x) cos kxdx =
{
−π Im[−ie−ka/2a], k > 0
+π Im[+ie+ka/2a], k < 0

or, I = π
2a e

−|k|a.
Often, some care is needed when replacing cos kx or sin kx by the real or imaginary
part of eikx in an application of (3.3.11) or (3.3.12). For example, although the improper
integral

∞∫
0

sin kx
x dx = 1

2

∞∫
−∞

sin kx
x dx

is convergent, it cannot be equated to the imaginary part of
∞∫

−∞

eikx
x dx

because the pole at x = 0 renders the latter unde�ned. Fortunately, the analytic prop-
erties of sin kz

z o�er an alternative route to the successful evaluation of the integral.
Since sin kz

z is entire, its integrals are independent of path everywhere in the �nite
plane. In particular, we are free to deform the contour along the real axis to obtain
one that avoids the troublesome point z = 0. Any �nite deformation will do and, as
shown in Figure 3.2, a semicircle with centre at z = 0 makes a convenient choice. De-
noting the resulting contour by C , we then have

I ≡ 1
2

∞∫
−∞

sin kx
x dx = lim

R→∞

1
2

R∫
−R

sin kx
x dx = lim

R→∞

1
2

∫
C

sin kz
z dz.

With z = 0 thus avoided, we can now make use of sin kz = 1
2i (e

ikz − e−ikz) to give us

Figure 3.2: A contour along the real axis is deformed by insertion of a semicircle with centre at the
origin.
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Figure 3.3: The closed contours used to evaluate I1 and I2 , respectively.

I = 1
4i [I1 − I2] , where I1 = lim

R→∞

∫
C
eikz
z dz and I2 = lim

R→∞

∫
C
e−ikz
z dz. Taking k to be posi-

tive, we can evaluate I1 by closing the contour C with a semi-circle CR , provided that
the latter lies in the upper half-plane. Similarly, I2 can be evaluated by closing with
a semi- circle in the lower half-plane. These choices are dictated by Jordan’s Lemma
which assures us that the contributions from both semi-circles go to zero as R → ∞.
The closed contours are shown in Figure 3.3 which reveals that the simple pole at
z = 0 lies outside the one chosen for I1 but inside that used for I2. Thus, succes-
sively using Cauchy’s Theorem and the Residue Theorem, we conclude that I1 = 0
and I2 = −2πiRes

[
e−ikz
z

]
z=0

= −2πi, where the minus sign results from preserving a
counterclockwise direction of integration. Therefore,

I ≡
∞∫
0

sin kx
x dx = 1

4i (2πi) =
π
2 , k > 0.

Since sin kx is an odd function of k , our �nal result is
∞∫
0

sin kx
x dx =

{
π/2, k > 0
−π/2, k < 0.

Evidently, deforming the integration contour can be another valuable aid in the eval-
uation of real integrals. As we will see in Section 3.3.6 , it can be useful even when the
residue theorem is not required.

3.3.4 Improper Integrals Involving Exponential Functions

With exponential or hyperbolic functions present in the integrand, life gets somewhat
more complicated due to an unsatisfactory behaviour of the integrands at in�nity.
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Since these functions have an essential singularity at z = ∞, the integrands have no
uniform limit as |z| →∞. Consequently, one cannotmake use of a semi-circular arc to
close the initial contour. Instead, one de�nes a rectangular contour that exploits the
periodicity of these functions. The following example demonstrates what is involved.
Example: The improper integral

I ≡
∞∫

−∞

eax
cosh πx dx, −π < a < π

can be shown to converge provided that a is con�ned to the range indicated. The func-
tion f (z) = eaz/ cosh πz does not vanish uniformly as |z| → ∞ and, in fact, if z → ∞
along the imaginary axis, it does not vanish at all. Therefore, to evaluate I we shall
take advantage of cosh π(z ± 2i) = cosh πz. Thus,

ea(x+2i)
cosh π(x + 2i) = e

2ai
[

eax
cosh πx

]
and so,

R∫
−R

ea(x+2i)
cosh π(x + 2i)dx ≡

R+2i∫
−R+2i

eaz
cosh πz dz, Im z = 2

= e2ai
R∫

−R

eax
cosh πx dx

for any R. This suggests that we use the contour shown in Figure 3.4, since we have
just established that the integrals along its two horizontal segments are related by a
multiplicative constant. Therefore, if we can prove that the integrals along the vertical
segments give vanishing contributions in the limit R →∞, (which is not an unreason-
able expectation given the convergence of I) , then we can evaluate I by means of a
simple application of the residue theorem.

The integrals along the vertical segments are given by

IV = ±
2∫

0

ea(±R+iy)
cosh π(±R + iy) idy.

Now,
| cosh π(±R + iy)|2 = cosh2πR − sin2πy ≥ cosh2πR − 1 = sinh2πR.

Thus,
| cosh π(±R + iy)| ≥ sinh πR = 1

2 e
πR(1 − e−2πR)

and so, by Darboux’s Inequality,

|IV | ≤
4e−R(π∓a)
1 − e−2πR → 0
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Figure 3.4: The contour used in the evaluation of
∞∫
−∞

eax
cosh πx dx, −π < a < π.

as R →∞, provided that −π < a < π.
Hence, applying the residue theorem to the integral around the closed contour

shown in Figure 3.4 and taking the limit as R →∞, we obtain

I − e2ai I = 2πi
∑

poles within C

Res
[

eaz
cosh πz

]
,

where the �rst term on the left hand side comes from lim
R→∞

R∫
−R

eax
cosh πx dx and the second

from lim
R→∞

R+2i∫
−R+2i

eaz
cosh πz dz, Im z = 2. The singularities of eaz

cosh πz in the �nite plane are

simple poles located at the points z = 2n+1
2 i, n = 0, ±1, ±2, . . . , of which only two,

z = i/2 and z = 3i/2, lie inside the contour. The residues at these two poles are

Res
[

eaz
cosh πz

]
z=i/2

= eaz
d
dz cosh πz

∣∣∣∣∣
z=i/2

= e
ai/2

πi ,

Res
[

eaz
cosh πz

]
z=3i/2

= −e
3ai/2

πi .

Thus,

I(1 − e2ai) = 2πi
[
eai/2
πi −

e3ai/2
πi

]
or,

I = 2eai/2(1 − eai)
1 − e2ai = 2eai/2

1 − e2ai
and hence, our �nal result is

∞∫
−∞

eax
cosh πx dx = sec a2 , −π < a < π.
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3.3.5 Integrals Involving Many-Valued Functions

If the integrand of an integral from 0 to ∞ contains a factor like xα , where α is not
an integer, then we are apparently faced with the added complication that its com-
plex analogue zα is a multi-valued function. However, the supposed complication can
often be turned to one’s advantage and the means of doing so is to choose the func-
tion’s branch cut so that it too runs along the real axis from 0 to ∞. The reason for
this paradoxical choice is that any single valued branch of the function has a known
discontinuity across the cut and so integrals whose contours parallel the real axis im-
mediately above and below the cut are related by a simple multiplicative constant.
The next example illustrates how this can be very e�ectively exploited.
Example: Suppose that we wish to evaluate an integral of the form

∞∫
0

xα−1f (x)dx, α ≠ an integer,

where f (z) is a rational function which
i has no poles on the positive real axis, and
ii satis�es the condition zα f (z)→ 0 uniformly as |z| → 0 and as |z| →∞.

We start by considering the complex integral

I ≡
∫
C

zα−1f (z)dz (3.3.13)

where zα−1 denotes a speci�c branch corresponding to a choice of branch cut running
along the positive real axis and where C is a closed contour consisting of
i a large circle CR , centre the origin and radius R ,
ii a small circle Cr , centre the origin and radius r , and
iii two parallel straight lines, L1 and L2, which join CR and Cr on either side of the

cut.

Although C looks rather dissimilar to the contours in Figures 2.10 and 2.11, it shares
the distinction of being a “dogbone” contour. However, its most important feature at
this point is that it does not cross the cut thus permitting a single valued de�nition of
the integrand in (3.3.13) .

The �nal result will be independent of our choice of branch for zα−1 and so we
choose the simplest to work with and set zα−1 = |z|α−1ei(α−1)θ , 0 < θ < 2π. Thus,
just above the real axis, on L1, zα−1 = xα−1 while, just below the real axis, on L2,
zα−1 = xα−1e2πi(α−1).

Application of Darboux’s Inequality to the integrals around CR and Cr establishes
that they vanish as R → ∞ and r → 0 because we have required that |zα f (z)| → 0
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Figure 3.5: The closed contour of integration for the integral in equation (3.3.13).

when both |z| →∞ and |z| → 0. Therefore,

lim
R→∞

lim
r→0

∫
C

zα−1f (z)dz = −
∞∫
0

e2πi(α−1)xα−1f (x)dx +
∞∫
0

xα−1f (x)dx

where the �rst integral on the right is the contribution from L2 and the second is the
contribution from L1. Together these integrals give

[
1 − e2πi(α−1)

] ∞∫
0

xα−1f (x)dx = −2i sin παe−απi

∞∫
0

xα−1f (x)dx.

At the same time, the Residue Theorem gives

lim
R→∞

lim
r→0

∫
C

zα−1f (z)dz = 2πi
∑

all poles

Res[zα−1f (z)].

Thus, we �nally obtain
∞∫
0

xα−1f (x)dx = −πe
−iπα

sin πα
∑

all poles

Res[zα−1f (z)]. (3.3.14)

For a speci�c application of this result, consider the integral
∞∫
0

xα−1
x2+1dx. In order

that zα/(z2 + 1)→ 0 as |z| → 0 and as |z| →∞, we must restrict α so that it is greater
than zero but less than two. Then, since (z2 + 1)−1 has simple poles at z = ±i, we need
to calculate

Res
[
zα−1
z2 + 1

]
z=±i

= zα−1
2z

∣∣∣∣
z=±i

= −12(±i)
α .

But the principal values of (±i)α are eiαπ/2 and ei3απ/2, respectively. Thus, we �nd
∞∫
0

xα−1
x2 + 1dx =

πe−iπα
2 sin πα

[
eiαπ/2 + ei3απ/2

]
= π2

2 cos απ/2
sin απ = π2 cosec απ/2, 0 < α < 2.
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Example: Let us now consider the integral

I ≡
∫
C

f (z) ln zdz

where C is the same closed contour used in the preceding example (see Figure 3.5) ,
ln z denotes the single valued branch ln z = ln |z|+ iθ, 0 < θ < 2π, and f (z) is a rational
function with
i no poles on the real axis, and
ii the degree of its denominator polynomial exceeds that of its numerator by at least

two.

The �rst restriction on f (z) ensures that z = 0 is not a zero of its denominator and
hence, that zf (z) → 0 uniformly as z → 0. This is su�cient to ensure in turn that
the contribution from Cr again vanishes in the limit r → 0. Similarly, the second re-
striction ensures that the contribution from CR vanishes in the limit R →∞. Thus, we
have

lim
R→∞

lim
r→0

∫
C

f (z) ln zdz =
0∫

∞L2

f (z) ln zdz +
∞∫

0L1

f (z) ln zdz (3.3.15)

while, from the Residue Theorem, we know that

lim
R→∞

lim
r→0

∫
C

f (z) ln zdz = 2πi
∑

all poles

Res[f (z) ln z]. (3.3.16)

It may seem that we are on the threshold of deriving a formula for the evaluation
of improper integrals of the type

∞∫
0
f (x) ln xdx. However, since ln z = ln x on L1 and

ln z = ln x + 2πi on L2, equation (3.3.15) becomes

lim
R→∞

lim
r→0

∫
C

f (z) ln zdz = −2πi
∞∫
0

f (x)dx

which, together with (3.3.16) , yields
∞∫
0

f (x)dx = −
∑

all poles

Res[f (z) ln z]. (3.3.17)

In other words, we have found a new method of evaluating integrals over the half
range (0,∞) and, unlike our previous methods, it does not require the integrand to
be an even function of x.

We shall illustrate the use of (3.3.17) with the integral

I ≡
∞∫
0

1
x3 + a3 dx, a > 0.



110 | The Calculus of Residues

The function f (z) = (z3+a3)−1 has simplepoles at z = zkwhere zk = aei(π/3+2kπ/3), k =
0, 1, 2. The residues at these poles are

Res[f (zk)] =
1
3z2

∣∣∣∣
z=zk

= 1
3a2 e

−i(2π/3+4kπ/3), k = 0, 1, 2.

Thus,

2∑
k=0

Res[f (zk) ln zk] =
1
3a2 e

−i2π/3(ln a + iπ/3) + 1
3a2 e

−i2π(ln a + iπ)

+ 1
3a2 e

−i10π/3(ln a + i5π/3) = iπ
9a2 [e

−i2π/3 + 3 + 5e+i2π/3]

= −2
√
3π

9a2

and we obtain
∞∫
0

1
x3 + a3 dx =

2
√
3π

9a2 , a > 0.

While (3.3.17) is to some extent anunexpected bonus, it leaves uswith the problem
of evaluating

∞∫
0
f (x) ln xdx unresolved. If we impose the additional constraints that

f (x) be an even function and possess no poles on the negative as well as the positive
real axis, this can be addressed by using as a contour a large semi-circle in the upper
half-plane indented at the origin. The branch cut associated with ln z is then chosen
to lie in the lower half-plane. We leave as an exercise to use this construction to derive

∞∫
0

f (x) ln xdx = πi
∑
+
Res[f (z) ln z] + π

2

2
∑
+

Res[f (z)]. (3.3.18)

3.3.6 Deducing Integrals from Others

It is often possible to evaluate an integral merely by deforming its contour of integra-
tion until it coincides with a path on which the value of the integral has already been
determined, picking up 2πi times the residue of the integrand at any isolated singu-
larities encountered along the way. Our next two examples illustrate what is involved.
Examples: The improper integral I ≡

∞∫
−∞
eikx−ax

2
dx, k, a real and a > 0 is named after

Carl Friedrich Gauss on whom we will elaborate later. It may be recognizable as the
Fourier transform of the Gaussian function e−ax

2
. By setting

−ax2 + ikx = −a
(
x − ik

2a

)2
− k

2

4a ,
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Gauss’s integral becomes the complex line integral,

I = e−k
2/4a

∞−ik/2a∫
−∞−ik/2a

e−az
2
dz, z = x − ik/2a,

whose integrand is e−az
2
and whose contour of integration runs parallel to the real

axis and lies a distance k/2a below it. The value of the integral of e−az
2
is well known

when the integration contour is the real axis; speci�cally,
∞∫

−∞

e−ax
2
dx =

√
π
a .

Therefore, we shall attempt to evaluate I by integrating e−az
2
around a rectangle with

vertices −R − i k2a , +R − i
k
2a , +R, −R and then taking the limit as R →∞.

Figure 3.6: The contour used to evaluate Gauss’s Integral.

Since e−az
2
is entire, we obtain from Cauchy’s Theorem

ek
2/4a I =

∞∫
−∞

e−ax
2
dx + lim

R→∞

−R∫
−R−ik/2a

e−az
2
dz + lim

R→∞

R−ik/2a∫
R

e−az
2
dz. (3.3.19)

But on the vertical segments of the contour,∣∣∣∣∫ eaz
2
dz
∣∣∣∣ ≤ max

∣∣∣e−ax2 ∣∣∣ k2a = e−a(R
2−k2/4a2) k

2a

which vanishes in the limit R →∞. Thus, (3.3.19) yields

I = e−k
2/4a

∞∫
−∞

e−ax
2
dx =

√
π
a e

−k2/4a . (3.3.20)

For our second example we shall consider the class of integrals

I ≡
∞∫
0

xα−1
{

cos x
sin x

dx, 0 < α < 1. (3.3.21)
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These may be viewed as integrals of zα−1 Re(eiz) and zα−1 Im(eiz) along the positive
real axis. Thus, we require a contour on which zα−1eiz assumes a simpler and more
familiar form. If we set z = iy, then zα−1eiz becomes

ei(α−1)π/2yα−1e−y = −i
(
cos πα2 + i sin πα2

)
yα−1e−y .

Thus, the integral of zα−1eiz along the positive imaginary axis is
∞∫
0

−i
(
cos πα2 + i sin πα2

)
e−yyα−1idy =

(
cos πα2 + i sin πα2

) ∞∫
0

e−yyα−1dy.

The integral on the right hand side is so well known it has been assigned a name,
Euler’s Integral of the second kind. It provides a de�nition of the gamma function
which is the continuous variable generalization of the factorial function,

Γ(z) =
∞∫
0

e−yyz−1dy, Re z > 0

with
Γ(n) = (n − 1)!, n = 1, 2, . . . .

Evaluation of this integral provides values of Γ(α) for non-integer α. These can be
found in tabulated form in any standard compendium.

To evaluate I in (3.3.22), we shall integrate zα−1eiz around the �rst quadrant of a
circle of radius R and then let R →∞. However, since z = 0 is a branch point of zα−1,
we must subtract from the interior of the contour the �rst quadrant of a small circle
of radius r and take the additional limit r → 0. The complete contour is shown in
Figure 3.7.

Figure 3.7: The contour used to evaluate the integral equation (3.3.22).
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On Cr , z = reiθ and we have∣∣∣∣∣∣
∫
Cr

eizza−1dz

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

0∫
π/2

e−r sin θra−1e(a−1)iθreiθdθ

∣∣∣∣∣∣∣ ≤ ra
∣∣∣∣∣∣∣

0∫
π/2

dθ

∣∣∣∣∣∣∣ =
π
2 r

a ,

since |e−r sin θ| ≤ 1 for all r > 0 and 0 ≤ θ ≤ π/2. It follows immediately that∫
Cr e

izzα−1dz → 0 as r → 0, if α > 0.
If α < 1, zα−1 → 0 uniformly as |z| → ∞ and so, by the same argument as was

used to prove Jordan’s Lemma, we have
∫
CR e

izzα−1dz → 0 as R →∞.
Therefore, if 0 < α < 1, an application of Cauchy’s Theorem to the integral around

the closed contour in Figure 3.7 yields, in the limit as r → 0 and R →∞,

∞∫
0

eixxα−1dx +
0∫

∞

e−yyα−1ei(α−1)π/2idy = 0,

or,
∞∫
0

xα−1(cos x + i sin x)dx =
∞∫
0

e−yyα−1
(
cos πα2 + i sin πα2

)
dy.

Thus, equating real and imaginary parts, we conclude that
∞∫
0

xα−1 cos xdx = Γ(α) cos πα2

∞∫
0

xα−1 sin xdx = Γ(α) sin πα2 . (3.3.22)

3.3.7 Singularities on the Contour and Principal Value Integrals

An additional and rather serious type of integration impropriety is to have the inte-
gration path pass through a singularity of the integrand. In real variable analysis this
situation is addressed as follows.
De�nition: If a function of a real variable f (x) increases without limit as x → c, a <
c < b , we de�ne the improper integral of f (x) from a to b, to be

b∫
a

f (x)dx = lim
ε→0

c−ε∫
a

f (x)dx + lim
δ→0

b∫
c+δ

f (x)dx, (3.3.23)

provided that both limits exist.
Notice the analogy between this de�nition and that given by (3.3.2) for an im-

proper integral with an improper range of integration. The analogy continues with
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the de�nition of the Cauchy principal value integral,

℘

b∫
a

f (x)dx = lim
ε→0

 c−ε∫
a

f (x)dx +
b∫

c+ε

f (x)dx

 . (3.3.24)

The principal value may exist even if the improper integral does not. However, if the
latter does exist then the two are equal.

As soon as we avail ourselves of the added �exibility of complex variables, the
simplicity of this picture becomes muddied by the introduction of alternative ways of
de�ning the improper integral. These correspond to the various ways available of de-
forming the contour of integration to avoid the singular point. Two obvious choices
are to stop the integration just in front of the singularity and then pass by it on a
semi-circle of vanishingly small radius in either the clockwise (upper half-plane) or
the counter-clockwise direction (lower half-plane).

Even with only these two choices of how to avoid a singular point, one faces a
multiplicity of possible de�nitions of an improper integral if its integrand has several
singular points on the contour. For example, in Section 3.3.3 we found that

∞∫
−∞

eikx
x2 + a2 dx =

π
a e

−|k|a , a > 0.

Suppose that we change the relative sign in the denominator so that this integral be-
comes

I ≡
∞∫

−∞

eikx
x2 − a2 dx. (3.3.25)

Because the integrand now has simple poles at z = ±a, there are four possible de�ni-
tions of this integral corresponding to the four indented contours shown in Figure 3.8.

Each of the four integrals may be evaluated by an application of the Residue The-
orem if we close the contour and make use of Jordan’s Lemma. However, to do the
latter we must close each contour in the upper half-plane if k > 0, and in the lower
half-plane if k < 0. Thus, these integrals may receive contributions from none, one or
both of the poles, depending on the sign of k.

The residues at the poles are

Res
[

eikz
z2 − a2

]
z=±a

= ± e
±ika

2a .

Hence, the values of the integrals are

I(i) =
{

0, k > 0
2π
a sin ka, k > 0

(3.3.26)
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Figure 3.8: Four ways of avoiding the poles of (z2 − a2)−1 .

I(ii) =
πi
a e

i|k|a (3.3.27)

I(iii) =
−πi
a e−i|k|a (3.3.28)

I(iv) =
{

−2π
a sin ka, k > 0

0, k < 0.
(3.3.29)

In addition to these four de�nitions of the improper integral I, we still have the
possibility of using the principal value ℘

∞∫
−∞

eikx
x2−a2 dx, whose value we shall calculate

momentarily.
In the midst of so much ambiguity how can one attach a unique meaning to

such an integral when it arises in a physical problem? Fortunately, the physics of
the problem will always contain information that dictates how the singularities are
to be avoided and hence, lifts the ambiguity that is inherent to the mathematics. A
classic example that we will encounter when we discuss Green’s Functions involves
an integral almost identical to the I in (3.3.25) . We shall discover that causality, the
principle that causemust precede e�ect, is all that is required tomake a unique choice
of de�nition for the integral.

When an improper integral has only simple poles on its contour of integration, its
principle value can be related in a very straight forward way to the values obtained by
indenting the contour to avoid the poles. To be speci�c, let us consider the integral

I ≡
∞∫

−∞

f (x)
x − x0

dx

where there is no loss of generality inhaving chosen the real axis as contour but having
done so we now require that f (z) have no singularities there and that it be suitably
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behaved at in�nity. If we indent the contour to avoid z = x0 by means of a semi-circle
in the upper half-plane, (a clockwise semi-circle), I assumes the value

I∩ =
x0−ε∫
−∞

f (x)
x − x0

dx +
∞∫

x0+ε

f (x)
x − x0

dx +
∫
C

f (z)
z − x0

dz (3.3.30)

where C denotes a semi-circle with radius ε and centre at z = x0.
In the limit ε → 0, the �rst two terms in (3.3.30) yield the principal value of I while

the third term can be evaluated as follows. Since f (z) is holomorphic at z = x0, it can
be expanded in a Taylor series about this point. Thus,

lim
ε→0

∫
C

f (z)
z − x0

dz = lim
ε→0

∫
C

1
z − x0

∞∑
m=0

f (m)(x0)
m! (z − x0)mdz

= −
π∫

0

if (x0)dθ − lim
ε→0

∞∑
m=1

f (m)(x0)
m! εm

π∫
0

ieimθdθ = −iπf (x0) (3.3.31)

where we have used the fact that on C z − x0 = εeiθ , dz = iεeiθdθ, π ≥ θ ≥ 0.
Hence, (3.3.30) becomes

I∩ = ℘
∞∫

−∞

f (x)
x − x0

dx − iπf (x0). (3.3.32)

Similarly, ifwe indent the contourbelow thepolebymeansof a counter-clockwise
semi- circle,

I∩ = ℘
∞∫

−∞

f (x)
x − x0

dx + iπf (x0). (3.3.33)

Adding (3.3.32) and (3.3.33), we see that

℘

∞∫
−∞

f (x)
x − x0

dx = 1
2(I∩ + I∪) (3.3.34)

which, after appropriate generalization, provides a means of de�ning principal value
integrals for contours other than the real axis. And returning to our last example, it
gives us

℘

∞∫
−∞

eikx
x2 − a2 dx = −

π
a sin |k|a

merely by averaging either (3.3.26) and (3.3.29) or (3.3.27) and (3.3.28).
To obtain a further perspective on these issues, note that because f (z) is holomor-

phic in a neighbourhood of the real axis and well behaved at in�nity, the indented
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Figure 3.9: The contour that de�nes I∪ and an equivalent contour obtained by stretching it out be-
low the axis.

contour used for I∪ is completely equivalent to one which parallels the real axis a
distance ε below it. These two alternatives are pictured in Figure 3.9. Hence, we may
write

I∪ = lim
ε→0

∞−iε∫
−∞−iε

f (z)
z − x0

dz, z = x0 − iε

= lim
ε→0

∞∫
−∞

f (x)
x − x0 − iε

dx. (3.3.35)

The second equality shows that lowering the contour to avoid the singularity is equiv-
alent to raising the singularity (to z = x0 + iε) to avoid the contour.

Using this result together with the corresponding equation for I∩, , we can trans-
form (3.3.32) and (3.3.34) to read

lim
ε→0

∞∫
−∞

f (x)
x − x0 ± iε

dx = ℘
∞∫

−∞

f (x)
x − x0

dx ∓ iπf (x0). (3.3.36)

On the purely practical side, the concept of a principal value integral can be used
to simplify the evaluation of integrals like

∞∫
0

sin x
x dx. The method involves a simple

extension of the theorems of Sections 3.3.2 and 3.3.3.
Suppose that f (z) has a simple pole at z = x0. In someneighbourhood of that point

we can set f (z) = (z−x0)−1g(z) where g(z) is holomorphic andnon-zero at z = x0. Thus,
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if this is the only singularity on the real axis, we have
∞∫

−∞

f (x)dx

∣∣∣∣∣∣
∩

= ℘
∞∫

−∞

f (x)dx + lim
ε→0

∫
C

g(z)
z − x0

dz = ℘
∞∫

−∞

f (x)dx − iπg(x0)

= ℘
∞∫

−∞

f (x)dx − iπRes[f (x0)],

where the ∩ signi�es that we are using a contour along the real axis indented into the
upper half-plane to avoid z = x0. But, if zf (z) → 0 uniformly as |z| → ∞ and f (z) is
meromorphic in the upper half-plane, we can use the Residue Theorem to �nd

∞∫
−∞

f (x)dx

∣∣∣∣∣∣
∩

= 2πi
∑
+

Res[f (z)].

Thus,

℘

∞∫
−∞

f (x)dx = πiRes[f (x0)] + 2πi
∑
+

Res[f (z)]. (3.3.37a)

If meromorphy occurs in the lower rather than upper half-plane, this is replaced by

℘

∞∫
−∞

f (x)dx = πiRes[f (x0)] − 2πi
∑
−

Res[f (z)]. (3.3.37b)

Generalizing, we see that if a function f (z) has the requisite behaviour at in�nity,
is meromorphic in the appropriate half-plane, and has only simple poles on the real
axis, then

℘

∞∫
−∞

f (x)eikxdx = πi
∑
0
Res[f (x)eikx] +


2πi

∑
+
Res[f (z)eikz], k ≥ 0

2πi
∑
−
Res[f (z)eikz], k ≤ 0.

(3.3.38)

where
∑
0

denotes a sum over the poles on the real axis.

Example: As stated earlier, this result simpli�es the evaluation of integrals like
∞∫
0

sin x
x dx. We start by considering eiz

z whose only singularity in the �nite plane is

a simple pole at z = 0. The residue at this pole is unity and so, from (3.3.38) , we have

℘

∞∫
−∞

eix
x dx = πi.

By equating real and imaginary parts, this yields

℘

∞∫
−∞

cos x
x dx = 0
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℘

∞∫
−∞

sin x
x dx = π.

Thus, since sin x
x is entire, we must have

℘

∞∫
−∞

sin x
x dx =

∞∫
−∞

sin x
x dx

and so, with much less e�ort than before, we �nd
∞∫
0

sin x
x dx = π2 .

3.4 Summation of Series

The Residue Theorem can also be used to calculate the sums of certain in�nite series.
The principle is simple. The function sin πz has an in�nite sequence of zeros at the
points z = 0, ±1, ±2, . . . and so, cosec πz and cot πz each have an in�nite sequence of
simple poles at the same points. Their residues are

Res[cosec πz]z=±n =
1

π cos πz

∣∣∣∣
z=±n

= (−1)n
π , n = 0, 1, 2, . . . .

Res[cot πz]z=±n =
cos πz
π cos πz

∣∣∣
z=±n

= 1
π , n = 0, 1, 2, . . . .

Thus, if f (z) is ameromorphic functionwhose poles, z = zj , j = 1, 2, . . . , k, are distinct
from the zeros of sin πz, and if C is a contour that encloses thepoints z = l, l+1, . . . ,m,
then

m∑
n=l

f (n) = 1
2πi

∫
C

π cot πzf (z)dz − π
∑

zj inside C

Res[cot πzf (z)] (3.4.1)

and,
m∑
n=l

(−1)n f (n) = 1
2πi

∫
C

π cosec πzf (z)dz − π
∑

zj inside C

Res[cosec πzf (z)]. (3.4.2)

If we can ensure that the contour integrals go to zero as n → ∞, these two equations
can be used to sum the in�nite series

∑
n
f (n) and

∑
n
(−1)n f (n), respectively. With this

goal in mind, let us take f (z) to be a rational function, none of whose zeros or poles
are integers and such that |f (z)| → 0 as |z| → ∞. We then choose C to be the square
with vertices at z = (N + 1/2)(±1 ± i). This choice is based on the observation that

|cot πz| =

∣∣∣∣∣
(
cos2 πx + sinh2 πy
sin2 πx + sinh2 πy

) 1
2
∣∣∣∣∣
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so that on the vertical sides of the contour,

|cot πz| =

∣∣∣∣∣
(

sinh2 πy
1 + sinh2 πy

) 1
2
∣∣∣∣∣ = | tanh πy| ≤ 1,

while on the horizontal sides of the contour,

|cot πz| =

∣∣∣∣∣
(
sinh2 π(N + 1/2) + 1
sinh2 π(N + 1/2)

) 1
2
∣∣∣∣∣ = | coth π(N + 1/2)|

which tends to one as N → ∞. Thus, | cot πz| is bounded on C for all N . We shall
denote its upper bound by M.

Next, we note that for N su�ciently large and z on C, f (z) admits an expansion of
the form

f (z) =
∞∑
m=1

am
zm = a1z + a2z2 + . . . .

In addition, since
Res
[
cot πz
z

]
z=±n

= ± 1
πn , n = 1, 2, . . .

and cot πz
z = 1

z2 −
π
3 −

π3
45 z

2 − . . . , |z| < 1 so that

Res
[
cot πz
z

]
z=0

= 0,

the integral ∫
C

cot πz
z dz = 2πi

N∑
n=−N

Res
[
cot πz
z

]
z=n

= 0.

Thus, ∫
C

cot πzf (z)dz =
∫
C

cot πz
(
f (z) − a1z

)
dz.

But,
∣∣z (f (z) − a1

z
)∣∣ < ϵ(N) where ε(N)→ 0 as N → ∞. Therefore, invoking Darboux’s

Inequality, we have∣∣∣∣∣∣
∫
C

zf (z) cot πz dzz

∣∣∣∣∣∣ ≤ ϵ(N)M 1
N + 1/28(N + 1/2)

where we have used the fact that the minimum value of |z| on C is (N + 1/2) and that
the length of C is 8(N + 1/2). Thus, in the limit as N → ∞, the integral vanishes and
(3.4.1) becomes

∞∑
n=−∞

f (n) = −π
k∑
j=1

Res[cot πzf (z)]z=zj . (3.4.3)
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Evidently, the “background” integral continues to vanish when cot πz is replaced
by cosec πz and so, for the same set of rational functions f (z) we have

∞∑
n=−∞

(−1)n f (n) = −π
k∑
j=1

Res[cosec πzf (z)]z=zj . (3.4.4)

This rather clever technique for summing in�nite series will resurface when we
use it to sum a partial wave expansion of a quantum mechanical scattering ampli-
tude. Such expansions are in�nite series involving Legendre polynomials Pl(x), with
the index l being an angular momentum quantum number. Thus, this particular ap-
plicationwill introduce the idea of treating angularmomentumas a complex variable,
an innovation that had a major impact on subatomic physics in the 1960’s.

We shall now consider a few applications that speci�cally involve equations
(3.4.3) and (3.4.4).
Examples: To sum

∞∑
n=−∞

1
(n+ζ )2 we need the function f (z) = (z+ ζ )−2 which has a double

pole at z = −ζ . The residue of cot πz
(z+ζ )2 at z = −ζ is

Res
[
cot πz
(z + ζ )2

]
z=−ζ

= lim
z→−ζ

d
dz cot πz = −πcosec

2πζ .

Thus, (3.4.3) immediately gives us
∞∑

n=−∞

1
(n + ζ )2 = −πcosec2πζ . (3.4.5)

Now consider the series
∞∑
n=1

1
n2+ζ 2 and

∞∑
n=0

(−1)n
n2+ζ 2 . In both cases the relevant function

is f (z) = (z2 + ζ 2)−1. It vanishes uniformly as |z| → ∞ and has simple poles at z = ±iζ
with residues Res[f (±iζ )] = ± 1

2ζi . Thus, from (3.4.3), we have

∞∑
n=−∞

1
n2 + ζ 2 = 1

ζ 2 + 2
∞∑
n=1

1
n2 + ζ 2 = −π

[
cot iπζ
2ζi − cot(−iπζ )

2ζi

]
= πζ coth πζ

and so,
∞∑
n=1

1
n2 + ζ 2 = π

2ζ coth πζ −
1
2ζ 2 . (3.4.6)

Notice that if we set ζ = x
π , this becomes a series expansion of the Langevin function

coth x − 1
x =

∞∑
n=1

2x
x2 + n2π2 . (3.4.7)

Similarly, starting from (3.4.4) we �nd
∞∑

n=−∞

(−1)n
n2 + ζ 2 = 2

∞∑
n=0

(−1)n
n2 + ζ 2 −

1
ζ 2 = −π

[
cosec iπζ

2ζi − cosec(−iπζ )
2ζi

]
= πζ cosech πζ
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and hence,
∞∑
n=0

(−1)n
n2 + ζ 2 = 1

2ζ 2 + π
2ζ cosech πζ . (3.4.8)

As a �nal application we shall determine the sum of the series that corresponds
to the simplest rational function satisfying our asymptotic constraint, f (z) = (z − ζ )−1.
The series is

∞∑
n=−∞

1
n−ζ and (3.4.3) immediately determines its sum to be

∞∑
n=−∞

1
ζ − n = π cot πζ . (3.4.9)

Unlike the series in our previous examples, this one is not absolutely convergent. How-
ever,we canmake it so by adding 1

n to the nth term for each n ≠ 0. The addedquantities
cancel pair wise and so we obtain

π cot πζ = 1
ζ +

∞∑
n=−∞,n≠0

[
1

ζ − n + 1
n

]
. (3.4.10)

If we now treat ζ as a variable, we can integrate this series term by term to obtain

ln sin πz
πz =

z∫
0

[
π cot πζ − 1

ζ

]
dζ =

∞∑
n=−∞,n≠0

z∫
0

[
1

ζ − n + 1
n

]
dζ

=
∞∑

n=−∞,n≠0
ln
[(
1 − zn

)
ez/n

]
or,

sin πz = πz
∞∏

n=−∞,n≠0

(
1 − zn

)
e
z
n .

Combining factorswhich are symmetricwith respect to n = 0, this becomes the simple
product

sin πz = πz
∞∏
n=1

(
1 − z

2

n2

)
(3.4.11)

which is a complete factorization of the sine function in terms of its zeros.

3.5 Representation of Meromorphic Functions

In much of the preceding Section we represented constants with the symbol ζ even
though we have normally reserved it to represent a variable. We have done so because
if we now take it to be a variable , each of equations (3.4.5), (3.4.6), (3.4.8) and (3.4.10)
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becomes a partial fraction decomposition of a meromorphic function and thus, pro-
vides an explicit representation of that function in terms of its singularities. As such,
they are special cases of a result due toMittag-Le�erwho showed that anymeromor-
phic function can be expressed as a sum of an entire function and a series of rational
functions. We shall prove a restricted version of that theorem.

Let f (z) be a function whose only singularities in the �nite plane are simple poles
at z = zk(k = 1, 2, . . .) where 0 < |z1| ≤ |z2| ≤ . . . ≤ |zn| ≤ . . . . Let C1, C2, C3, . . . be a
sequence of circles with centre at the origin such that
i Cn encloses only the poles z1, z2, . . . , zn and does not pass through any other

poles of f (z), and
ii the radius Rn of Cn tends to in�nity with n.

Then, denoting the residue of f (z) at z = zk by rk , we have

1
2πi

∫
Cn

f (ζ )
ζ − z dζ = f (z) +

n∑
k=1

rk
zk − z

, (3.5.1)

where z is any point other than ζ = zk , k = 1, 2, . . . , n, within Cn . Writing this equa-
tion for z = 0 and subtracting the result from (3.5.1), we obtain

f (z) = f (0) +
n∑
k=1

rk
[

1
z − zk

+ 1
zk

]
+ z
2πi

∫
Cn

f (ζ )
ζ (ζ − z)dζ . (3.5.2)

Suppose now that the upper bound of |f (z)| on Cn is itself bounded by M as n → ∞.
Then, applying the Darboux Inequality to the integral in (3.5.2) we �nd∣∣∣∣∣∣

∫
Cn

f (ζ )
ζ (ζ − z)dζ

∣∣∣∣∣∣ ≤ 2πRnM
Rn(Rn − |z|)

which goes to zero as Rn → ∞. Hence, since Rn → ∞ as n → ∞, (3.5.2) yields the
Mittag- Le�er representation

f (z) = f (0) +
∞∑
k=1

rk
[

1
z − zk

+ 1
zk

]
. (3.5.3)

One can show that this series is uniformly convergent in any �nite region which does
not contain any of the poles of f (z).

Applying this theorem to f (z) = π cot πz − 1
z , we readily recover

π cot πz = 1
z +

∞∑
n=−∞,n≠0

[
1

z − n + 1
n

]
which we obtained earlier by treating z as a constant and summing the series. As a
more general application, let f (z) be an entire function which has only simple zeros,
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none of them being at the origin. Its logarithmic derivative d
dz Ln f (z) =

f ′(z)
f (z) is mero-

morphic, possesses simple poles at the simple zeros of f (z), and is easily shown to be
suitably bounded away from the poles. Thus, we can apply (3.5.3) to obtain

d
dz Ln f (z) =

f ′(0)
f (0) +

∞∑
k=1

[
1

z − zk
+ 1
zk

]

where we have used the fact that Res
[
f ′(z)
f (z)

]
z=zk

= f ′(z)
f ′(z)

∣∣∣
z=zk

= 1 for all k = 1, 2, . . . .
Integrating term by term and then exponentiating, this yields

f (z) = f (0)ecz
∞∏
k=1

[
1 − z

zk

]
ez/zk (3.5.4)

where c = f ′(0)
f (0) and so is a constant.

The complete factorization of the sine function contained in equation (3.4.11) is
just a special case of this result. The corresponding factorization for the cosine is

cos z =
∞∏

k=−∞

[
1 − 2z

(2k + 1)π

]
e2z/(2k+1)π . (3.5.5)
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4 Dispersion Representations
4.1 From Cauchy Integral Representation to Hilbert Transforms

A recurrent theme thus far is that an analytic function is completely determined
by its singularities. We have seen this principle manifested successively for constants
(Liouville’s Theorem), rational functions and most recently, meromorphic functions
with simple poles. In this Section we shall take another step by discovering how func-
tions with branch points can be represented in terms of their behaviour along the as-
sociated branch cuts. In so doing, we shall encounter a mathematical tool that has
been found to be very useful in several �elds of modern physics.

Suppose that we have a function f (z) which is holomorphic throughout the com-
plex plane except for a cut extending from x0 to∞along the positive real axis. Suppose
further that f (z) satis�es the conditions

f (z*) = f *(z), |f (z)| → 0 as |z| →∞, and |(z − x0)f (z)| → 0 as |z − x0 | → 0.

The �rst of these conditions is sometimes referred to as a reality condition since, as
we shall see in Section 4.2, it implies that f (x) is real for x < x0.

The Cauchy Integral representation of f (z) at a point z not on the cut is

f (z) = 1
2πi

∫
C

f (ζ )
ζ − z dζ (4.1.1)

where C is a contour like that shown in Figure 4.1. The contribution to the integral
from the large circle in C goes to zero as the circle’s radius R → ∞. Moreover, the
contribution from the small circle about z = x0 vanishes as ε → 0. Thus, in this double
limit we have

f (z) = lim
ε→0

1
2πi


∞+iε∫

x0 +iε

f (ζ )
ζ − z dζ −

∞−iε∫
x0 −iε

f (ζ )
ζ − z dζ


= lim
ε→0

1
2πi


∞∫
x0

f (ξ + iε)
ξ − z + iε dξ −

∞∫
x0

f (ξ − iε)
ξ − z − iε dξ

 .

Since z is not on the cut, we can neglect the ±iε in the denominators of the last two
integrals and write

f (z) = 1
2πi

∞∫
x0

lim
ε→0

[f (ξ + iε) − f (ξ − iε)]
ξ − z dξ . (4.1.2)

The numerator of the integrand in (4.1.2) is the discontinuity of f (z) across the
cut. Thus, all we need in order to compute f (z) at any point where it is holomorphic
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Figure 4.1: The contour used to derive a dispersion representation for a function with a cut along the
real; axis segment x0 ≤ x < ∞.

is a knowledge of its behaviour along its branch cut singularity. One of our initial
assumptions allows us to cast this relationship in a somewhat simpler form. Since
f *(z) = f (z*), we have

lim
ε→0

[f (x + iε) − f (x − iε)] = lim
ε→0

[f (x + iε) − f *(x + iε)]

= lim
ε→0

2i Im f (x + iε) = 2i Im f+(x) (4.1.3)

where we have de�ned

f+(x) = lim
δ→0+

f (x + iδ). (4.1.4)

Inserting (4.1.3) into (4.1.2) gives us

f (z) = 1
π

∞∫
x0

Im f+(ξ )
ξ − z dξ . (4.1.5)

This is an example of what physicists call a dispersion relation, a title which has
its origin in the theory of optical and X-ray dispersion at the turn of the (19th) century.
In optics a dispersion relation is an integral relationship between the refractive (real)
and absorptive (imaginary) parts of the refractive index, the variable of integration
being the frequency of the incident radiation. Whether mindful of the historic and
scienti�c signi�cance of the �rst such relationship, derived by Kramers and Kronig, or
appreciative of the virtues of a spare vocabulary, physicists apply the term “dispersion
relation” to any integral equation that links the real and imaginary parts of an analytic
function.

For reasons which we will explore at a later date the classical dispersion relations
were derived for functions for which one can only assume holomorphy in the upper



From Cauchy Integral Representation to Hilbert Transforms | 127

Figure 4.2: The contour used to derive the dispersion relation for a function f (z) that is holomorphic
only for Im z > 0.

half-plane, Im z > 0. Thus, in place of the contour of Figure 4.1, wemust use a semicir-
cle like that shown in Figure 4.2. Again using Cauchy’s Integral Representation as our
starting point and taking the double limit as R →∞ and ε → 0, we obtain in place of
(4.1.2)

f (z) = lim
ε→0

1
2πi

∞∫
−∞

f (ξ + iε)
ξ − z + iε dξ =

1
2πi

∞∫
−∞

f+(ξ )
ξ − z dξ . (4.1.6)

We now let z approach the real axis from above so that (4.1.6) becomes

f+(x) = lim
δ→0+

1
2πi

∞∫
−∞

f+(ξ )
ξ − x + iδ dξ .

But, using equation (3.3.36), this canbe rewritten in termsof aprincipal value integral:

f+(x) =
1
2πi℘

∞∫
−∞

f+(ξ )
ξ − x dξ +

1
2 f+(x)

or,

f+(x) =
1
πi℘

∞∫
−∞

f+(ξ )
ξ − x dξ . (4.1.7)

Finally, we take the real and imaginary parts of this equation to obtain the classical
dispersion relations

Re f+(x) =
℘

π

∞∫
−∞

Im f+(ξ )
ξ − x dξ (4.1.8)
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Im f+(x) =
−℘
π

∞∫
−∞

Re f+(ξ )
ξ − x dξ . (4.1.9)

From the point of view of a mathematician these relations establish that the real and
imaginary parts of f+(x) are reciprocal Hilbert transforms.

David Hilbert (1862-1943) was a German mathematician who laid the foundations
for much of modern mathematics including algebraic geometry and algebraic number
theory. Over his lifetime, he made important contributions to the axiomatic foundations
of geometry, integral equations, the calculus of variations, theoretical physics (which he
thought was too di�cult to be the domain of physicists alone), and mathematical logic.

In most applications Im f+(x) is known from experiment and Re f+(x) is then de-
termined by application of (4.1.8) . However, since x is typically a frequency or energy
variable, measurements can only bemade for values of x ≥ 0. In that event a crossing
symmetry such as f+(−x) = f *+(x) has to be invoked to allow (4.1.8) and (4.1.9) to be
written

Re f+(x) =
2
π℘

∞∫
0

ξ Im f+(ξ )
ξ2 − x2

dξ (4.1.10)

and

Im f+(x) =
−2x
π ℘

∞∫
0

Re f+(ξ )
ξ2 − x2

dξ (4.1.11)

respectively, which should look familiar to readers who have been introduced to the
Kramers-Kronig relation for indices of refraction.

4.2 Adding Poles and Subtractions

Returning to functions whose analytic properties are known throughout the complex
plane, we shall generalize the dispersion representation of equation (4.1.5) to accom-
modate functions possessing poles as well as cuts. Suppose that we have a function
f (z) which, in addition to the properties that resulted in (4.1.5) , has simple poles at
the points z = zk , k = 1, 2, . . . , n, none of which lie on the branch cut. Denoting the
residue of f (z) at z = zk by rk , equation (4.1.2) now becomes

f (z) +
n∑
k=1

rk
zk −z

= lim
ε→0

1
2πi


∞+iε∫

x0 +iε

f (ζ )
ζ − z dζ −

∞−iε∫
x0−iε

f (ζ )
ζ − z dζ

 .

Thus, (4.1.5) is replaced by

f (z) =
n∑
k=1

rk
z − zk

+ 1
π

∞∫
x0

Im f+(ξ )
ξ − z dξ . (4.2.1)
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Notice that the sum in this equation is that of the principal parts of f (z) at the poles
z = zk. One can show that this continues to be the case should any of the poles be of
higher order than one.

A further generalization of (4.1.5) we should consider obtains when f (z) does not
vanish but is polynomial bounded as |z| →∞. If the only constraint at in�nity is that
|f (z)/ zn | → 0 for some n > 0, there is a variety of possible dispersion representations
for f (z) depending on what other information we have about the function. For exam-
ple, if we know the value of f (z) and its �rst (n − 1) derivatives at some point z = z0,
we can determine a dispersion representation for f (z)/(z − z0 )n and from it deduce a
representation for f (z) itself. Should we lack such detailed information about f (z) at
a speci�c point but at least possess knowledge of its value at each of a set of n points,
z1, . . . , zn , we can invoke (4.2.1) to obtain a dispersion representation for f (z)

(z−z1)...(z−zn)
and hence, one for f (z) as well.

To illustrate what is involved, let us assume that f (z) possesses all the properties
that led us to the representation in (4.1.5) save one; instead of |f (z)| → 0 as |z| → ∞,
we have |f (z)| → a non-zero constant. To compensate, we add one further piece of
information about f (z): its value at the point z = 0.Wenowhave su�cient information
to apply (4.2.1) to the function f (z)/z which has a single simple pole at z = 0 with
residue f (0). Thus, we obtain

f (z)
z = f (0)z + 1

π

∞∫
x0

Im f+(ξ )
ξ (ξ − z) dξ

or,

f (z) = f (0) + z
π

∞∫
x0

Im f+(ξ )
ξ (ξ − z) dξ . (4.2.2)

This is called a subtracted dispersion relation because it can be obtained (notionally)
by assuming the unsubtracted dispersion relation (4.1.5),

f (z) = 1
π

∞∫
x0

Im f+(ξ )
ξ − z dξ ,

subtracting from it its value at z = 0,

f (0) = 1
π

∞∫
x0

Im f+(ξ )
ξ dξ ,

and then combining the two integrals by means of

1
ξ − z −

1
ξ = z

ξ (ξ − z) .
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Subtracted dispersion relations are often used even when the asymptotic behaviour
of the function of interest does not make themmandatory. This is because the integral
in (4.2.2) is less sensitive to high values of ξ than is its counterpart in (4.1.5) . Thus, the
error committed in omitting experimentally inaccessible values of Im f+(ξ ) at high ξ is
decreased.

4.3 Mathematical Applications

The �rst application we shall consider is in the construction of functions once their
singularities are known.
Example: Suppose that we wish to �nd an explicit expression, preferably in closed
form, for the function f (z) that possesses the following properties:
1. it is holomorphic everywhere except for a branch cut along the real axis segments

−∞ < x ≤ −1 and 1 ≤ x < ∞ and a simple pole of residue −1 at z = 0;
2. it goes uniformly to zero as |z| →∞;
3. it satis�es f *(z*) = f (z) and so is real on the real axis segment −1 < x < 1;
4. its discontinuity across the cut is given by Im f+(x) = +(x2 +1 )−1 for x > 1 and

Im f+(x) = −(x2 +1 )
−1 for x < −1.

By means of an obvious generalization of (4.2.1) to deal with a cut running along two
real axis segments we can ascribe to this function the representation

f (z) = Res[f (0)]
z + 1

π

−1∫
−∞

Im f+(ξ )
ξ − z dξ + 1

π

∞∫
1

Im f+(ξ )
ξ − z dξ

= −1z −
1
π

−1∫
−∞

1
(ξ2 +1)(ξ − z)

dξ + 1
π

∞∫
1

1
(ξ2 +1)(ξ − z)

dξ

= −1z +
1
π

∞∫
1

1
(ξ2 +1)

[
1

ξ + z +
1

ξ − z

]
dξ .

Using partial fractions, we have
x∫

1
(ξ2 +1)(ξ + z)

dξ = 1
z2 +1 ln x + z√

x2 +1
+ z
z2 +1 arctan x

and
x∫

1
(ξ2 +1)(ξ − z)

dξ = 1
z2 +1 ln x − z√

x2 +1
− z
z2 +1 arctan x.

Thus,

f (z) = −1z +
1
π

1
z2 +1 Ln x

2 − z2
x2 + 1

∣∣∣∞
1
= −1z −

1
π

1
z2 +1 Ln 1 − z2

2 .
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The only limit that is placed on the diversity of applications of this sort is our
capacity to conjure up unique combinations of singular behaviour.

A further application of dispersion relations involves the evaluation of principal
value integrals. If we let z approach the cut on the real axis fromabove, (4.1.5) becomes

f+(x) = lim
δ→0+

1
π

∞∫
x0

Im f+(ξ )
ξ − x − iδ dξ =

1
π℘

∞∫
x0

Im f+(ξ )
ξ − x dξ + i Im f+(x)

or,

Re f+(x) =
1
π℘

∞∫
x0

Im f+(ξ )
ξ − x dξ , x > x0 . (4.3.1)

A similar result obtains when this limiting procedure is applied to (4.1.2) :

Re f+(x) =
n∑
k=1

rk
x − zk

+ 1
π℘

∞∫
x0

Im f+(ξ )
ξ − x dξ , x > x0 . (4.3.2)

Thus, integrals of the type ℘
∞∫
c

g(ξ )
ξ−x dξ , x > c, g(x) continuous on c ≤ x < ∞, can be

evaluated by identifying the harmonic conjugate of g(x, y), where g(x, 0) ≡ g(x). The
process of identi�cation involves intuition, guesswork, trial and error, or a combina-
tion of all three whichmeans that the evaluation of an arbitrary integral of this type is
by no means a straightforward exercise. Fortunately, it is neither di�cult nor particu-
larly time-consuming to generate a table of standard integrals to serve as an intuitive
guide. The next two examples will demonstrate just how easy is this latter task.
Examples: Consider the function f (z) = (z−1 )α−1

(z+1 )α , 0 < α < 1 whose behaviour at the
branch points z = ±1 and at in�nity permits an unsubtracted dispersion representa-
tion and hence, use of (4.3.1). If we choose the branch cut to lie along the real axis
segment −1 ≤ x ≤ 1, the principal branch of this function ( the branch that is real for
real z not on the cut ) will be f (z) = rα−1+

rα−
ei[(α−1) θ+ −α θ−], −π < θ± < π where r± and θ± are

de�ned as shown below.
Just above the cut r+ = lim

y→0

√
(1 − x )2 + y2 = (1−x), r− = 1+x, θ+ = π− and θ− = 0+.

Therefore,

f+(x) =
(1 − x )α−1

(1 + x )α
eiπ(α−1) = −(1 − x )

α−1

(1 + x )α
eiπα .

Taking its real and imaginary parts and substituting them into (4.3.1), modi�ed
for the �nite length of the cut, we obtain the simple result

℘

1∫
−1

(1 − ξ )α−1

(1 + ξ )α
1

ξ − x dξ = π cot πα
(1 − x )α−1

(1 + x )α
.
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Figure 4.3: The variables used to specify the branches of f (z) = (z − 1 )α−1 /(z + 1 )α.

As a �nal application, we consider the function f (z) = Ln(a−z)
z , a > 0 which has branch

points at z = a and z = ∞ and a simple pole at z = 0 with residue Ln a. In addition,
with its cut chosen to lie along the positive real axis, it has the requisite behaviour to
admit a dispersion representation and hence, application of (4.3.2).

With this choice of cut,

Ln(a − z) = ln |a − z| + i arg(a − z), −π < arg(a − z) < π.

and so, just above the cut
f+(x) =

1
x ln |a − x| −

iπ
x .

Therefore, (4.3.2) immediately yields

1
x ln |a − x| =

ln a
x + 1

π℘
∞∫
a

−π
ξ

1
ξ − x dξ , x > a

or,

℘

∞∫
a

1
ξ (ξ − x)dξ = −

1
x ln

x − a
a .
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5 Analytic Continuation
5.1 Analytic Continuation

Our focus in the last chapter was on the construction of an analytic function from
a knowledge of its singularities. More often than not, however, we are confrontedwith
the inverse problem: given some knowledge of a function in a restricted region of its
domainof holomorphy, determine its singularities. Thiswill be the focus of thepresent
chapter.

We have seen repeatedly that one need not know all that much about an analytic
function in order to determine its value everywhere in the complex plane or on its
Riemann surface. Cauchy’s Integral Representation can be viewed as the embodiment
of this property and thus far it has provided the key to exploiting it. We are now going
to �nd out what constitutes a minimal set of information for the determination of an
analytic function. The answer is one that is best exploited not by Cauchy’s Integral but
by one of its consequences, the Taylor series. In so doing, we shall also �nd out how
to use a representation of a function that is valid in one domain of the complex plane
to determine its values at points outside the domain or indeed, at any points where it
is holomorphic.

Our starting point is the following theorem which, despite its innocuous appear-
ance, is one of the most remarkable results of complex analysis.
Theorem: Let f1(z) and f2(z) be holomorphic in a domain D of the complex plane. If
the two functions coincide in any neighbourhood, however small, of a point z in D, or
even on a point set with an accumulation point in D, then they coincide throughout
D.
Proof: The function f1(z) − f2(z) is holomorphic throughout D and has a set of zeros
consisting of the points where f1(z) and f2(z) coincide, with an accumulation point in
D. We know that in any domain where it is holomorphic a function either has isolated
zeros or it is identically zero. Thus, f1(z) − f2(z) ≡ 0 or, f1(z) ≡ f2(z), for all z in D.

What this theorem establishes is that a holomorphic function is uniquely deter-
mined everywhere within its domain of holomorphy by its behaviour in the neigh-
bourhood of an arbitrary point of that domain. But how can one exploit this remark-
able property? Obviously not by means of a Cauchy Integral or dispersion representa-
tion or anything else of that ilk as we lack the necessary input information. However,
what we do have is precisely the information needed to determine a Taylor series rep-
resentation.

Suppose that we know the value of the function f (z) throughout a neighbourhood
of the point z = z0 which is a point lying within the function’s domain of holomorphy,
D. This is su�cient to permit calculation of the coe�cients

c0 = f (z0), c1 = f ′(z0), . . . , cm = 1
m! f

(m)(z0), . . .
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of the Taylor expansion of f (z) about z = z0 . Hence, we can set

f (z) =
∞∑
m=0

cm(z − z0 )m , (5.1.1)

for all values of z within a circle C0, |z − z0 | = R0 . The quantity R0, the radius of con-
vergence of the series, is equal to the distance from z0 to the nearest singularity of f (z)
and so will normally be larger than the radius of the neighbourhood from which we
started. Thus, equation (5.1.1) providesuswith ananalytic continuationof f (z)which
means that it determines the behaviour of f (z) outside its initial domain of de�nition.
Moreover, our theorem guarantees that this analytic continuation is unique.

The disc in which (5.1.1) converges likely represents a small fraction of the domain
of holomorphy D and so may not include a particular point z = z′0 that is of interest to
us. To analytically continue f (z) to such a distant point requires either a di�erent rep-
resentation, with amuch larger domain of validity, or a process involving the repeated
generation of Taylor series with overlapping circles of convergence. We shall consider
the second option �rst.

Figure 5.1: A function can be analytically continued along a curve C by means of repeated Taylor
expansions about appropriately chosen points of C.

From the de�nition of a domain we know that the points z0 and z′0 can be connected
by a simple curve C that lies entirely within D. As shown in Figure 5.1, let us take a
point z1 on C such that | z1 − z0 | < R0, that is, such that z1 lies within the circle of
convergence C0 of the Taylor series in (5.1.1) .

Since the series converges uniformly in every closed disc |z − z0 | ≤ r < R0, it can
be di�erentiated term by term to determine all derivatives of f (z) at all points of such
a disc. In particular, since we may choose an r for which | z1 − z0 | < r < R0, we can
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calculate

f (z1) =
∞∑
m=0

cm(z1 − z0 )m , f ′(z1) =
∞∑
m=1

cm m(z1 − z0 )m−1, . . . ,

1
n! f

(n)(z1) =
∞∑
m=n

cm
m!

n!(m − n)! (z1 − z0 )
m−n , . . . . (5.1.2)

But these are just the coe�cients c(1)m ,m = 0, 1, . . . , n, . . . of the Taylor series expan-
sion of f (z) about the point z = z1. Hence, we can now set

f (z) =
∞∑
m=0

c(1)m (z − z1 )m (5.1.3)

which is valid for all z within a circle C1 with centre at z = z1 and radius R1.
Since f (z) is holomorphic at all points on C, R1 must be non-zero and hence, it

must be possible to choose the point z = z1 so that C1 lies partly outside C0 . There-
fore, (5.1.3) provides a unique analytic continuation of f (z) from C0 to the somewhat
larger domain formed by the union of C0 and C1 . On the segment of the curve C that
lies outside C0 but within C1 we now choose a new point z = z2. Then, using the uni-
formly convergent series in (5.1.3) to calculate the coe�cients of the Taylor expansion
of f (z) about z = z2, we obtain a further analytic continuation of f (z). Repeating this
argument over and over, we proceed along C with overlapping circles C0, C1, C2, . . .
until one of the circles �nally covers the point z = z′0 thus enabling us to �nd the Tay-
lor expansion of f (z) about it as well. The behaviour of f (z) in the neighbourhood of
z = z′0 is then determined and our analytic continuation procedure is completed.

It is not possible to analytically continue through a singular point of f (z) since the
radii of the circles Ci tend to zero as we approach it. However, it is possible to ana-
lytically continue around the singularity and in the process, determine its location;
(see Figure 5.2). Thus, in principle at least, this technique can be used to continue
a function throughout its domain of holomorphy, starting from an arbitrary point of
that domain and using all possible paths to form chains of overlapping circles. The
continuation will be complete when the domain’s natural boundaries, which are
just the singular points of the function, have all been encountered. This also applies
to mutivalued functions for if we analytically continue around a branch point on one
Riemann sheet, we will eventually generate values appropriate to an adjacent sheet.
Thus, continuing along all possible pathswewill determine the behaviour of the func-
tion throughout its Riemann surface as well as the geometry of that surface.

As we have emphasized above, the only barrier this technique cannot surmount
is the natural boundary of the function’s domain of holomorphy. There are some func-
tions for which this is surprisingly limiting, at least in a geometrical sense. Consider
for example,

f (z) = 1 + z2 + z4 + z8 + z16 + . . . = 1 +
∞∑
m=1

z2
m
,
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Figure 5.2: Analytic continuation around a singular point.

whose circle of convergence is |z| = 1. It is readily shown that any value of z that
satis�es one of the equations

z2 = 1, z4 = 1, z8 = 1, . . . , z2
m
= 1, . . .

is a singularity of f (z). These values correspond to the points z = e2πik/ 2
m
, where k

and m are integers. On every arc of the unit circle there is an in�nite number of such
points. Thus, it is impossible to continue f (z) outside its circle of convergence since it
is also the natural boundary of the function’s domain of holomorphy.

While conceptually powerful, the technique of successive Taylor expansion of a
function is impractical. Fortunately, there are many alternative and more immediate
methods to e�ect analytic continuations. Before we examine some of them, however,
we need to delve a little deeper into the implications of the theorem that introduced
this Section.

Suppose that we are given two analytic functions f1(z) and f2(z) whose functional
forms di�er from each other and are valid only in the domains D1 and D2, respec-
tively. Suppose further that D1 and D2 overlap and that in their intersection f1(z) and
f2(z) are identical. Then, our theorem tells us that the (unique) result of analytically
continuing f1(z) into D2 must coincide with f2(z) and conversely the result of analytic
continuation of f2(z) into D1 must be identical to f1(z). In fact, f1(z) and f2(z) are just
local representations of the unique function

f (z) =
{
f1(z), z in D1

f2(z), z in D2

which is holomorphic throughout the combined domain D1 ∪D2.
Since the application of analytic continuation to f1(z) yields f2(z) and vice versa,

one says that f1(z) and f2(z) are analytic continuations of each other.
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Example: Consider the functions

f1(z) =
∞∑
m=0

zm
am+1 , |z| < |a| (5.1.4)

and

f2(z) =
∞∑
m=0

(z − b )m

(a − b )m+1
, |z − b| < |a − b| (5.1.5)

where, to ensure that the circle of convergence of f2(z) is not interior to that of f1(z), we
require that b/a not be real. Both series sum to the function (a − z )−1 . Thus, although
f1(z) and f2(z) have di�erent functional forms de�ned in di�erent albeit overlapping
domains, they represent the same analytic function, f (z) = 1

a−z . Each is a unique an-
alytic continuation of the other but, in particular, f2(z) provides the means of analyt-
ically continuing f1(z) to any point outside the circle |z| = |a| simply by varying the
value of the parameter b. However, if this is our primary interest we are by no means
restricted to the use of power series representations to accomplish it. Indeed, the two
integral representations

f3(z) =
∞∫
0

e−t(a−z) dt, Re z < Re a

f4(z) = −
∞∫
0

et(a−z) dt, Re z > Re a

which converge to (a − z )−1 in their respective domains of de�nition, provide a more
e�ective means of analytically continuing f1(z) outside its circle of convergence.

In this examplewe have a closed-form expression for f (z), namely (a−z )−1, which
is valid throughout the function’s domain of holomorphy. However, this is an excep-
tion rather than a norm. The functions that can be expressed in terms of a �nite num-
ber of elementary functions make up a very limited subset of the totality of analytic
functions.Wemust get used to the idea that to knowhow a function behaves at widely
separated points one usually requires two or more representations of very diverse ap-
pearance. A perfect example is provided by a function called the gamma function and
denoted Γ(z). Before introducing it, however, we need to complete our discussion of
analytic continuation.

We have required that two functions f1(z) and f2(z) have overlapping domains of
de�nition if they are to be analytic continuations of each other. As our next theorem
shows, this is unnecessarily restrictive.
Theorem: Let f1(z) and f2(z) be holomorphic in the simply connected domains D1
and D2, respectively and let D1 and D2 have in common as part of their boundaries a
simple curve C. Then, f1(z) and f2(z) are analytic continuations of each other if and
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Figure 5.3: The domains of de�nition of the two representations of f (z) = (a−z )−1 given in equations
(5.1.4) and (5.1.5).

only if they tend uniformly to common values along C; that is, if and only if they are
continuous in the regions D1 ∪C and D2 ∪C, respectively and f1(z) = f2(z) for all z on
C.
Proof: That the condition is necessary is obvious. Therefore, we need only show that
it is su�cient.

De�ne the function f (z) as follows:

f (z) =
{

f1(z) for z in D1 or C
f2(z) for z in D2 or C.

We must now show that f (z) is holomorphic throughout the entire domain

D = D1 ∪D2 ∪C.

Let Γ be any simple closed curve within D1 ∪D2 ∪C and consider the integral∫
Γ
f (z)dz. (5.1.6)

If Γ lies entirely within either D1 or D2, the integral vanishes by Cauchy’s Theorem.
If Γ lies in both D1 and D2 then, as shown in Figure 5.4, we can introduce two simple
closed curves Γ1 and Γ2 separated by an in�nitesimal distance so that they lie entirely
within D1 and D2, respectively and follow a section of the boundary C in opposite
directions. We can thereby write (5.1.6) as the sum of two integrals,∫

Γ
f (z)dz =

∫
Γ1
f (z)dz +

∫
Γ2
f (z)dz =

∫
Γ1
f1(z)dz +

∫
Γ2
f2(z)dz,
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Figure 5.4: A simple closed curve Γ ∈ D1 ∪ D2 ∪C is separated at the boundary C into two simple
closed curves Γ1 and Γ2.

both of which vanish. Thus, ∫
Γ
f (z)dz = 0

for any closed contour Γ contained within the simply connected domain D1 ∪D2 ∪C
and so, by Morera’s Theorem, f (z) is holomorphic there. Therefore, f1(z) and f2(z) are
analytic continuations of each other.

We are now in a position to prove a theoremwhich not only generalizes a common
feature of the elementary functions but provides an analytic continuation technique
that plays a key role in most physical applications of dispersion representations. It is
known as the Schwarz re�ection principle.
Theorem: Let f (z) be holomorphic in a domain D which has, as part of its boundary,
a segment C of the real axis and let D* be the mirror image of D with respect to that
axis. Then, if f (z) is continuous within the region D ∪ C and assumes real values on
C, its analytic continuation into the domain D* exists and is given by f *(z*) for all z in
D*.
Proof: Let Γ denote an arbitrary simple closed curve in D, described by the parametric
equation z = ζ (t), t1 ≤ t ≤ t2. Since f (z) is holomorphic in D, we have

∫
Γ
f (z)dz =

t2∫
t1

f [ζ (t)]dζ (t)dt dt = 0. (5.1.7)

Let Γ* be the image of Γ in D*, (Figure 5.5). Its parametric equation must then be z =
ζ *(t), t1 ≤ t ≤ t2, with increasing t corresponding to a clockwise (counter-clockwise)
traversal of Γ* if it produces a counter-clockwise (clockwise) circuit of Γ. Thus, inte-
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grating the function g(z) ≡ f *(z*) around Γ*, we have

∫
Γ*
g(z)dz =

t2∫
t1

g[ζ *(t)]d ζ
*(t)
dt dt =

t2∫
t1

f *[ζ (t)]d ζ
*(t)
dt dt =

 t2∫
t1

f [ζ (t)]dζ (t)dt dt

* = 0

by equation (5.1.7) . Hence, we know from Morera’s Theorem that f *(z*) is a holomor-
phic function of z throughout the simply connected domain D*. Moreover, since f (z)
is real on the real axis segment C, we have f *(z*) = f (z) for all z on C. Therefore, ac-
cording to the preceding theorem, f (z) and f *(z*) are analytic continuations of each
other and together de�ne the unique function

F(z) =
{

f (z), z in D or C
f *(z*), z in D* or C

(5.1.8)

which is holomorphic throughout the domain D ∪ D* ∪C.

Figure 5.5: The domain D and its mirror image through the real axis D*.

It follows immediately from (5.1.8) that

F(z*) = F*(z) for all z in D ∪ D* ∪C. (5.1.9)

Evidently, this relation must hold for any function that is holomorphic throughout a
domain intersected by the real axis and that assumes real values when its argument
is real. Thus, we now see why it was referred to as a reality condition in the preced-
ing Chapter. More importantly, we also see that our discovery in Chapter 1 that it is
satis�ed by each of the single valued elementary functions was indicative of a general
consequence of their de�nition and not mere coincidence.
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5.2 The Gamma Function

In this Section we shall introduce a variety of functional forms attributable to the
gamma function which is one of the more frequently encountered functions of math-
ematical physics. This will illustrate just how small need be our reliance on Taylor
series representations to e�ect analytic continuations and o�er further exposure to a
principal alternative, the use of integral representations.

The usual introduction to the gamma function is via Euler’s integral (of the second
kind) which, for real x > 0, gives

Γ(x) =
∞∫
0

e−t tx−1 dt. (5.2.1)

Whether the introduction is made in a physics or a calculus course, it will always be
pointed out that Γ(x) is the continuous variable generalization of the factorial func-
tion, a fact that we can readily verify from equation (5.2.1) . Writing tx−1 as 1

x
d
dt t

x and
integrating by parts, we obtain

Γ(x) = e−t
x

∣∣∣∣∞
0
+

∞∫
0

e−t
x tx dt.

The �rst term vanishes and so, using (5.2.1) to identify the second term, we have

Γ(x + 1) = xΓ(x), x > 0. (5.2.2)

Thus, since

Γ(1) =
∞∫
0

e−t dt = 1, (5.2.3)

setting x equal to n, an integer, yields

Γ(n + 1) = n!. (5.2.4)

This makes it clear that Γ(x) provides a smooth interpolation between the points de-
�ned by n!, n = 0, 1, 2, . . . ; explicit evaluation yields the curve shown in Figure 5.6.

The integral in (5.2.1) continues to converge when x is replaced by the complex
variable z provided that Re z > 0. Moreover, di�erentiating the function

Γ(z) =
∞∫
0

e−t tz−1 dt, Re z > 0 (5.2.5)

with respect to z, we obtain yet another integral that converges for Re z > 0. Thus,
(5.2.5) evidently de�nes an analytic function whose domain of holomorphy includes
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the right half-plane and hence, the positive real axis. Therefore, according to the the-
orem at the beginning of this Chapter, the integral in (5.2.5) is a representation for
Re z > 0 of the only analytic function that can assume the values given by (5.2.1) when
Im z = 0. Appropriately, we have denoted this function by Γ(z). An alternative and
somewhat simpler way of stating this result is to say that (5.2.5) is the analytic contin-
uation of (5.2.1) from the positive real axis to the entire right half- plane.

Figure 5.6: The dots indicate the discrete points de�ned by n ! ; the corresponding curve is Γ(x + 1).

With the help of the factorial property (5.2.2) we can use (5.2.5) to determine the nat-
ural boundary of the gamma function’s domain of holomorphy. This will determine
whether we need to seek an analytic continuation for Re z < 0 and if so, assist us with
the search.

The factorial property holds for complex aswell as real values of the arguments. In
addition, we know that the integral representation of Γ(z + 1) converges for Re z > −1
and hence, that the right hand side of

zΓ(z) = Γ(z + 1) (5.2.6)

is well-de�ned there. Thus, dividing through by z, we immediately obtain an analytic
continuation of (5.2.5) from the domain Re z > 0 to Re z > −1,

Γ(z) = 1
z Γ(z + 1) =

1
z

∞∫
0

e−t tz dt, z ≠ 0. (5.2.7)

Evidently, Re z = 0 is not a natural boundary of Γ(z). The sole source of the restric-
tion Re z > 0 that has been placed on the integral representation (5.2.5) is an isolated
singularity at z = 0. Taking the limit of (5.2.7) as z → 0 and recalling that Γ(1) = 1, we
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�nd
Γ(z)→ 1

z
which identi�es the singularity as a simple pole and the corresponding residue as
unity.

This procedure may be repeated as often as one likes to obtain

Γ(z) = Γ(z + n + 1)
(z + n)(z + n − 1)(z + n − 2)...(z) (5.2.8)

the right hand of which is holomorphic for Re z > −n except for simple poles at the
points z = 0, −1, −2, . . . , −(n−1). Thus, we conclude that Γ(z) is ameromorphic func-
tion and as such, can be continued anywhere in the left half-plane so long as we avoid
its simple poles at the negative integers and zero. This allows, for example, calculation
of its functional dependence on negative as well as positive real values of its argument
as shown for |x| < 5 in Figure 5.7.

To �nd the residue of Γ(z) at z = −n, we simply take the limit of (5.2.8) as z → −n
and use Γ(1) = 1. Thus,

Γ(z)→ 1
(−1 )n n!(z + n)

and hence,

Res[Γ(−n)] = (−1 )n
n! . (5.2.9)

Figure 5.7: Γ(z), as determined by (5.2.5) and (5.2.8) , plotted for z = x, real.

Anadditionalmeans of analytically continuing Γ(z) into the left half-plane is provided
by theproduct Γ(z)Γ(1−z). The integral representationof Γ(1−z) converges for Re z < 1
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and its singularities are simple poles located at the positive integers with correspond-
ing residues (−1 )n

(n−1)! . Thus, Γ(z)Γ(1 − z) is a meromorphic function with simple poles at
z = n, n = 0, ±1, ±2, . . . and residues (−1 )n. But these are precisely the same singular-
ities and residues as are possessed by the function π cosec πz. This suggests that

Γ(z)Γ(1 − z) = π cosec πz (5.2.10)

which we con�rm as follows.
From (5.2.5) we have, for 0 < Re z < 1,

Γ(z)Γ(1 − z) =
∞∫
0

e−u uz−1 du
∞∫
0

e−v v−z dv = 4
∞∫
0

e− x
2
x2z−1 dx

∞∫
0

e− y
2 y−(2z−1) dy

where we have introduced the dummy variables of integration u = x2 and v = y2 .
Making a further change of integration variables via r2 = x2 + y2, θ = tan−1(y/x) this
becomes

Γ(z)Γ(1 − z) = 4
∞∫
0

e− r
2
rdr

π/2∫
0

[cot θ ]2z−1 dθ = 2
π/2∫
0

[cot θ ]2z−1 dθ, 0 < Re z < 1.

With a �nal change of variable, cot θ = t, our product becomes

Γ(z)Γ(1 − z) = 2
∞∫
0

t2z−1

t2 +1
dt = π cosec πz, 0 < Re z < 1

where the last equality follows froman integral evaluation thatwe performed in Chap-
ter 3. By analytic continuation, this equality must hold wherever both sides are holo-
morphic. Thus,

Γ(z)Γ(1 − z) = π cosec πz for all �nite z.

This equation permits easy calculation of Γ(z) when z = 2n+1
2 , n = 0, ±1, ±2, . . .. Set-

ting z = 1
2 we have [

Γ
(
1
2

)]2
= π cosec π2 = π

and hence,
Γ
(
1
2

)
=
√
π.

Thus, using (5.2.6) , we have

Γ(n + 1/2) = (2n − 1)
2

(2n − 3)
2 . . . 32

1
2 Γ
(
1
2

)
= (2n − 1)!!

2n
√
π (5.2.11)

Γ(−n + 1/2) =
Γ
( 1
2
)

(1−2n)
2

(3−2n)
2 . . . (−3)2

(−1)
2

= 2n(−1 )n
√
π

(2n − 1)!! (5.2.12)
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for n = 1, 2, 3, . . . .
Although we now have several ways of analytically continuing our initial integral

representation of Γ(z), we have yet to �nd an alternative representationwhose domain
of validity includes at least part of the left half-plane. A number of possibilities present
themselves.
For example, since

1
Γ(z) =

sin πz
π Γ(1 − z)

is entire, we know fromChapter 3 that it must admit an in�nite product representation
which is valid everywhere in the �nite plane. Indeed, according to equation (3.5.4) we
can write

1
Γ(z + 1) =

1
Γ(1) e

cz
∞∏
n=1

(
1 + zn

)
e−z/n (5.2.13)

where c = − d
dz [ln Γ(z + 1)]

∣∣
z=0 or, since Γ(z + 1) = zΓ(z) and Γ(1) = 1,

1
Γ(z) = z e

cz
∞∏
n=1

(
1 + zn

)
e−z/n . (5.2.14)

To complete the speci�cation of this representation we need only make a more
tractable identi�cation of the constant c. Setting z = 1 in (5.2.13) , and using Γ(2) =
Γ(1) = 1, we �nd

e−c =
∞∏
n=1

(
1 + 1

n

)
e−1/n

or,

c =
∞∑
n=1

[
1
n − ln

(
1 + 1

n

)]
= lim
m→∞

[ m∑
n=1

1
n − lnm

]
≡ γ (5.2.15)

where γ = 0.57721566 . . . is a natural number known as the Euler-Mascheroni con-
stant. Thus, we �nally obtain the representation

1
Γ(z) = z e

γz
∞∏
n=1

(
1 + zn

)
e−z/n (5.2.16)

for all �nite z.
This was originally derived by Euler in a somewhat di�erent form. Using (5.2.15)

for γ we can rewrite (5.2.16) as

1
Γ(z) = z lim

m→∞
e−z lnm

m∏
n=1

(
1 + zn

)
and thus obtain

Γ(z) = lim
m→∞

m!
z(z + 1) . . . (z + m) m

z . (5.2.17)
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This is called Euler’s formula for Γ(z).
Although valid for all �nite z, (5.2.16) is seldom used other than to calculate the

logarithmic derivative of Γ(z),

ψ(z) ≡ d
dz ln Γ(z) = −

1
z − γ +

∞∑
n=1

[
1
n −

1
z + n

]
. (5.2.18)

The reason for this neglect is evident: neither (5.2.16) nor its alternative form (5.2.17)
admits readily to explicit evaluation for speci�c values of z. What we really need, if it
exists, is an integral representation of Γ(z) that is valid for all �nite z.

Our starting point in trying to �nd one is the integral representation that we al-
ready possess

Γ(z) =
∞∫
0

e−t tz−1 dt, Re z > 0. (5.2.19)

Its integrand has branch points at t = 0 and t = ∞; indeed, it is the behaviour of
the integrand in the neighbourhood of t = 0 that prevents convergence for Re z < 0.
However, if we join these points by a branch cut running along the positive real axis,
we should be able to use the same integrand together with an integration contour that
runs just above and below the cut to generate an alternative representation for Γ(z).
Therefore, let us consider ∫

C
e−t tz−1 dt (5.2.20)

where C is the contour shown in Figure 5.8 and tz−1 is de�ned to be the branch

tz−1 = e(z−1)[ln |t|+i arg t], 0 < arg t < 2π.

Figure 5.8: The contour in the complex t plane used in the integral (5.2.20).
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With this choice of integration path we not only avoid two troublesome points,
we do not cross the cut that joins them. Moreover, at the end-points t = ∞ ± iε the
integrand vanishes for all �nite values of z. Thus, our integral converges to a single-
valued function of z for all z in the �nite plane.

To �nd a relationship between the integral and Γ(z) we shall temporarily restrict
the domain of z to the right half-plane, Re z > 0. The contribution of the semi-circular
arc about t = 0 then vanishes in the limit as ε → 0 and so,∫

C
e−t tz−1 dt =

∞∫
0

e−t(e2πi t )z−1 e2πi dt +
∞∫
0

e−t tz−1 dt = (1 − e2πiz)
∞∫
0

e−t tz−1 dt

or, using (5.2.19) , ∫
C
e−t tz−1 dt = 2i sin πz eπi(z−1) Γ(z).

Both sides of this equation are entire functions of z. Therefore, although derived for
Re z > 0, it must hold for all �nite z and thus provides the representation

Γ(z) = 1
2i sin πz

∫
C
e−t(−t )z−1 dt, z ≠ 0, −1, −2, . . . . (5.2.21)

This is sometimes referred to as Hankel’s representation. With the help of (5.2.10) we
can invert it to obtain an integral representation of [Γ(z) ]−1 that is valid for all �nite z
without exceptions:

1
Γ(z) =

sin πzΓ(1 − z)
π = 1

2πi

∫
C
e−t(−t )−z dt. (5.2.22)

The utility of integral representations stems not only from their large domains of
validity but also from the fact that their integration contours can be deformed at will
so long as one never passes through singularities of their integrands. Thus, for exam-
ple, one can often render numerical evaluation very simple by an adroit matching of
the contour to the desired value(s) of the function’s argument. This will be illustrated
in the next Chapter in connection with evaluations for large values of |z|. A more im-
mediate demonstration of this versatility is provided by the simple task of evaluating
[Γ(z) ]−1 at z = ±n, n = 0, 1, 2, . . . .

When z assumes integer values the integrand in (5.2.22) becomes continuous
across the positive real axis and hence, the integration path can be compressed to
form a simple closed curve encircling t = 0. Evaluation of (5.2.22) then involves only a
simple application of either the Residue Theorem or Cauchy’s Theorem which yield,
respectively

1
Γ(z) =

{
1

(n−1)! n > 0
0 n ≤ 0

.
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5.3 Integral Representations and Integral Transforms

Evidently, integral representations canplay a very signi�cant role in the de�nition and
continuation of analytic functions. We shall conclude this Chapter with some general
comments about them. And to start with, we shall determine the circumstances under
which an integral representation de�nition is valid.
Theorem: LetG(z, t) be a continuous functionof both variableswhen z lies in a simply
connected domain D and t lies on a simple curve C. Further, for each such value of t,
let G(z, t) be holomorphic within D. Then, the function

f (z) =
∫
C
G(z, t)dt (5.3.1)

is also holomorphic within D and its derivatives of all orders may be found by di�er-
entiating under the integration sign, provided that
1. C is of �nite length, or
2. if C is of in�nite length, the integral is uniformly convergent for z contained in any

closed region interior to D.

Proof: Let Γ denote any simple closed curve in D. Then,∫
Γ
f (z)dz =

∫
Γ

{∫
C
G(z, t)dt

}
dz =

∫
C

{∫
Γ
G(z, t)dz

}
dt = 0

and hence, by Morera’s Theorem, f (z) is holomorphic in D. Here we have used the
fact that the order of integration of an iterated integral with a continuous integrand
can always be interchanged if it is uniformly convergent or �nite. We have also used
the holomorphy of G(z, t) in D and Cauchy’s Theorem to obtain the �nal equality with
zero.

Similarly, using Cauchy’s Di�erentiation Formula we have

df (z)
dz = 1

2πi

∫
Γ

f (ζ )
(ζ − z )2

dζ =
∫
C

{
1
2πi

∫
Γ

G(ζ , t)
(ζ − z )2

dζ
}
dt =

∫
C

∂G(z, t)
∂z dt.

The most frequently encountered integral representations are of the somewhat
specialized form known as integral transforms,

f (z) =
∫
C
K(z, t)g(t)dt. (5.3.2)

The function K(z, t) is called the kernel of the transform while g(t) is known as the
spectral function. Each distinct type of transform corresponds to a speci�c choice of
kernel and of integration contour C and each has an “existence theorem” that deter-
mines the class of spectral functions g(t) and the domain of z for which the integral
converges.
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We were introduced to the Hilbert transform,

f (z) = 1
π℘

∞∫
−∞

g(t)
t − z dt,

in the course of our discussion of dispersion relations in Section 4.1. Other transforms
thatwewill have occasion todiscuss in subsequent Chapters include theFourier trans-
form,

f (z) = 1
2π

∞∫
−∞

eitz g(t)dt,

and its two close relatives, the Laplace transform

f (z) = 1
2πi

c+i∞∫
c−i∞

etz g(t)dt

and the Mellin transform

f (z) = 1
2πi

c+i∞∫
c−i∞

zt g(t)dt.

Aswe shall see, transforms arise naturally in the solution of boundary value prob-
lemswhere the formof the di�erential equation togetherwith the nature of the bound-
ary conditions determines more or less uniquely which type of transform to use.
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6 Asymptotic Expansions
6.1 Asymptotic Series

Physical problems often require a reasonably detailed knowledge of how particu-
lar functions behave at in�nity. For example, if a function has an essential singularity
at z = ∞ one may need a measure of how rapidly it blows up (or vanishes) as z → ∞
along the real axis. Or, more detailed yet, one may actually have to evaluate the func-
tion for very large values of |z|. Recalling that few interesting functions are expressible
in terms of the so-called elementary ones, this might appear to be a rather tall order to
�ll. Power series or in�nite products are certainly unlikely to be helpful in most cases
and integral representations would seem to o�er a computational nightmare. Fortu-
nately, the latter admit a property that obviates the need to explicitly evaluate them
and hence, makes them an ideal starting point after all.

With only a modicum of manipulative e�ort, one can usually contrive to have an
integral representation yield up an asymptotic expansion of the function it repre-
sents. In its simplest form an asymptotic expansion is a series in inverse powers of
z which, while not convergent, has partial sums that provide an arbitrarily good ap-
proximation, for su�ciently large |z|, of the function to which it corresponds. Thus,
by conveying detailed information about the function’s large |z| behaviour, it meets
our analytical needs to the letter.

The idea of approximating something by a divergent series may seem a little para-
doxical. Therefore, we shall assist both our intuition and our credulity by running
through a simple example.
Example: Consider the function of a real variable

f (x) ≡
∞∫
x

1
t e

x−t dt, x > 0. (6.1.1)

By making the substitution u = t − x, we see that

f (x) =
∞∫
0

e−u
u + x du <

1
x

∞∫
0

e−u du = 1
x , x > 0

which immediately provides us with an upper limit on the values assumed by f (x). To
get a better idea of what these values may be, we now integrate (6.1.1) by parts. After
n such integrations, we �nd

f (x) = 1
x −

1
x2 + 2

x3 + . . . + (−1 )n−1(n − 1)!
xn + (−1 )n n!

∞∫
x

ex−t

tn+1
dt. (6.1.2)
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The form of this expression suggests that we examine the series
∞∑
m=0

um(x), um(x) =
(−1 )m m!
xm+1 . (6.1.3)

Applying the ratio test, we have

lim
n→∞

∣∣∣∣un+1(x)un(x)

∣∣∣∣ = lim
n→∞

n
x →∞

for �xed x. Thus, the series is divergent for all �nite values of x.
This is not the set-back it might seem. Letting Sn(x) ≡

n∑
m=0

um(x), we �nd the dif-

ference

|f (x) − Sn(x)| ≡ Rn(x) = (n + 1)!
∞∫
x

ex−t

tn+2
dt < (n + 1)!

∞∫
x

dt
tn+2

= n!
xn+1 . (6.1.4)

In other words, the error committed in approximating f (x) by Sn(x) is guaranteed to
be less than n!

xn+1 . Thus, for �xed n, we can always �nd an x su�ciently large to make
this error less than any prescribed number ε > 0. So, even though divergent, the se-
ries (6.1.3) has partial sums which provide an arbitrarily good approximation for f (x),
provided only that we restrict ourselves to su�ciently large values of x. Such a series
is called an asymptotic series and its relationship to f (x) is expressed formally by
rewriting (6.1.2) to read

f (x) ∼
∞∑
m=0

(−1 )m m!
xm+1 . (6.1.5)

The symbol ∼ implies approximation rather than equality and in so doing takes cog-
nizance of the divergent character of the series.

Notice that for a given value of x there is a value of n, N say, for which the upper
bound on the error associated with the approximation is a minimum. Consequently,
N!/ xN+1 is a measure of the ultimate accuracy with which f (x) can be computed. To
estimate N we note that

n!
xn+1 < n

n−1

xn+1 = e(n−1) ln n−(n+1) ln x .

Di�erentiating the right hand side of this inequality with respect to n and equating
the result to zero, we �nd

N ln Nx + N = 1 or, N ' x e(e/x−1) .

Thus, for x = 10, N = 5 which means that for this value of x, optimal accuracy is ob-
tainedwith just the �rst �ve terms in the series. The associated error is then ≤ 0.00012.
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De�nition: A series
∞∑
m=0

cm z−m, which either converges for large values of |z| or di-

verges for all values of z, is said to be an asymptotic series for f (z),

f (z) ∼
∞∑
m=0

cm z−m , (6.1.6)

valid in a given range of values of arg z, if, for any positive integer n,

lim
|z|→∞

{
zn
[
f (z) −

∞∑
m=0

cm z−m
]}

= 0 (6.1.7)

for arg z in this range.
An asymptotic series will be convergent only if the function it represents is holo-

morphic at z = ∞. Thus, more often than not, they are divergent series. As we have
seen, this does not adversely a�ect their ability to accurately represent functions for
large values of |z|. Since the di�erence between f (z) and the �rst (n + 1) terms of the
series (6.1.6), ∣∣∣f (z) − c0 − c1z − . . . − cnzn ∣∣∣ ,
is of order 1/|z|n+1, such a series is often better suited for numerical computation than
a convergent representation would be. Some caution is necessary however. The ad-
dition of too many terms of a divergent series will render an approximation for �xed
z worse rather than better. Indeed, as we learned from our simple example, there is
always an optimum number of terms that gives rise to the best approximation for any
given value of z.

If a function f (z) possesses an asymptotic series

f (z) ∼ c0 +
c1
z + c2z2 + . . . ,

the series coe�cients are uniquely determined by the equations

lim
|z|→∞

f (z) = c0

lim
|z|→∞

z
[
f (z) − c0

]
= c1

lim
|z|→∞

z2
[
f (z) − c0 −

c1
z

]
= c2

. . .

lim
|z|→∞

zn
[
f (z) − c0 −

c1
z − . . . −

cn−1
zn−1

]
= cn

. . . . (6.1.8)

This shows that a given function canonlyhaveoneasymptotic series.However, knowl-
edge of an asymptotic series does not determine a corresponding function since di�er-
ent functions cangenerate the sameasymptotic series. For example, e1/z and e1/z + e−z
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have the same asymptotic series

1 + 1
1!z +

1
2! z2 + 1

3! z3 + . . . ,

valid in the range | arg z| < π/2.
Many functions f (z) do not possess an asymptotic series; ez is an obvious exam-

ple. However, even when this is the case, one can often �nd a second function φ(z)
such that the quotient f (z)/φ(z) does possess a series,

f (z)/φ(z) ∼ c0 +
c1
z + c2z2 + . . . ,

for some range of arg z. For such functions we shall write

f (z) ∼ φ(z)
∞∑
m=0

cm z−m (6.1.9)

and we shall use the term asymptotic expansion to refer interchangably to both a
representation of this form as well as the more straightforward asymptotic series rep-
resentation of (6.1.6). The term c0 φ(z) in (6.1.9) is often called the dominant term of
the expansion.
Example: The exponential integral function

Ei(x) =
∞∫
x

e−t
t dt, x > 0

di�ers from the function (6.1.1) of our �rst example by a factor of ex. Thus, without
further e�ort we deduce that Ei(x) has the asymptotic expansion =

Ei(x) ∼ e−x
[
1
x −

1
x2 + 2

x3 + . . . + (−1 )n−1(n − 1)!
xn + . . .

]
∼ e−x

x

∞∑
m=0

(−1 )m m!
xm .

(6.1.10)

Comparing this result with (6.1.9), we see that Ei(x) has e−x
x as its dominant term.

One can show that an asymptotic series can be added, multiplied and integrated
term by term. However, it is not permissable in general to perform term by term di�er-
entiation.

To determine an asymptotic expansion one almost always proceeds from an in-
tegral representation of the function in which one is interested. This is due to two
exceptional results:Watson’s Lemma and theMethod of Steepest Descents.

6.2 Watson’s Lemma

George Neville Watson (1886-1965) was noted for the application of complex analysis to
the theory of special functions. His collaboration while at Trinity College, Cambridge on
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the (1915) second edition of E. T. Whittaker’s A Course of Modern Analysis (1902) pro-
duced an instant classic, a text that to this day is known simply as “Whittaker and Wat-
son”. In 1922, he published a second classic text, Treatise on the Theory of Bessel Func-
tions,which is an exhaustive study of all aspects of Bessel functions including especially
their asymptotic expansions. Watson became Professor at the University of Birmingham
in 1918, where he remained until 1951.

Watson’s Lemma applies to functions f (z) that can be represented by convergent
integral transforms of the form

f (z) ≡
∞∫
0

e−zt g(t)dt. (6.2.1)

Although this makes it somewhat exclusive, it still covers many of the cases which
occur in practice. All we require is that the spectral function g(t) be holomorphic, ex-
cept possibly for a branch-point at the origin, in the disc |t| < T and admit the series
representation

g(t) =
∞∑
m=1

cm tm/p−1, |t| 6 τ < T (6.2.2)

for some p > 0. Also, let us suppose that when t is real and positive and t > T, |g(t)| <
K ebt , K > 0, b > 0. One can then show that term by term integration of the series
together with the result

∞∫
0

e−zt tm/p−1 dt = 1
zm/p

∞∫
0

e−u um/p−1 du = Γ(m/p)
zm/p

, (6.2.3)

yields the asymptotic expansion

f (z) ∼
∞∑
m=1

cm Γ(m/p) z−m/p (6.2.4)

for | arg z| 6 π/2 − ε, where ε is an arbitrary positive number.
Example: To illustrate the use of the lemma, let us return to the function featured in
the �rst example of the previous Section,

f (x) =
∞∫
x

ex−t
t dt.

If we let v = 1
x (t − x), we can express f (x) as a transform of the appropriate type,

f (x) =
∞∫
0

e−xv 1
v + 1dv.
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Moreover,
1

v + 1 =
∞∑
m=0

(−v )m =
∞∑
m=1

(−v )m−1, |v| < 1.

Therefore, using (6.2.4), we immediately obtain the by now familiar asymptotic series

f (x) ∼
∞∑
m=1

(−1 )m−1 Γ(m) x−m =
∞∑
m=1

(−1 )m−1(m − 1)! x−m .

Similarly, the complimentary error function

erfc(x) = 1 − erf(x) = 2√
π

∞∫
x

e− t
2
dt

can be expressed as

erfc(x) = 2√
π
e− x

2
∞∫
x

e−(t
2 − x2) dt = 2√

π
e− x

2 x
2

∞∫
0

e− x
2 v[1 + v ]−1/2 dv.

where we have set x2 v = t2 − x2. Now,

(1 − v )−1/2 = 1 − v2 + 3 v2
8 − 5 v3

16 + 35 v4
128 − + . . .

=
∞∑
m=1

(−1 )m−1(2m − 3)!!
2m−1(m − 1)!

vm−1, |v| < 1.

Thus, using (6.2.4), we have

erfc(x) ∼ 2√
π
e− x

2 x
2

∞∑
m=1

(−1 )m−1(2m − 3)!!
2m−1

x−2m

∼ 2√
π
e− x

2
∞∑
m=1

(−1 )m−1(2m − 3)!!
2m

x−(2m−1) .

The method of steepest descent (which is also known as the saddle point
method) provides a much more general technique for generating asymptotic expan-
sions. Such generality does not come about without some cost however; this method
is a good deal more complicated than is Watson’s Lemma.

6.3 The Method of Steepest Descent

Consider the integral

F(z) =
∫
C
ezf (t) g(t)dt (6.3.1)
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where f (t), g(t) and C have all been chosen so that the integrand is holomorphic in
some domain containing C and goes to zero at either end-point of C. It is entirely rea-
sonable to expect that the most signi�cant contributions to F(z), for large values of
|z|, arise from those segments of C on which the real part of [zf (t)] is large and pos-
itive. However, we must be mindful of the fact that the imaginary part of [zf (t)] will
generally increase as |z| increases and that this will result in rapid oscillations of the
factor ei Im[zf (t)] and hence, in a complicated pattern of cancellations among the val-
ues assumed by the integrand. Such cancellations could make the evaluation of F(z)
a daunting if not impossible undertaking. However, we know that the integral is path
independent within the integrand’s domain of holomorphy. Therefore, we shall as-
sume that this domain permits deformation of the contour of integration C into a new
contour C0 on which Im[zf (t)] is constant whenever Re[zf (t)] assumes its largest val-
ues. Our �rst task then is to de�ne C0.

Since we want Re[zf (t)] to be large, we shall require C0 to pass through a point
t = t0 at which Re[zf (t)] has a relative maximum and hence, at which

f ′(t0) ≡
df (t)
dt

∣∣∣∣
t=t0

= 0. (6.3.2)

As we shall see, we now need only demand that near t = t0

Im[zf (t)] = Im[zf (t0)] (6.3.3)

to complete our speci�cation of C0.
We have already proven (the maximum modulus principle) that neither the real

nor the imaginary part of a function can have an absolute maximum or minimum
within its domain of holomorphy. However, we have yet to determine what does hap-
pen to a holomorphic function at a point where its �rst derivative vanishes. To do so
now, letw(x, y) ≡ u(x, y)+ iv(x, y) be a holomorphic functionwhose derivative dw

dz = 0
at some point z = z0 ≡ (x0, y0). Clearly, the �rst partial derivatives of both u(x, y) and
v(x, y) vanish at (x0, y0). Moreover, since u(x, y) and v(x, y) are harmonic, ∇2 u = 0
and ∇2 v = 0, we know that if, for example, ∂

2 u
∂ x2 < 0 at (x0, y0), then ∂2 u

∂2 y > 0 there.
In other words, if u(x, y0) has a maximum at x = x0, then u(x0, y) has a minimum at
y = y0. Thus, although it is not an extremum of u(x, y) and v(x, y), (x0, y0) is a mini-
max or saddle point of these two functions.

A further consequence of the holomorphy of w(z) is that the curves u(x, y) =
constant and v(x, y) = constant are the level curves for a conformal mapping and
so are everywhere orthogonal. Thus, referring to Figure 6.1, we see that if we proceed
along a curve v(x, y) = constant, u(x, y) will vary at its maximum rate. The curves
AB and CD are the two curves passing through the saddle point that correspond to a
constant value of v(x, y). On one of them, CD , u(x, y) increases as rapidly as possible;
on the other, AB , u(x, y) decreases as rapidly as possible.

Returning to our integral, we now recognize that condition (6.3.2) implies that
t = t0 is a saddle point of Re[zf (t)], while (6.3.3) and the requirement that Re[zf (t)]
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Figure 6.1: A saddle point

have a relative maximum at t = t0 uniquely identi�es C0 as the counterpart of the
curve AB. With this choice for C0, ezf (t) goes to its end-point values by the steepest
route possible, that is, by the path of steepest descent. Moreover, most of the value
of the integral must come from the neighbourhood of t = t0 since the modulus of
the integrand is at a maximum there while its phase is roughly constant. (The phase
is exactly constant if g(t) is real.) This becomes increasingly true as |z| → ∞ for the
maximum becomes larger and the descent to the end-point values becomes steeper
and steeper.

Assuming that we can deform our initial contour C to coincide withC0without en-
countering any of the singularities of f (t) or g(t), we may rewrite (6.3.1) as

F(z) = ezf (t0)
∫
C0
ez[f (t)−f (t0)] g(t)dt (6.3.4)

where, by construction, z[f (t)− f (t0)] is real and negative for all t on C0 except at t = t0
where it vanishes. This expression can be simpli�ed in appearance by de�ning a real
function τ(t) via the identity

ei arg z[f (t) − f (t0)] ≡ − τ2(t). (6.3.5)

We then have

F(z) = ezf (t0)
∫
C0
e−|z| τ

2(t) g(t)dt

= ezf (t0)
∫
Γ0
e−|z| τ

2
g[t(τ)]dt(τ)dτ dτ, (6.3.6)

where Γ0 is the image of C0 in the τ plane. We know that Γ0 runs along the real axis
and passes through the origin τ = 0. Moreover, while its end-points will vary from
case to case, this variation is no barrier to an asymptotic evaluation of (6.3.6). For, as
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|z| increases, the exponential in the integrand becomes su�ciently steep that the only
signi�cant contribution to F(z) comes from a small segment of Γ0 about τ = 0. Thus,
at the risk of committing only a negligible error wemay take the end-points of Γ0 to be
±∞ and write

F(z) ∼ ezf (t0)
∞∫

−∞

e−|z| τ
2
g[t(τ)] dtdτ dτ. (6.3.7)

To complete the asymptotic evaluation of F(z) we need now only express g(t) and
dt
dτ as functions of τ. This is most appropriately done by means of power series expan-
sions about τ = 0. Thus, leaving aside for the moment the problem of determining the
coe�cients in the series

g[t(τ)] dtdτ =
∞∑
m=0

cm τm , (6.3.8)

we substitute it into (6.3.7) to obtain

F(z) ∼ ezf (t0)
∞∑
m=0

cm
∞∫

−∞

e−|z| τ
2
τm dτ. (6.3.9)

The standard integral

Im =
∞∫

−∞

e−α τ
2
τm dτ, α > 0

is known to assume the values

Im =


√
π/α, m = 0

(2k − 1)!!
2k αk

√
π/α, m = 2k = 2, 4, . . .

0, m = 1, 3, 5, . . .

.

Thus, (6.3.9) can also be written as

F(z) ∼ ezf (t0)
√
π
|z|

[
c0 +

∞∑
k=1

c2k
(2k − 1)!!

2k
1
|z|k

]
(6.3.10)

which brings us to within a single step of our long sought-after asymptotic expansion
for F(z). That last step is to extract the dependence on arg z from the coe�cients c2k
to obtain a series in z rather than |z|. The result is

F(z) ∼ ezf (t0)
√
π
z

[
a0 +

∞∑
k=1

a2k
(2k − 1)!!

2k
1
zk

]
(6.3.11)

where the coe�cients

a2k = ei
2k+1
2 arg z c2k , k = 0, 1, 2, . . . . (6.3.12)
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The explicit calculation of the coe�cients a2k is a tedious chore because it in-
volves expressing t− t0 as a power series in τ by inversion of equation (6.3.5) and then
substituting into the power series expansion of g(t) about t = t0. The coe�cient of the
leading term is the sole exception; it is readily determined as follows.

From (6.3.8) we know that

c0 =
{
g[t(τ)]dt(τ)dτ

}∣∣∣∣
τ=0

= g(t0)
dt(τ)
dτ

∣∣∣∣
τ=0

. (6.3.13)

Moreover, since f ′(t0) = 0, we have

f (t) − f (t0) = f ′′(t0)
(t − t0 )2

2! + . . .

and so

τ2 = − eiθ f ′′(t0)
(t − t0 )2

2! + . . . (6.3.14)

where, for notational simplicity, we have set arg z = θ. Thus, inverting this series we
�nd to lowest order that

t − t0 =
√
2τ√

ei(π+θ) f ′′(t0)
+ . . .

and hence,

dt
dτ

∣∣∣∣
τ=0

= lim
τ→0

t − t0
τ =

√
2√

ei(π+θ) f ′′(t0)
. (6.3.15)

Substitution into (6.3.13) then yields

c0 =
√
2g(t0)√

ei(π+θ) f ′′(t0)
or, a0 =

√
2g(t0)√
eiπ f ′′(t0)

.

Therefore, retaining only the dominant term in the asymptotic expansion (6.3.11), we
have

F(z) ∼ g(t0)
√

2π
eiπ f ′′(t0)

ezf (t0)√
z

. (6.3.16)

To determine higher order terms we rewrite (6.3.14) as

e−iθ τ2(t) = f (t0) − f (t) =
∞∑
m=2

αm(t − t0 )m (6.3.17)

where αm = − f
(m)(t0)
m! , m > 2.

Then, since we seek a power series for (t − t0) about τ = 0, we set

t − t0 =
∞∑
m=0

βm τ
m+1 (6.3.18)
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and substitute this series into the right hand side of (6.3.17). Using( ∞∑
k=0

βk τ
k+1

)n

=
∞∑
m=0

γm τm+n (6.3.19)

where γ0 = βn0 , γm = 1
m β0

m∑
k=1

[k(n + 1) − m] βk γm−k ,m > 1, this yields

e−iθ τ2 = α2 τ2[β20 +2 β1 β0 τ + (β
2
1 +2 β2 β0) τ

2 +2(β2 β1 + β3 β0) τ
3

+ (β22 +2 β1 β3 +2 β0 β4) τ
4 + . . .]

+ α3 τ3[β30 +3 β1 β
2
0 τ + 3(β

2
1 β0 + β2 β

2
0) τ

2

+ (β31 +6 β2 β1 β0 +3 β3 β
2
0) τ

3 + . . .]
+ α4 τ4[β40 +4 β1 β

3
0 τ + (6 β

2
1 β

2
0 +4 β2 β

3
0) τ

2 + . . .]
+ α5 τ5[β50 +5 β1 β

4
0 τ + . . .]

+ α6 τ6[β60 + . . .]
+ . . . . (6.3.20)

Thus, equating coe�cients of like powers of τ we obtain the following equations ex-
pressing β0, β1, β2, . . . in terms of theαm ,m > 2:

e−iθ = α2 β20
0 = 2 α2 β1 β0 + α3 β

3
0

0 = α2(β21 +2 β2 β0) + 3 α3 β1 β
2
0 + α4 β

4
0

0 = 2 α2(β2 β1 + β3 β0) + 3 α3(β
2
1 β0 + β2 β

2
0) + 4 α4 β1 β

3
0 + α5 β

5
0

... .

Solving, we �nd

β0 =
e−iθ/2√α2

β1 = −
α3
2 α2

β20

β2 =
[
5 α23
8 α22

− α4
2 α2

]
β30

β3 =
[
−α

3
3
α32

+ 3 α3 α4
α22

− α5
2 α2

]
β40

β4 =
[
231 α43
128 α22

− 63 α4 α23
16 α32

+ 7 α24
8 α22

+ 7 α3 α5
4 α22

− α6
2 α2

]
β50

... . (6.3.21)
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Substitution of these coe�cients into (6.3.18) and term-wise di�erentiation �nally
produces the power series about τ = 0 for dt

dτ . To obtain the corresponding series for
g(t) requires still more tedious e�ort since we must substitute powers of (6.3.18) into

g(t) =
∞∑
m=0

g(m)(t0)
m! (t − t0 )m

and then collect coe�cients of like powers of τ. Fortunately, many interesting func-
tions have integral representations with g(t) = 1. In such cases the coe�cients cm of
equation (6.3.8) are given by

cm = (m + 1) βm ,m = 0, 1, 2, . . . . (6.3.22)

Combining this result with (6.3.21) and then (6.3.12), we �nd that the �rst three of the
coe�cients a2k in the asymptotic expansion (6.3.11) of F(z) are

a0 = α−1/22

a2 =
3
2 α

−3/2
2

[
5
4
α23
α22
− α4α2

]
a4 =

5
2 α

−5/2
2

[
231
64

α43
α42
− 63

8
α4 α23
α32

+ 7
4
α24
α22

+ 7
2
α3 α5
α22

− α6α2

]
(6.3.23)

where we recall that αm = − f
(m)(t0)
m! , m > 2.

Example: To illustrate the use of this formidable piece ofmathematicalmachinerywe
shall determine the asymptotic expansion of Γ(z+1). FromEuler’s de�nition, equation
(5.2.5), we have

Γ(z + 1) =
∞∫
0

e−u uz du, Re z > −1

= zz+1
∞∫
0

ez(ln t−t) dt, (6.3.24)

where we have set u = zt. Thus, in this case, f (t) = ln t − t and g(t) = 1.
Di�erentiating f (t) and setting the result equal to zero, f ′(t0) = 1

t0 − 1 = 0, we see
that f (t) possesses only one saddle-point located at t = t0 = 1. Hence, there is a single
path of steepest descent which, becausef (t0) = −1, is uniquely de�ned by

Im[zf (t)] = − Im z Re[zf (t)] 6 −Re z.

We do not need a more detailed identi�cation of the path because it is already clear
that the initial contour of integration, the positive real axis, can be deformed to lie
along it without encountering singularities of f (t). Thus, it only remains to evaluate
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a few derivatives of f (t) at t = t0 = 1 and thence, to calculate the asymptotic se-
ries coe�cients a0, a2, . . .. The �rst of these tasks is easily accomplished: f (m)(1) =
(−1 )m−1(m − 1)! and so, αm = (−1 )m

m ,m > 2. Substituting into (6.3.23) we then �nd

a0 = 21/2, a2 =
1
12 23/2, a4 =

1
864 25/2 .

Therefore, by equation (6.3.11), the asymptotic expansion of Γ(z + 1) is

Γ(z + 1) ∼
√
2π zz+1/2 e−z

[
1 + 1

12
1
z +

1
288

1
z2 + . . .

]
(6.3.25)

which is known as Stirling’s approximation.
Born in Scotland in 1692, James Stirling was a contemporary of and correspondent

with such notable mathematicians as Euler, DeMoivre and Newton. His most important
work is a treatise,Methodus Di�erentialis, published in London in 1730. It contains the
asymptotic formula for n! to which his name is attached. Stirling was believed to have Ja-
cobite sympathies which was an impediment to academic advancement in Hanoverian
Britain. Obliged to work as a mine manager, his mathematical output declined. Never-
theless, Euler secured his election to the Royal Academy of Berlin in 1746 just as Newton
had arranged for his election to the Royal Society in 1726. Stirling died in Edinburgh in
1770.

We shall have occasion to use themethod of steepest descent several times in sub-
sequent Chapters, particularly when it comes time to discuss the properties of Bessel
functions. However, what really commends it to physicists are its direct applications
in modern physics. Important examples are the evaluation of partition functions in
statistical mechanics and of generating functionals in the path integral formalism of
quantummechanics and quantum �eld theory.
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7 Padé Approximants
7.1 From Power Series to Padé Sequences

It can often happen that one can calculate the coe�cients cm up to any order m
in the power series

f (z) =
∞∑
m=0

cm zm (7.1.1)

for a function of interest without being able to determine an expression for the gen-
eral term and hence, without being able to determine the radius of convergence of the
series. If, as also happens rather frequently, one does not possess any other represen-
tation for the function, this can pose a serious problem. One has no way of locating
the singularities of f (z) and may not even be able to rule out the possibility of a sin-
gularity at z = 0 itself. Consequently, there is no way of knowing how rapidly the
series converges or evenwhether it converges at all for the values of z one is interested
in. A good illustration is provided by perturbation theory calculations of quantum
mechanical transition amplitudes. These are expressed as a power series in the “cou-
pling strength” g of the interaction responsible for the transition and one has a formal
mechanism for calculating the coe�cients in the series up to any desired order. The
sum of the calculated terms is then evaluated by setting g equal to its physical value.
In the case of the electromagnetic interaction, for example, g is just the �ne structure
constant α = e2 /}c = 1/137. However, the reason why perturbation theory is used at
all in such problems is the impossibility of obtaining exact solutions and the barriers
to this often imply an ignorance of the analytic properties of the solutions as functions
of g. In other words, one has no a priori knowledge of how or even whether the series
converges at the physically relevant value of g. To make matters worse, bound and
resonant states manifest themselves as singularities of transition amplitudes. Thus, a
perturbation series would appear to be totally irrelevant if one’s principal aim is the
very important one of identifying such states. Fortunately, one can use a Taylor-like
series, whether convergent or not, to de�ne sequences of Padé approximantswhich
providemuchmore versatile representations of the corresponding function than does
the power series which is their source.
De�nition: The [L/M] Padé approximant to f (z) is the rational function

fL/M(z) =
PL(z)
QM(z)

, QM(0) = 1 (7.1.2)

where PL(z) and QM(z) are polynomials of degree L and M respectively, such that
fL/M(z) and f (z) have the same �rst L +M derivatives at z = 0; that is, such that

PL(z)
QM(z)

−
∞∑
m=0

cm zm = O(zL+M+1) (7.1.3)
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where O(zL+M+1) represents terms of order L +M + 1 and higher: O(zL+M+1) = a zL+M+1

+b zL+M+2 + . . . for some a, b, . . . .
Henri Padé (1863-1953) was born in Abbeville which is a town in the Picardy region

of northern France. He graduated with his Agrégation de Mathématiques from the École
Normale Supérieure in Paris in 1886 and began a career teaching in secondary schools.
He also began a program of mathematical research, publishing his �rst paper in 1888
and commencing work on a doctoral thesis in 1890. Presented to the Sorbonne in1892,
Padé’s thesis provided the �rst systematic study of the representation of functions by
rational fractions or what we now call Padé approximants. In 1897 Padé received the
�rst of a series of university appointments culminating in that of Dean of the Faculty of
Science at the University of Bordeaux in 1906. In the meantime, in 1899, he published
another major work on Padé approximants and by 1908, when he left Bordeaux to be-
come a Rector of the French Academy, had written 41 papers of which 29 were on con-
tinued fractions and Padé approximants. He remained a Rector of the Academy, �rst at
Besançon then Dijon and �nally Aix-Marseille, until he retired at age 70 in 1934.

A moment’s re�ection suggests that the class of functions which can be usefully
approximated by rational functions is bound to be larger than the class which can
be approximated by polynomials. Rational functions have poles of their own and so
should be able to provide a representation even in the neighbourhood of singularities.
Thus, we are predisposed to expect that the domain of convergence of a sequence of
approximants fL/M(z) is a gooddeal larger than that of the corresponding Taylor series.
This expectation will be con�rmed; we shall �nd that Padé approximants provide a
method of analytically continuing functions whose de�nition is provided solely by
power series.

The coe�cients of the polynomials PL(z) and QM(z) are determined by equating
coe�cients of like powers of z in

PL(z) − QM(z)
L+M∑
m=0

cm zm = O(zL+2M+1), QM(0) = 1. (7.1.4)

The full and unique solution for fL/M(z) is thus found to be

fL/M(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

cL−M+1 cL−M+2 · · · cL+1
...

...
...
...
...

...
cL cL+1 · · · cL+M

L∑
k=M

ck−Mzk
L∑

k=M−1

ck−M+1zk · · ·
L∑
k=0

ckzk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
cL−M+1 cL−M+2 · · · cL+1

...
...

...
...
...

...
cL cL+1 · · · cL+M
zM zM−1 · · · 1

∣∣∣∣∣∣∣∣∣∣

(7.1.5)
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where ck ≡ 0 if k < 0 and the sums for which the lower limit is larger than the upper
limit are also to be replaced by 0. Such a formal and formidable expression does little
to inform one’s intuition. Therefore, we list below the approximants that correspond
to L,M 6 2:

f0/0 = c0, f1/0 = c0 + c1 z, f2/0 = c0 + c1 z + c2 z
2

f0/1 =
c0

1 − c1
c0 z

, f1/1 =
c0 + c

2
1 − c0 c2
c1 z

1 − c2
c1 z

, f2/1 =
c0 + c1 c2 − c0 c3c2 z + c22 − c1 c3

c2 z2

1 − c3
c2 z

f0/2 =
c0

1 − c1
c0 z +

c21 − c2 c0
c20

z2
, f1/2 =

c0 +[c1 + c0 c0 c3 − c1 c2
c21 − c0 c2

]z

1 + c0 c3 − c1 c2
c21 − c0 c2

z + c22 − c1 c3
c21 − c0 c2

z2

f2/2 =
c0 +

[
c1 + c0 (c1 c4 − c2 c3

c22 − c1 c3

]
z +
[
c2 + c1(c1 c4 − c2 c3)+c0(c

2
3 − c2 c4)

c22 − c1 c3

]
z2

1 + c1 c4 − c2 c3
c22 − c1 c3

z + c23 − c2 c4
c22 − c1 c3

z2
(7.1.6)

As this display presages, it is useful to group the approximants to a given function
in an in�nite array known as a Padé table:

f0/0 f0/1 f0/2 f0/3 · · ·
f1/0 f1/1 f1/2 f1/3 · · ·
f2/0 f2/1 f2/2 f2/3 · · ·
...

...
...

...

(7.1.7)

The approximants fL/M with L �xed comprise a row of the table, while those with M
�xed form a column. The set {fM/M} is called the diagonal sequence and together
with the paradiagonal sequences {fM+j/M} with j �xed comprise the ones of most
interest. The table subsumes several more specialized types of approximations. For
example, the �rst column consists of the approximations provided by truncating the
power series. Of more interest in numerical analysis, the sequence consisting alter-
nately of members of the diagonal and �rst paradiagonal,

f0/0, f1/0, f1/1, f2/1, f2/2, . . . , fM/M , fM+1/M , fM+1/M+1, . . . .,

corresponds to the approximations one would obtain by truncating the continued
fraction

f (z) = a0 +
a1 z

1 + a2 z
1 + a3 z

1 + a4 z
1 + . . .

.

Mathematicians have yet to establish an extensive theoretical knowledge of the
convergence properties of Padé approximants. Numerical experimentation indicates
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that the theorems that have been proven o�er a limited perspective of the represen-
tational potential of Padé sequences. Consequently, following the approach used by
Padé and by each successive generation of researchers, we shall examine by means
of speci�c examples how approximants imitate the analytic structure of the functions
they represent. Then, after a brief overview of the convergence theorems that have
been proven, we will engage in informed speculation on just how powerful a means
of analytic continuation Padé approximants really are.

7.2 Numerical Experiments

Let us commence our study of how approximants reconstruct the functions they rep-
resent by reminding ourselves that an [L/M] approximant is a meromorphic function
with L zeros and M poles where, for counting purposes, we are treating a zero (pole)
of order n as though it were n simple zeros (poles). Thus, other meromorphic func-
tions ought to pose a reasonably simple representational challenge. To con�rm this,
we look �rst at the trivial case provided by other rational functions.
Example: Substituting the coe�cients of the geometric series

f (z) =
∞∑
m=0

zm

into equation (7.1.5) we see that all Padé approximants except the sequence of trun-
cated series {fL/0} exactly reproduce the function they are supposedly approximating;
that is, we have

fL/M ≡
1

1 − z for all L > 0, M > 1.

This is not a coincidental result. One can readily show that if f (z) is a rational function
whose numerator is of degree I and denominator degree J, then

fL/M ≡ f (z) for all L > I, M > J.

Example:Amore demanding task is that of reproducing the poles and zeros of a func-
tion like tan z. Obviously, this is possible only in the limit that both L and M → ∞.
However, we should be able to get an intuitive feel for what will happen in that limit
by calculating the �rst few approximants to tan z and identifying the location of their
poles and zeros. Our starting point is the Taylor series

tan z = z + 1
3 z

3 + 2
15 z

5 + 17
315 z

7 + . . .

whose disc of convergence, |z| < π/2, is determined by the location of the �rst two
poles, z = ±π/2. For calculational convenience, we shall factor out the zero at z = 0
and treat the remainder as a series in z2:

tan z = zf (z2) where f(z2) = 1 + 1
3 z

2 + 2
15(z

2 )2 + 17
315(z

2 )3 + . . . .
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Using equations (7.1.6) we then �nd

f0/1(z
2) = 3

3 − z2 , f1/1(z
2) = 1

3
15 − z2
5 − 2 z2 ,

f2/1(z
2) = 1

15
630 − 45 z2 − z4

42 − 17 z2 , f0/2(z
2) = 45

45 − 15 z2 − z4 ,

f1/2(z
2) = 5 21 − 2 z2

105 − 45 z2 + z4 ,

which are the only approximants we can calculate in this order. Their poles and zeros
are compared with those of tan z/z in Table 7.1.

Table 7.1: Zeros and Poles of Approximants of f (z) = tan z/z.

Function Zeros Poles
f0/1 n/a ±1.732
f0/2 n/a ±1.601, ±4.191i
f1/1 ±3.873 ±1.581
f2/1 ±3.348, ±7.497i ±1.572
f1/2 ±3.240 ±1.571, ±6.522
tan z
z ±3.142, ±6.284, . . . ±1.571, ±4.712, . . .

The sequence consisting of the approximants f0/1, f1/1, f1/2, . . . acquires poles and ze-
ros in the same alternating order as they occur for the original function. Speci�cally,
f0/1 has only poles and no zeros. The poles, at z = ±1.732, are within about 10% of
the �rst two poles of tan z/z, at z = ±π/2. The next approximant in the sequence, f1/1,
has poles at z = ±1.581 and, in addition, has zeros at z = ±3.873. In other words, we
have now reproduced z = ±π/2 to within better than 1%, as well as the �rst two zeros
of tan z/z, z = ±π, to within about 25%. Finally, f1/2 locates these zeros to within less
than 3% and provides us with a �rst approximation to the location of the next pair of
poles at z = ±3π/2. Each successive approximant attempts to replicate the next pair
of poles or zeros in the same order as they are encountered with increasing values of
|z|. Moreover, each successive approximant replicates all previously located poles and
zeros with ever increasing accuracy. What is perhaps most impressive is that this de-
tailed picture of how tan z/z behaves for |z| > π/2 has been generated from a very
restricted knowledge of how that function behaves for |z| < π/2, namely, a few terms
of the function’s Taylor expansion about z = 0. Thus, this Padé sequence provides
a very powerful method of analytically continuing the Taylor expansion outside its
circle of convergence.

The other two approximants listed in Table 7.1 are also worthy of note. While f0/2
reproduces the poles at z = ±π/2 with much greater accuracy than does f0/1, it also
produces extraneous poles on the imaginary axis. Similarly, f2/1 has extraneous zeros
at z = ±7.5i. These features are attributable to the structural inability of these par-
ticular approximants to mimic the alternating character of the poles and zeros of the
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function they represent. If we were to go to higher order, we would �nd that the ex-
traneous poles and zeros are very unstable with respect to position. This is because
they do not re�ect speci�c analytic features possessed by the original function in the
�nite plane but rather, its behaviour at in�nity. In any case, this illustrates that there
is a tangible advantage to be gained from being selective in one’s choice of Padé se-
quence to represent a given function.
Example: To further illustrate the phenomenon of extraneous poles and zeros, let us
consider the approximants of ez which not only has no poles of its own, it also has no
zeros. The [1/1] approximant is

f1/1 =
2 + z
2 − z

with a zero on the negative real axis at z = −2 and a symmetrically placed pole on the
positive real axis at z = +2. The [2/2] approximant is

f2/2 =
12 + 6z + z2
12 − 6z + z2

with zeros at z = −3 ±
√
3i and poles at z = +3 ±

√
3i. Thus, we perceive an inter-

esting pattern emerging. The zeros all occur in the left half-plane with the poles in
mirror-image locations in the right half-plane. Moreover, on increasing the order of
the approximant, the poles and zeros have moved further away from the origin. This
pattern persists as one further increases the order. The poles occur either on the real
axis or on either side of it in conjugate pairs but in any case, moving ever further to
the right. The zeros cluster on or about the negative real axis and move further and
further to the left.

Recalling that | ez | increases without limit as |z| →∞ along the positive real axis
and goes to zero as |z| →∞ along the negative real axis, this pattern becomes under-
standable. The poles and zeros of the approximants are simulating the exponential
function’s essential singularity at z = ∞.

This simulation evidently assists the convergence of the approximants. As one
can check, an approximant gives a much better approximation of the value of ez in
the region between the poles and zeros than does the corresponding truncated Tay-
lor series. Even at z = −1, a point at which the Taylor series converges fairly rapidly,
the approximants improve on the accuracy of the approximation by one to two orders
of magnitude. This is shown in Table 7.2 where we see that the [M/M] approximants
increase their accuracy by two decimal places per unit increase in M, with the value
given by f4/4 being o� by only one part in108.
Example: Isolated essential singularities arenot the only typeof non-polar singularity
that can be simulated by Padé approximants. A function with branch points is neces-
sarily discontinuous across a cut or cuts joining the points. Simulating a discontinuity
of this sortmight appear to be anoverly ambitious task for a sequence of functions that
are continuous everywhere except for a �nite set of poles. However, by clustering their
poles along the cut the Padé approximants produce a representation that, very often,
is convergent everywhere in the cut plane.
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Table 7.2: [M/M] Approximants of ez Evaluated at z = −1.

M fM/M % Deviation from e−1
2M∑
m=0

(−1)m

m!
% Deviation from e−1

1 0.33333333 9.39 0.5 35.9
2 0.36842105 0.147 0.375 1.94
3 0.36787564 1.03 × 10−3 0.36805555 4.79 × 10−2
4 0.36787945 2.45 × 10−6 0.36788194 6.79 × 10−4

Limit 0.367879441 – 0.367879441 –

The e�cacy of the simulation is perhaps best appreciated by recalling the dispersion
representation for functions with branch points. For example, the function (1+z )−1/2,
with branch points at z = −1 and z = ∞, has the representation

(1 + z )−1/2 = 1
π

∞∫
1

dχ
(χ + z)(χ − 1 )1/2

, (7.2.1)

corresponding to a cut along the real axis segment −∞ < χ 6 −1. Using this as our
starting point, we can give (1+ z )−1/2 an approximate representation by simply evalu-
ating the integrand at a �nite number of carefully selected points. Such an operation
is precisely that of replacing the cut by a �nite number of simple poles each located at
the negative image of one of the pre-selected points and therefore, distributed along
the line segment where the cut used to be. Of course, a truly discontinuous function
results only in the limit as the number of such poles becomes in�nite.

Aswe know, the choice of simple curve used as a cut joining the two branch points
is arbitrary. If the choice is di�erent from the negative real axis, it would be re�ected
in a corresponding change to the integration contour in (7.2.1) and hence, in the lo-
cation of the poles simulating the cut were we to continue to use the integral as the
basis of an approximate representation. However, there is no such �exibility with the
approximate representation obtained with Padé approximants. Since the location of
the branch cut has no e�ect on the value of (1+ z )−1/2 and its derivatives at the origin,
the approximants necessarily make an independent but speci�c choice of the curve to
use in simulating the cut. The only question is whether this choice is predictable. The
answer is an unquali�ed yes only in the case of a class of functions that are named
after a mathematician called Stieltjes; they will be the subject of more detailed study
a little further on. For more general functions one must rely on systematic behaviour
observed in the course of numerical experimentation to justify any inference as to the
location of the simulated cuts.

G.A. Baker Jr. and his collaborators have experimented with a variety of functions
possessing two, three, or even four branch points. They found that the limit set of
poles of diagonal Padé approximants forms circular arcs each of which joins a pair of
branch points and, if extrapolated to form a complete circle, would pass through the
origin. As usual we include straight lines in our de�nition of circle and so, in the case
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of (1 + z )−1/2, the poles of the [M/M] approximants conform to this rule by clustering
along the real axis segment −∞ < x < −1.

Another interesting function studied by Baker et al. is

f (z) = (1 + z2 )1/2
1 + z .

It has branch points at z = ±i. To conform with the empirical rule, its [M/M] approx-
imants should simulate a cut which runs from z = +i through z = ∞ to z = −i. As
Figure 7.1 shows, this expectation is born out by actual calculation: one pole in the
limit set converges to z = −1 and the rest cluster along the imaginary axis segments
1 < y < ∞ and −∞ < y < −1.

Figure 7.1: The poles of the [M/M] approximants to f (z) = (1 + z2 )1/2 /(1 + z) simulate a cut along
the imaginary axis from z = +i to z = −i, passing through z = ∞, as well as reproduce the polar
singularity at z = −1.

The behaviour of these approximants at in�nity is rather interesting as it reveals how
cuts adversely a�ect convergence. From the calculated values displayed in Table 7.3
we see that the [M/M]approximants converge to

√
2±1 according asM is even or odd.

Thus, this Padé sequence does not converge to anything at z = ∞. The sequences
[2M/2M] and [2M + 1/2M + 1] converge separately but not to ±1 which are the values
attained by the function (1 + z2 )1/2 /(1 + z) on alternate lips of the cut. This suggests
that one should not expect convergence of Padé approximants at points located on a
cut.

7.3 Stieltjes Functions

Thomas Jan Stieltjes (1856-1894) had little formal education, �unking out of the Poly-
technical School of Delft in 1876, due in large part to an all-consuming passion for math-
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Table 7.3: The [M/M] Approximants to (1 + z2 )1/2 /(1 + z) Evaluated at In�nity

M [M/M]
1 0.333333
2 2.333333
3 0.411764
4 2.411764
5 0.414141
6 2.414141
7 0.414211
8 2.414211

Limit
√
2 ± 1

Actual Value of Function ±1

ematics. In 1882, while employed as an assistant at the Leiden Observatory, Stieltjes be-
gan a correspondence with the distinguished mathematician Hermite. Over the remain-
ing 12 years of Stieltjes’ life, they exchanged 432 letters on his mathematical interests.
Hermite became both his mentor and his sponsor, helping Stieltjes obtain academic ap-
pointments in the Netherlands and in France. Stieltjes worked on almost all branches
of analysis, continued fractions and number theory but he is best remembered for the
Stieltjes function de�ned below.

Everything that has been empirically deduced about the behaviour of Padé ap-
proximants of functions with branch points can be rigorously proven to occur for
Stieltjes functions. These possess either a Taylor or an asymptotic series about z = 0
whose coe�cients can be expressed in terms of a very particular type of integral.
De�nition: A function f (z) which admits representation by a series of the form

f (z) =
∞∑
m=0

cm(−z )m (7.3.1)

is a Stieltjes function if and only if

cm =
∞∫
0

tm dg(t) (7.3.2)

where g(t) is a bounded non-decreasing function which takes on in�nitely many val-
ues in the interval 0 6 t < ∞.

The series itself is called a series of Stieltjes and need not be convergent. How-
ever, if it is, with radius of convergence R, then we can interchange the order of inte-
gration and summation in (7.3.1) to obtain

f (z) =
∞∫
0

∞∑
m=0

(−tz )m dg(t), (7.3.3)
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for |z| < R. We know that
∞∑
m=0

(−tz )m = 1
1 + tz for |tz| < 1

and that it diverges for |tz| > 1. Therefore, if (7.3.3) is to be meaningful, f (z) must
possess the following Stieltjes integral representation

f (z) =
1/R∫
0

g′(t)dt
1 + tz . (7.3.4)

This provides an analytic continuation of f (z) outside the circle of convergence of
(7.3.1) and permits identi�cation of the function’s singularities. Indeed, if we now
make the substitution t → x = − 1

t , (7.3.4) assumes the more familiar features of a
dispersion representation for a real function (see equation (4.1.5):

f (z) = 1
π

−R∫
−∞

Im f+(χ)
χ − z dχ (7.3.5)

Imf+(x)
∣∣∣
x=−1/t

= lim
ε→0

Im f [−(t + iε )−1] = −πt dg(t)dt . (7.3.6)

Thus, f (z) is a real function, f *(z*) = f (z), and is holomorphic everywhere in the com-
plex plane except for a cut along the negative real axis from z = −R to in�nity.

One can show that these two integral representations retain their validity even in
the limit of a divergent series of Stieltjes, R → 0, provided that the series coe�cients
are such that

∞∑
m=1

(cm )−1/(2m+1)

also diverges. This condition is roughly equivalent to requiring that | cm | 6 (2m)!. The
cut along the negative real axis then extends from z = 0 to in�nity and (7.3.4) becomes

f (z) =
∞∫
0

g′(t)dt
1 + tz . (7.3.7)

As for the series, it too retains a representational role albeit only an asymptotic
one. In conformance with equation (6.1.7), we have

lim
|z|→0

{
z−n
[
f (z) −

n∑
m=0

cm zm
]}

= 0 (7.3.8)

for any positive integer n and arg z restricted to avoid the cut joining the branch points
at z = 0 and z = ∞.
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Notice that the properties of g(t) necessarily imply that Im f+(x) 6 0.
In summary, we can characterize all Stieltjes functions as satisfying the reality

condition f *(z*) = f (z), as possessing branch points at z = ∞ and a point on the
negative real axis z = − x0, x0 > 0 and, when these points are joined by a cut along
that axis, as having a negative de�nite, pure imaginary discontinuity across the cut.
Indeed, given a function with these properties, the choice of the negative real axis as
the location of its cut assures the existence of a Stieltjes integral representation since
we can write

f (z) =
∞∫
0

g′(t)dt
1 + tz (7.3.9)

with the weight function given by

g(t) − g(t0) =
1
π

t∫
t0

lim
ε→0

Im[f (−(τ − iε )−1)]dττ . (7.3.10)

Di�erentiation of (7.3.9) then generates a series of Stieltjes about z = 0.
Baker’s empirical rule concerning the simulation of cuts by Padé approximants

can actually be proven to be the case for Stieltjes functions. The relevant theorem also
provides remarkably detailed information about the poles and zeros of successive ap-
proximants.
Theorem: If

∞∑
m=0

cm(−z )m is a series of Stieltjes, the poles and zeros of the [M +

J/M], J > −1 Padé approximants obtained from the coe�cients are on the nega-
tive real axis. Furthermore, the poles of successive approximants interlace and all the
residues are positive. The roots of the numerators (the zeros) also interlace those of
the corresponding denominators (the poles).
Example: Stieltjes functions are more common place than one might at �rst suspect.
Whether by means of an adroitly chosen transformation or by more immediate mea-
sures, a very wide class of analytic functions can be cast in a Stieltjes form. Among
those which are immediately recognizable as possessing properties typical of a Stielt-
jes function is the elementary function f (z) = 1

z Ln(1+z). It admits the following series,
Stieltjes and dispersion representations:

1
z Ln(1 + z) =



1 − z
2 +

z2
3 −

z3
4 + − . . . , |z| < 1

1∫
0

dt
1+tz , −π < arg(z + 1) < π

−1∫
−∞

dχ
χ(χ−z) , −π < arg(z + 1) < π.

In conformance with the preceding theorem, the poles and zeros of the diagonal
approximants to this function alternate along the negative real axis to the left of z =
−1. As the order of the approximants increases, the spacing between successive poles
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and zeros decreases due to the interlacing e�ect called for by the theorem. Thus, the
picture that emerges of the limiting situation as M → ∞ is of an in�nite sequence of
very closely spaced, alternating poles and zeros extending along the negative real axis
from z = −1 to in�nity.

As we shall see, this single-minded behaviour of the poles and zeros o�ers the
entire cut complex plane as the domain of convergence for the diagonal approximants.
However, to illustrate how an alternative and, as it turns out, inappropriate choice
of Padé sequence can have a much more restricted domain of convergence, we shall
follow Baker’s lead and explore how the [4M/M] approximants to 1

z Ln(1 + z) behave.

Table 7.4: [4M/M] Approximants to 1
z Ln(1 + z)

z M 1 2 3 4 1
2 Ln(1 + z)

1.0 0.69242424 0.69314873 0.69314718 0.69314718 0.69314718
6.0 −0.80000000 2.1535393 −2.6374816 5.1116289 0.32431836
9.0 −4.3735294 28.911655 −176.68475 1091.7095 0.25584279

Table 7.4 compares the values of the �rst four of these approximants with the corre-
sponding values of 1

z Ln(1 + z) at a series of points on the positive real axis. We see
that for z = 1.0 convergence to the exact value is almost immediate. For z = 4.0 (not
shown in the table) convergence is slower but it still takes place. However, for z = 6.0
and 9.0 the approximants are oscillating in sign and, in the latter case particularly,
diverging quite rapidly.

This startling change in behaviour is directly associatedwith the extraneous zeros
possessed by these approximants. Each approximant requires only M zeros to alter-
nate with theM poles along the cut. Since Stieltjes functions do not vanish anywhere
in the cut plane, this leaves 3M zeros with no role to play in the reconstruction of the
analytic properties of 1

z Ln(1 + z). Plotting these zeros for the four approximants in
Table 7.4, (Figure 7.2), one �nds that they form a pattern suggestive of a closed curve
surrounding a roughly heart-shaped region about the origin. Evidently, this curve will
only increase in de�nition with increasing M and so constitutes a natural boundary
for the approximants’ domain of convergence.

This example illustrates a general rule for the approximation of functions pos-
sessing branch points: to enjoy a maximal domain of convergence one should restrict
consideration to diagonal or para-diagonal Padé sequences.
Example: There has been speculation that the perturbation series obtained in quan-
tum electrodynamics is an asymptotic rather that a convergent series owing to a singu-
larity at α = 0,where α is the electromagnetic coupling strength; (the physical value of
α is e2 /}c = 1/137). Thus, it may be useful to know something about the convergence
properties of Padé sequences derived from such series.
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Figure 7.2: The extraneous zeros of the [4M/M] Padé approximants to [Ln(1 + z)]/z. These zeros
de�ne the boundary of the domain of convergence of this sequence of approximants; (from Baker,
(1975)).

Based on the last example,wemight expect favourable results, for diagonal sequences
at least, if the series are series of Stieltjes. This expectation is born out by both exper-
iment and theory. An interesting case in point is provided by the Stieltjes function

f (z) =
∞∫
0

e−t
1 + zt dt, (7.3.11)

which has branch points at z = 0 and ∞. Its asymptotic expansion about z = 0 is the
divergent series

f (z) ∼ 1 − (1!)z + (2!) z2 −(3!) z3 + . . . =
∞∑
m=0

(−1 )m m! zm (7.3.12)

whichmakes it a simpli�ed analogue of the electrodynamics perturbation series since
the latter’s general term is expected to go like m! αm for large values of m. Calculating
the [M/M] approximants to f (z), one �nds that they do converge towards the exact
values de�ned by (7.3.11) and do so for all �nite z in the cut plane. Although the rate of
convergence is rather slow, it is essentially unchanged as |z| increases. For example,
at z = 1.0 the [6/6] approximant has the value 0.5968 compared to an exact value
of 0.5963, while at in�nity f6/6 = 1

7 compared to an exact limiting value of zero. (As
x →∞, f (x)→ 0 and fM/M(x)→ 1

M+1 ). In both cases the error is proportional to 1
M+1 .

This leap from a divergent series to a sequence that is convergent throughout the
cut plane is a little breathtaking. It is this feature, as well as the ability to locate and
identify singularities of functions de�ned by power series alone, that best exempli�es
the analytical power of Padé approximants.
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7.4 Convergence Theorems

Aswe have already noted, the theory of convergence of Padé sequences is still far from
complete. We need be aware of only a few highlights.

The earliest theorems to be proved apply to columns of the Padé Table. For exam-
ple, de Montessus de Ballore established in 1902 that, if f (z) is holomorphic through-
out the domain |z| < R, except for a �nite number of poles of total multiplicitym, then
the sequence {fL/m(z)} converges uniformly to f (z) for |z| 6 ρ < R, except at the poles
of f (z). This theoremwas generalized around 1930 to prove that the column sequences
{fL/m+µ(z)}, µ > 1 are also uniformly convergent for |z| 6 ρ < R, provided that the sin-
gularities of f (z) on |z| = R are no worse than a multiple pole of order greater than µ
or a branch point. Moreover, the µ additional poles, not needed to represent the poles
of f (z) inside |z| < R, simulate the singularities on |z| = R with the �rst extra pole
representing the “strongest” of these singularities, the second the next strongest, and
so on.

Since one can readily prove that [fL/M ]−1 is the [M/L] approximant to f −1(z) if
fL/M(z) is an approximant to f (z), theorems concerning columns of the Padé Table and
poles in the z-plane translate directly into theorems concerning rows and zeros.

From this modest beginning we move on to a series of theorems established in
the 1960’s by Chisholm (1966) and Beardon (1968). These concern the convergence
of sequences {fL/M(z)} when both L and M → ∞. If f (z) is meromorphic in a closed
disc |z| 6 R, the sequence {fL/M(z)} converges uniformly to f (z) in the double limit
L,M →∞ provided that z is restricted to a second disc |z| 6 ρ 6 R from which small
neighbourhoods of the poles of f (z) and of any limit points of the poles of the approx-
imants have been removed. The radius ρ of the disc of convergence depends on the
ratio L/M and, in general, is less than R. However, equality with R can be guaranteed
if we are prepared to restrict ourselves to sequences for which L > kM where k is a
number> 1 that depends on both the value of R and the identity of f (z).

While helpful as an aid to our intuition, these theorems do little to meet our theo-
retical needs. Formathematicians andphysicists alike, the diagonal andparadiagonal
sequences are much the most important elements of the Padé Table. This importance
stems in large part from certain properties which are uniquely associated with diag-
onal approximants. For example, they can be shown to be invariant under mappings
of the form w = az

cz+d , a, c and d constants.
Thus, it su�ces to establish convergence in a restricted domain since one can

immediately extend it in size by means of one of these mappings. Further, diagonal
approximants can be shown to be unitary in the sense that if f *(z) = f −1(z), then
f *N/N(z) = [fN/N(z) ]

−1. This is a critically important property in quantum mechanical
applications. So,whatwe really need are convergence theorems that apply speci�cally
to diagonal approximants and cover the full range of analytic functions.

The results of numerical experimentation suggest that the boundary of the do-
main of convergence of a diagonal sequence should be determined only by the loca-
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tion of the non-polar singularities of the function it represents. However, very little
progress has been made toward proving this assertion for more than a few special
cases which fortunately include Stieltjes functions.

To conclude this brief survey of Padé convergence theory, we state the theorem
that applies to Stieltje’s functions. Given our discussion of numerical experience with
approximants, it contains no surprises.
Theorem: Let

∞∑
m=0

cm(−z )m be a series of Stieltjes. If the series is convergent with a

radius of convergence R, then any sequence of [M + J/M], J > −1 Padé approximants
to the series converges in the cut plane (−∞ < z 6 −R) to the function f (z) de�ned
by the series. If the series is divergent, then any sequence of [M + J/M], J > −1 Padé
approximants converges to an analytic function in the cut plane (−∞ < z 6 0). If, in
addition,

∞∑
m=0

(cm )−1/(2m+1) diverges, then all the sequences tend to a common limit f (z)

which possesses a Stieltjes representation of the form given by (7.3.9) and (7.3.10) and
an asymptotic expansion about z = 0 given by the original series.

The proof of the various parts of this theorem is the subject of an entire chapter of
Baker’s 1975 monograph on Padé approximants.

7.5 Type II Padé Approximants

As an alternative to de�ning Padé approximants by means of the value of a function
and its derivatives at a single point, one can build approximants that contain infor-
mation at two or more points. An especially useful case arises when we use only the
value of the function (and not of any of its derivatives) at an appropriate number of
points. These are called Padé approximants of the second type or type II.
De�nition: Let z1, z2, . . . zN be N complex numbers and f (z) be an analytic function
which takes the values f (zi) at thesepoints.Wede�ne the [L/M]Padéapproximantof
type II to f (z) to be the ratio of twopolynomials in z ,PL(z) andQM(z)with L+M = N−1,
which takes the values f (zi) at z = zi ,

fL/M(z) ≡
PL(z)
QM(z)

fL/M(zi) = f (zi), i = 1, . . . N . (7.5.1)

Type II approximants provide an extension of the Lagrange or polynomialmethod
of interpolating between discrete points in the sameway that their type I counterparts
extend the Taylor or polynomial approximation of functions known only in the neigh-
bourhoodof z = 0. They are unique andone canprove (see, for example, J. Zinn-Justin,
Phys. Reports 1C, No. 3 (1971)) that they possess essentially the same properties as do
approximants of the �rst type, including convergence in the case of approximation of
Stieltjes functions.
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The interpolation provided by type II approximants is both more e�cient and
more e�ective at analytic continuation outside the region of the points zi than that
given by a Lagrange polynomial approach. Once again this is due to the capacity of
Padé approximants to replicate the poles and simulate the non-polar singularities of
the functions they approximate.
Example: If one builds the type II Padé approximants to tan z using values corre-
sponding to z real and in the range −π/2 < z < π/2, one �nds that the lowest orders
give the nearby poles and zeros of tan z and that by increasing the order (number of
points), more and more poles and zeros are successfully replicated. Moreover, this re-
mains true even if one contracts the range of z to −π/4 < z < π/4 where tan z is well
away from any of its poles and so is a relatively slowly varying function (in fact, it
resembles a straight line there).

Another interesting application of type II approximants is in the summation of
numerical series. If we have

S =
∞∑
m=0

um , (7.5.2)

we can treat the partial sums SN =
N∑
m=0

um as functions of 1
N ,

SN = f
(
1
N

)
say,

so that the sum of the series is

S = f (0). (7.5.3)

We can then compute S by extrapolating from f (1), f
( 1
2
)
, f
( 1
3
)
, . . . to f (0); that is to

say, by analytically continuing f (z) to z = 0.
Example: Consider the series

S =
∞∑
m=0

1
m2

which is known to converge slowly. Using the �rst N +M +1 partial sums as input, we
can build the [N/M] type II approximant to f (z) and thus get an estimate of f (0).

The �rst three partial sums are

S1 = f (1) = 1 S2 = f
(
1
2

)
= 1.25 S3 = f

(
1
3

)
= 1.361.

These yield the approximant estimates

f[0/0](0) = 1 f[0/1](0) = 1.5 f[1/1](0) = 1.65.

The exact value is f (0) = S = π2 /6 = 1.645 . . .. Thus, convergence has been acceler-
ated in a quite remarkable way; while the partial sums themselves give a very crude
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estimate of S, using the same information as input for the [1/1] Padé approximant
yields an estimate that is accurate to three signi�cant �gures.

We conclude with a reference to the use of type II approximants in the solution of
algebraic equations. Suppose that wewish to solve the equation F(z) = 0.We begin by
determining the values F1, F2, F3 assumed by F at the three points z1, z2, z3, respec-
tively. Next, we build the type II approximant, F(1)[1/1](z), which has the same values Fi
for z = zi , i = 1, 2, 3. One can immediately read o� the zero z4 of F(1)[1/1] which gives a
�rst estimate of a zero of F(z). Using the actual value F4 ≡ F(z4), we repeat the process
using F2, F3, F4 and the points z2, z3, z4 as input and determine F(2)[1/1](z). Its zero is a
second estimate of the zero of F(z). Evidently, this can be repeated until we are satis-
�edwith the degree of convergence of our estimates yielding, if it works, a remarkably
simplemethod of solving our original equation. The question of howwell it works has
been addressed by Zinn-Justinwho shows that the rate of convergence from a distance
is quite fast and that once we are close, it is exponential; if we are within an error ε of
the zero at some point in the process, a further iteration will bring us within an error
ε3. Thus, in two steps we can go from an error of 10% to one of 1 part in 10−9.
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8 Fourier Series and Transforms
8.1 Trigonometrical and Fourier Series
De�nition: A function f (x) is said to be periodic if it is de�ned for all real x and if
there is some real number T such that f (x + T) = f (x). The number T is then called the
period of f (x).
Examples: The sine and cosine functions have period 2π and along with constants,
which have arbitrary period, are the simplest periodic functions.

If it converges, a trigonometrical series of the form

a0
2 +

∞∑
n=1

(an cos nx + bn sin nx) (8.1.1)

where a0, a1, . . . , an , . . . , b1, . . . , bn , . . . are constants, has period 2π also. The rep-
resentationof a function f (x) by such serieswas�rst investigatedbyFourier in the con-
text of heat conduction problems. Subsequently it was found that these series have an
important role to play in the theory of functions of a real variable which is the reason
for our interest in them.

Joseph Fourier (1768-1830) was a French mathematician and physicist whose early
career advancement resulted as much from his active participation in the French Rev-
olution and support of Napoleon Bonaparte as it did from the success of his research.
Nevertheless, he is remembered for initiating the study of Fourier series and for discov-
ering the law of conduction that is named after him. He is also generally acknowledged
to have discovered the greenhouse e�ect.

Suppose that the series (8.1.1) converges uniformly to the function f (x) :

f (x) = a02 +
∞∑
n=1

(an cos nx + bn sin nx), −π 6 x 6 π. (8.1.2)

We may multiply by cosmx, where m is a positive integer, and integrate term by term
from −π to π to obtain

π∫
−π

f (x) cosmxdx =a02

π∫
−π

cosmxdx

+
∞∑
n=1

an π∫
−π

cos nx cosmxdx + bn
π∫

−π

sin nx cosmxdx

 .
Since cos nx cosmx = 1

2 cos(n + m)x +
1
2 cos(n − m)x and sin nx cosmx = 1

2 sin(n +
m)x + 1

2 sin(n − m)x, we have the orthogonality relations
π∫

−π

cos nx cosmxdx =
{

0 for n ≠ m
π for n = m
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π∫
−π

sin nx cosmxdx = 0 for all m, n

π∫
−π

cosmxdx =
{

0 for m ≠ 0
2π for m = 0

Applying these, we �nd

a0 =
1
π

π∫
−π

f (x)dx and

am =1π

π∫
−π

f (x) cosmxdx, m = 1, 2, . . . . (8.1.3)

Similarly, multiplying (8.1.2) by sinmx, integrating term by term and using the
orthogonality relation

π∫
−π

sin nx sinmxdx =
{

0 for n ≠ m
π for n = m

,

we �nd

bm = 1
π

π∫
−π

f (x) sinmxdx, m = 1, 2, . . . . (8.1.4)

Equations (8.1.3) and (8.1.4) are called the Euler formulae for the coe�cients and the
set of numbers {am , bm}which they determine are called the Fourier coe�cients of
f (x).

There is no a priori reason for supposing that a given function can be expanded
in a uniformly convergent trigonometrical series. Therefore, the process we have just
carried out is not a proof that the coe�cients of a trigonometrical series representation
of f (x) are necessarily those determined by the Euler formulae. So, instead of starting
with the series and the presumption that it has a certain property, we start from the
function, calculate its Fourier coe�cients, and determine the properties of the series
that can be formed with them.
De�nition: If we are given a function f (x) that is integrable over the interval −π 6 x 6
π, then the integrals in (8.1.3) and (8.1.4) that de�ne its Fourier coe�cients {am , bm}
exist. The trigonometrical series of the form (8.1.1) that is constructed using these co-
e�cients is called the Fourier series of f (x).

The question which must be addressed now is whether the Fourier series of an
arbitrary function f (x) converges and if it does, whether its sum is f (x). Because the
sum of the series, if it exists, has period 2π, we use only the values that f (x) assumes
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in the interval −π 6 x 6 π; outside this interval we de�ne it by means of periodicity,
f (x ± 2π) = f (x) , which gives us the periodic extension of f (x).
Examples: Consider the function x2 . Its Fourier coe�cients are

a0 =
1
π

π∫
−π

x2 dx = 2
3 π

2

an =
1
π

π∫
−π

x2 cos nxdx = (−1 )n 4
n2 , n > 0

bn =
1
π

π∫
−π

x2 sin nxdx = 0.

Note that the sine coe�cients are all zero because x2 is an even functionof x ; similarly,
all cosine coe�cients vanish for odd functions of x.

The corresponding Fourier series

f (x) = π
2

3 +
∞∑
n=1

(−1 )n 4
n2 cos nx

is easily shown to be uniformly convergent for all values of x. As shown in Figure 8.1,
its sum function, f (x), reproduces the values assumed by x2 on −π 6 x 6 π and by its
periodic extension outside that interval.

Figure 8.1: The Fourier series representation ofx2 .

Next we consider the discontinuous function

f (x) =
{
−1, x < 0,
+1, x > 0.
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This is an odd function so there are no cosine terms in its Fourier series, an = 0, n > 0.
As for the sine terms, the coe�cients are

bn =
2
π

π∫
−π

sin nxdx =
{

4
nπ , n = odd,
0, n = even.

The corresponding series
4
π

∞∑
n=odd

1
n sin nx

converges to
– +1 for 0 < x < π,
– −1 for −π < x < 0, and
– 0 for x = −π, x = 0, and x = +π.

In other words, the Fourier series representation of f (x) reproduces it throughout the
interval except at the point of discontinuity, x = 0, and at the end-points of the inter-
val which are points of discontinuity for the periodic extension of f (x). At these three
exceptional points, the series converges to the mean of the right- and left-hand limits
of (the periodic extension of) f (x). This behaviour at the points of discontinuity is a
general feature of Fourier series.

The points of discontinuity also result in the convergence being non-uniform in
any interval that includes one of them. This is exhibited in Figure 8.2 which shows
successive partial sums. Notice the overshoot on either side of the points of disconti-
nuity. This too is a general feature of Fourier series and is called Gibbs’ phenomenon.
The overshoot remains �nite asmore andmore terms are added and tends to the value
0.18 in the limit of in�nitely many terms.

Figure 8.2: The �rst three partial sums of the Fourier series representation of a step function.

Finally, it is interesting to note that if we set x = π/2 in the Fourier series, we have

f
(π
2

)
= 1 = 4

π

(
1 − 1

3 + 1
5 − + . . .

)
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or,
π
4 = 1 − 1

3 + 1
5 −

1
7 + − . . . =

∑
m=0

(−1 )m
2m + 1

which is a series summation derived originally by Leibnitz using a geometrical argu-
ment.

8.2 The Convergence Question

There is a formal connection between Fourier series and Laurent series. Suppose that
f (z) is a single-valued analytic function, holomorphic in the annulus R1 < |z| < R2 .
Then

f (z) =
∞∑

n=−∞
cn zn ,

where
cn =

1
2πi

∫
C

f (ζ )
ζ n+1

dζ

and we can choose C to be the circle |ζ | = r, R1 < r < R2 .
Putting z = r eiθ , we have

f (r eiθ) =
∞∑

n=−∞
An einθ ,

where

An =
1
2π

π∫
−π

f (r eiφ) e−inφ dφ.

Combining terms pair wise for each value of |n|, we can rewrite the Laurent expansion
as the Fourier series

f (r eiθ) = A0 +
∞∑
n=1

{
(An +A−n) cos nθ + i(An −A−n) sin nθ

}
, (8.2.1)

where

A0 =
1
2π

π∫
−π

f (r eiφ)dφ, An +A−n =
1
π

π∫
−π

f (r eiφ) cos nφdφ, (8.2.2)

i(An −A−n) =
1
π

π∫
−π

f (r eiφ) sin nφdφ.

It follows fromLaurent’s Theorem that such aFourier series converges uniformly to the
function it represents. However, in general, onewants to represent amuch larger class
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of functions than would meet the requirements of Laurent’s Theorem. To see just how
large a class admits such representation, we need to introduce some new concepts.
The �rst of these is the concept of bounded variation.
De�nition: Let f (x) be de�ned on a 6 x 6 b and let x1, x2, . . . , xn , be a set of points
on that interval such that a 6 x1 6 x2 6 . . . 6 xn 6 b, as shown in Figure 8.3. Then,
the sum

|f (a) − f (x1)| + |f (x1) − f (x2)| + . . . + |f (xn) − f (b)|

is called the variation of f (x) on the interval a 6 x 6 b for the set of subdivisions
x1, . . . , xn . If the variation has an upper bound ,M, independent of n, for all choices
of x1, x2, . . . , xn , then f (x) is said to be of bounded variation on a 6 x 6 b.

Figure 8.3: A set of points is introduced on the interval a 6 x 6 b to de�ne a corresponding varia-
tion of the function f (x).

Examples: Two functions which are not of bounded variation are f (x) = 1
x and f (x) =

sin π
x on any interval that encloses x = 0; see Figure 8.4. Examples of functions which

are of bounded variation include piecewise continuous functionswith a �nite number
of maxima and minima. A function f (x) is piecewise continuous on a �nite interval
a 6 x 6 b if the interval can be divided into �nitely many sub-intervals, in each of
which f (x) is continuous and has �nite limits as x approaches either endpoint of the
sub-interval from the interior.

We can now state without proof the theorem that establishes the conditions for
point by point convergence of a Fourier series.
Fourier’s Theorem: Let f (x) be de�ned arbitrarily on −π 6 x 6 π and de�ned for all

other x by its periodic extension, f (x + 2π) = f (x). Also let f (x) be such that
π∫
−π
f (x)dx

exists, and if this be an improper integral, let it be absolutely convergent. Then, if x is
an interior point of any interval a 6 x 6 b in which f (x) is of bounded variation, the
Fourier series of f (x) converges at x to the sum 1

2 [f (x+0)+ f (x−0)]. Moreover, in every
closed subinterval in which f (x) is continuous, the convergence is uniform.
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Figure 8.4: Two functions which are not of bounded variation in any interval containing x = 0.

A proof of the theorem can be found in E. C. Titchmarsh, Theory of Functions, Oxford
University Press, New York, 1964.

As we notedwith the example in the preceding Section, whenever f (x) has a �nite
or step discontinuity the series will converge to the mean of its values on either side
of the point. In particular, if a 6 −π and b > π, the Fourier series will converge to
1
2 [f (−π+0)+ f (π−0)] at x = ±π; thus, the series will not reproduce f (x) at these points
unless f (−π) = f (π).

While not terribly stringent, the conditions imposed on f (x) in this theorem can
be relaxed even more if we replace the requirement of pointwise convergence by
that of convergence in the mean which is a form of convergence that is perfectly
adequate for most physical applications. To introduce the concept, however, we need
an additional de�nition.
De�nition: The integral

b∫
a

[f (x) − g(x) ]2 dx (8.2.3)

for two functions f (x) and g(x) de�ned and square integrable on a 6 x 6 b is called
the square deviation of f (x) and g(x).

Evidently, a square deviation is ameasure of howwell one function “�ts” another
over the interval in question. We shall use it to meet our need for a more subtle form
of convergence.
De�nition:A sequence of functions {fn(x)} is said to converge in themean to a func-
tion f (x) on an interval a 6 x 6 b if the corresponding square deviation of f (x) and
fn(x) tends to zero as n →∞ :

lim
n→∞

b∫
a

[f (x) − fn(x) ]
2 dx = 0. (8.2.4)
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Convergence in themeandoesnot imply that lim
n→∞

fn(x) = f (x) at eachpoint of a 6 x 6
b. On the contrary, the limit of the sequence of functions may di�er widely from f (x)
on a discrete set of points distributed over the integration interval and still produce a
zero square deviation.

We shall now make use of square deviation and convergence in the mean to fur-
ther our understanding of the representations of functions that are o�ered by trigono-
metrical series. Suppose that we have a square integrable function f (x) de�ned on
−π 6 x 6 π and that we want to approximate it by the partial sum

Sn(x) = A0
2 +

n∑
k=1

(Ak cos kx + Bk sin kx) (8.2.5)

where the coe�cients Ak , k = 0, 1, 2, . . . , n, and Bk , k = 1, 2, . . . , n, can be adjusted
to achieve an optimal �t. In fact, we shall now try to determine what set of values for
{Ak , Bk} will minimize the square deviation

Dn =
π∫

−π

[f (x) − Sn(x) ]2 dx. (8.2.6)

Straightforward application of the orthogonality of the functions {cos kx, sin kx}
yields

Dn =
π∫

−π

[f (x) ]2 dx +

π2 A2
0 −A0

π∫
−π

f (x)dx


+

n∑
k=1

π A2
k −2Ak

π∫
−π

f (x) cos kxdx


+

n∑
k=1

π B2k −2 Bk
π∫

−π

f (x) sin kxdx

 .

Using the Euler formulas for the Fourier coe�cients of f (x), we can rewrite this as

Dn =
π∫

−π

[f (x) ]2 dx + π2 {A
2
0 −2A0 a0} + π

n∑
k=1

{A2
k −2Ak ak + B2k −2 Bk bk}.

But,

A2
k −2Ak ak = (Ak − ak )2 − a2k and B2k −2 Bk bk = (Bk − bk )2 − b2k .

Thus,

Dn =
π∫

−π

[f (x) ]2 dx − π
{
1
2 a

2
0 +

n∑
k=1

[a2k + b2k ]
}
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+ π
{
1
2(A0 − a0 )2 +

n∑
k=1

[(Ak − ak )2 +(Bk − bk )2]
}
.

The last line in this expression is positive-de�nite:

1
2(A0 − a0 )2 +

n∑
k=1

[(Ak − ak )2 +(Bk − bk )2] > 0.

Therefore, the square deviation is minimized if the trigonometrical series coe�cients
Ak and Bk are chosen to be the Fourier coe�cients of f (x) :

[Dn ]min =
π∫

−π

[f (x) ]2 dx − π
{
1
2 a

2
0 +

n∑
k=1

[a2k + b2k ]
}
. (8.2.7)

Since Dn > 0, we have

a20
2 +

n∑
k=1

[a2k + b2k ] 6
1
π

π∫
−π

[f (x) ]2 dx.

This holds for any n and as n increases, the sequence on the left is monotonically
increasing but bounded by the integral on the right . Therefore, it possesses a limit as
n →∞ and the limit satis�es

a20
2 +

∞∑
k=1

[a2k + b2k ] 6
1
π

π∫
−π

[f (x) ]2 dx (8.2.8)

which is known as Bessel’s inequality.
Suppose that we now require that the square deviation tend to zero as n →∞ :

lim
n→∞

[Dn ]min = 0.

By de�nition, this would mean that the Fourier series

a0
2 +

∞∑
n=0

[an cos nx + bn sin nx]

converges in the mean to f (x). It also means that the above inequality becomes the
equality

a20
2 +

∞∑
k=1

[a2k + b2k ] =
1
π

π∫
−π

[f (x) ]2 dx (8.2.9)

which is known as Parseval’s equation.
Whenever Parseval’s equation holds for a certain class of functions f (x), we say

that the set of trigonometrical functions {cos nx, sin nx} is complete with respect to
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that class and Parseval’s equation is called the completeness relation. The question
that we now want to answer is what is the largest class of functions for which com-
pleteness has been established and hence, for which convergence in themean of their
Fourier series is assured. The formal answer, known as the Riesz-Fischer Theorem,
makes use of a form of integration that di�ers somewhat from Riemann integration.
Called Lebesgue integration, it is de�ned for all bounded functions, including those
that may be discontinuous on an in�nite but enumerable set of points in the interval
of integration, and even for some unbounded functions. Thus, the class of Lebesgue
integrable functions is much larger than the class of functions which are of bounded
variation orwhich are Riemann integrable. Nevertheless,whenboth the Lebesgue and
the Riemann integrals of a function exist, they yield identical results. Moreover, when
two functions are equal almost everywhere, that is to say everywhere except on an
enumerable set of points, they have the same Lebesgue integral. Therefore, in prac-
tice, we can usually proceed by using Riemann integration techniques without regard
todiscontinuous or even, in somecircumstances, unboundedbehaviour provided that
it is restricted to an enumerable point set.
Theorem: The set of trigonometrical functions {cos nx, sin nx} is complete with re-
spect to those functions f (x) that are (Lebesgue) square integrable on the interval
−π 6 x 6 π and hence satisfy

∞∫
−∞

[f (x) ]2 dx < ∞.

Thus, the Fourier coe�cients {an , bn} for all such functions satisfy Parseval’s equa-
tion and the corresponding Fourier series converge in the mean to the functions they
represent.

This completes our discussion of the “convergence question”.

8.3 Functions Having Arbitrary Period

Periodic functions in applications rarely have period 2π but the transition fromperiod
2π to any period T can be e�ected by a simple change of scale. Suppose that f (t) has
period T . Then we can introduce a new variable x such that f (t), as a function of x,
has period 2π by setting x = 2π

T t. Hence, if f (t) has a Fourier series, it must be of the
form

f (t) = f
(
T
2π

)
= a02 +

∞∑
n=1

(an cos nx + bn sin nx), (8.3.1)

with coe�cients given by the Euler formulas:

a0 =
1
2π

π∫
−π

f
(
T
2π

)
dx, an =

1
2π

π∫
−π

f
(
T
2π

)
cos nxdx,
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bn =
1
π

π∫
−π

f
(
T
2π

)
sin nxdx.

Since x = 2π
T , we have dx = 2π

T dt and the interval of integration becomes

−T2 6 t 6 T
2 .

Consequently, the Fourier coe�cients of the periodic function f (t) of period Tmust be
given by

a0 =
2
T

T/2∫
−T/2

f (t)dt

an =
2
T

T/2∫
−T/2

f (t) cos 2nπtT dt

bn =
2
T

T/2∫
−T/2

f (t) sin 2nπt
T dt, n = 1, 2, 3, . . . . (8.3.2)

Furthermore, the Fourier series (8.3.1) with x expressed in terms of t becomes

f (t) = a02 +
∞∑
n=1

(
an cos

2nπt
T + bn sin

2nπt
T

)
. (8.3.3)

The interval of integration in (8.3.2) may be replaced by any interval of length T:
0 6 t 6 T, for example.

Figure 8.5: Half-Wave Recti�er

Example: Suppose that we wish to Fourier analyze the outcome of passing a sinu-
soidal voltage V0 sinωt through a half-wave recti�er that clips the negative portion of
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the wave. The recti�ed potential will continue to have period T = 2π
ω but will have the

new functional form (see Figure 8.5)

V(t) =
{

0 for − T/2 < t < 0,
V0 sinωt for 0 < t < T/2.

Since V = 0 when −T/2 < t < 0, we obtain from (8.3.2)

a0 =
ω
π

π/ω∫
0

V0 sinωtdt =
2V0
π ,

and

an =
ω
π

π/ω∫
0

V0 sinωt cos nωtdt =
ω V0
2π

π/ω∫
0

[sin(1 + n)ωt + sin(1 − n)ωt]dt.

When n = 1, the integral on the right is zero, and when n = 2, 3, . . . , we obtain

an =
ω V0
2π

[
−cos(1 + n)ωt(1 + n)ω − cos(1 − n)ωt

(1 − n)ω

]π/ω
0

= V0
2π

(
1 − cos(1 + n)π

1 + n + 1 − cos(1 − n)π
1 − n

)
.

When n is odd, this is zero; for even n it gives

an = V0
2π

(
2

1 + n + 2
1 − n

)
= − 2V0

(n − 1)(n + 1)π , n = 2, 4, . . . .

In a similar fashionwe �nd that b1 = V0 /2 and bn = 0 for n = 2, 3, . . . . Consequently,

V(t) = V0
π + V0

2 sinωt − 2V0
π

(
1

1 · 3 cos 2ωt + 1
3 · 5 cos 4ωt + . . .

)
.

Inmany applications the independent variable is distance x and themost intuitive
way to denote the period is to use 2L. In that case the formulas read

f (x) = a02 +
∞∑
n=1

[
an cos

nπx
L + bn sin

nπx
L

]
, (8.3.4)

with

an =
1
L

L∫
−L

f (x) cos nπxL dx, bn =
1
L

L∫
−L

f (x) sin nπxL dx. (8.3.5)
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8.4 Half-Range Expansions - Fourier Sine and Cosine Series

We have already seen that certain types of functions have particularly simple Fourier
series. If f (t) is an even function, f (−t) = f (t), of period T then its Fourier sine coe�-
cients bn = 0 for all n > 1 and its Fourier series is a Fourier cosine series

f (t) = a02 +
∞∑
n=1

an cos
2nπt
T (8.4.1)

with coe�cients

a0 =
4
T

T/2∫
0

f (t)dt, an =
4
T

T/2∫
0

f (t) cos 2nπtT dt, n = 1, 2, 3, . . . . (8.4.2)

On the other hand, if f (t) is odd, f (−t) = −f (t), its Fourier cosine coe�cients an = 0 for
all n and its Fourier series is a Fourier sine series,

f (t) =
∞∑
n=1

bn sin
2nπt
T (8.4.3)

with coe�cients

bn =
4
T

T/2∫
0

f (t) sin 2nπt
T dt. (8.4.4)

Suppose that we have a function f (t) that is de�ned only on some �nite interval
0 6 t 6 τ. If we want to represent it by a Fourier series, we now have three distinct
representations to choose from:
– a Fourier cosine series of period T = 2τ,
– a Fourier sine series of period T = 2τ, or
– a full Fourier series of period T = τ.

As before, the latter series will converge to the periodic extension of f (t). The �rst
two , however, are half-range expansions that converge to periodic extensions of the
functions f1(t) and f2(t) respectively, where

f1(t) =
{

f (t), 0 6 t 6 τ
f (−t), −τ 6 t 6 0

and

f2(t) =
{

f (t), 0 < t 6 τ
−f (−t), −τ 6 t < 0

The �rst of these is called the symmetric extension and the second, the antisym-
metric extension of f (t). Thus, as shown in Figure 8.6, the Fourier cosine series

f (t) = a02 +
∞∑
n=1

an cos
nπt
τ , 0 6 t 6 τ (8.4.5)
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with coe�cients

an =
2
τ

τ∫
0

f (t) cos nπtτ dt, n = 0, 1, 2, . . . , (8.4.6)

converges to the periodic symmetric extension of f (t) of period T = 2τ, while the
Fourier sine series

f (t) =
∞∑
n=1

bn sin
nπt
τ , 0 < t < τ (8.4.7)

with coe�cients

bn =
2
τ

τ∫
0

f (t) sin nπtτ dt, n = 1, 2, . . . , (8.4.8)

converges to the periodic antisymmetric extension of f (t) of period T = 2τ. The
series (8.4.5) and (8.4.7) are called half-range expansions of f (t).

Figure 8.6: Periodic Extensions

Example: Consider the function f (t) = t
2τ +

1
2 . Its full-range Fourier coe�cients are

a0 = 1, an =
1
τ

τ∫
−τ

(
t
2τ +

1
2

)
cos nπtτ dt = 0,

bn =
1
τ

τ∫
−τ

(
t
2τ +

1
2

)
sin nπtτ dt = (−1 )n+1

nπ ,

and the Fourier series reads

f (t) = 1
2 +

∞∑
n=1

(−1 )n+1
nπ sin nπtτ , −τ < t < τ.
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Figure 8.7: The Fourier, Fourier Sine and Fourier Cosine Series for f (t) = t
2τ +

1
2 .

The function’s half-range Fourier sine coe�cients are

bn =
2
τ

τ∫
0

(
t
2τ +

1
2

)
sin nπtτ dt = 1 − 2 cos nπ

nπ ,

and its Fourier sine series reads

f (t) =
∞∑
n=1

1 − 2(−1 )n
nπ sin nπtτ , 0 < t < τ.

Finally, the half-range Fourier cosine coe�cients are

a0 =
3
2 , an =

2
τ

τ∫
0

(
t
2τ +

1
2

)
cos nπtτ dt = cos nπ − 1

n2 π2 ,

and so the Fourier cosine series reads

f (t) = 3
4 + 2

π2
∞∑

n=1,3,5

1
n2 cos

nπt
τ , 0 6 t 6 τ.

All three series are shown in Figure 8.7 .

8.5 Complex Form of Fourier Series

As we noted at the beginning of Section 8.2, Fourier series can also be expressed in a
complex form:
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f (x) = a02 +
∞∑
n=1

[an cos nx + bn sin nx]

= a02 +
∞∑
n=1

[
an
einx + e−inx

2 + bn
einx − e−inx

2i

]

= a02 +
∞∑
n=1

[
an −i bn

2 einx +an +i bn2 e−inx
]

or,

f (x) =
∞∑

n=−∞
cn einx (8.5.1)

where

cn =


a0
2 , n = 0

an −i bn
2 , n > 0

a|n| +i b|n|
2 , n < 0.

(8.5.2)

From the formulas for an and bn we �nd the corresponding Euler formula for cn:

cn =
1
2π

π∫
−π

f (x) e−inx dx. (8.5.3)

Alternatively, this formula can be obtained by multiplying the series (8.5.1) by e−imx,
integrating, and using the (orthogonality) relation

π∫
−π

einx e−imx dx =
{

0, n ≠ m
2π, n = m.

For an arbitrary period 2L and interval −L 6 x 6 L, (8.5.1) and (8.5.3) become

f (x) =
∞∑

n=−∞
cn ei

nπx
L (8.5.4)

with

cn =
2
L

L∫
−L

f (x) e−i
nπx
L dx. (8.5.5)

Example: Fourier series have important applications in connection with di�erential
equations. As an introduction we shall con�ne ourselves to an example involving an
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ordinary di�erential equation. Applications in connection with partial di�erential
equations will be considered in a subsequent chapter.

The forced oscillations of a body of massm on a spring are governed by the equa-
tion

md
2 x
d t2

+ r dxdt + kx = f (t)

where k is the spring constant, r is the damping coe�cient, and f (t) is the external
force. The general solution to this equation can be written (see Chapter 9) as the gen-
eral solution to the associated homogeneous equation

md
2 x
d t2

+ r dxdt + kx = 0

plus a particular solution of the non-homogeneous equation. For the homogeneous
equation, substitution of the ansatz x = ept results in the characteristic equation

(m p2 +rp + k) ept = 0

with roots
p = −r ±

√
r2 −4mk
2m .

All real physical systems have positive damping coe�cients and so their homoge-
neous solutions are either damped sinusoidal functions or decaying exponentials:

c1 e−(r/2m)t cos
√
k/m − r2 /4m2t + c2 e−(r/2m)t sin

√
k/em − r2 /4m2t

or,

c1 exp
[
−r +

√
r2 −4mk
2m t

]
+ c2 exp

[
−r −

√
r2 −4mk
2m t

]
.

To determine a particular nonhomogeneous solution, we note that substitution
of the ansatz

x(t) = X eiωt

with an undetermined coe�cient X gives

m(iω )2 X eiωt +r(iω)X eiωt +kX eiωt = A eiωt ,

or,
X = A

−mω2 +irω + k
and hence, leads immediately to the general solution

x(t) = A
−mω2 +irω + k e

iωt + c1 x1(t) + c2 x2(t)

where x1(t) and x2(t) are the homogeneous solutions noted above. The last two terms
are called “transients" and approach zero as time increases. Thus, the solution decays
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to a “steady state” sinusoidal response oscillating at the same frequency as the driving
term A eiωt . This oscillation never dies out as long as the driving force is applied; its
amplitude X is �xed.

Now let us suppose that the driving force f (t) is not sinusoidal but that it is peri-
odic. The steady state response of the system will again mirror the periodicity of the
imposed force and to �nd an explicit expression for it we simply assume Fourier ex-
pansions for f (t) and x(t) :

f (t) =
∞∑

n=−∞
An einωt and x(t) =

∞∑
n=−∞

cn einωt , ω = 2π/T .

Assuming further that the series for x(t) can be di�erentiated term by term the neces-
sary number of times, we can substitute these two series plus

dx
dt =

∞∑
n=−∞

inω cn einωt and d2 x
d t2

=
∞∑

n=−∞
(− n2 ω2) cn einωt ,

into the di�erential equation. Then, invoking orthogonality, we can equate the coe�-
cients with the same exponential einωt on both sides. The result is

(− n2 ω2 m + inωr + k) cn = An

or,
cn = An /m

(ω2
0 − n2 ω2) + 2λnωi

where ω2
0 = k/m is the natural frequency of the oscillator and λ = r/2m is the sys-

tem’s damping factor. It only remains to determine the Fourier coe�cients for f (t) by
applying

An =
1
T

T/2∫
−T/2

f (t) e−inωt dt.

Thus, we obtain the steady state solution as a superposition of sinusoidal functions
with frequencies that are integral multiples of 2π/T, T being the period of the driving
force.

If the frequency of one of these functions is close to thenatural frequencyω0 of the
system, a resonance e�ect occurs because of the near cancellation in the denominator
of cn; that function then becomes the dominant part of the system’s response to the
imposed force. To o�er a concrete illustration of this, letm = 1 (kg), r = 0.02 (kg/sec),
and k = 25 (kg /sec2), so that the equation of motion becomes

d2 x
d t2

+ 0.02dxdt + 25x = f (t)

where f (t) is measured in kg · m/ sec2 . Furthermore, let

f (t) =
{

t + π/2 for − π < t < 0,
−t + π/2 for 0 < t < π.
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with f (t + 2π) = f (t). Representing f (t) by a Fourier series, we �nd

An =
1
2π

 0∫
−π

(t + π/2) e−int dt +
π∫

0

(−t + π/2) e−int dt

 = 1
2π

π∫
0

(−t+π/2)[e−int + eint]dt

or,

An =
1
π

π∫
0

(−t + π/2) cos ntdt = 1
n2 π [1 − (−1 )

n],

and thus,

f (t) = 2
π

∞∑
n=−∞,n odd

1
n2 e

int .

From the preceding analysis we know that the oscillator’s response to this force
will be a displacement x(t) with Fourier coe�cients

cn = An /m
(ω2

0 − n2) + 2λni
, n = ±1, ±3, ±5, . . .

where ω2
0 = k/m = 25, λ = r/2m = 0.01. Thus,

cn =
2
n2 π

(25 − n2) − 0.02ni
(25 − n2 )2 +(0.02n )2

, n = ±1, ±3, ±5, . . .

which leads directly to

x(t) =
∞∑

n=1,3,5,...
[an cos nt + bn sin nt]

where

an =
4
n2 π

25 − n2

(25 − n2 )2 +(0.02n )2
and bn =

0.08
n2 π

1
(25 − n2 )2 +(0.02n )2

.

The amplitude of each (complex) mode of oscillation is

| cn | =
1
2
√
a2n + b2n =

2
n2 π

1√
(25 − n2 )2 +(0.02n )2

.

Some numerical values are

| c1 | = 0.0265, | c3 | = 0.0044, | c5 | = 0.2550, | c7 | = 0.0006, | c9 | = 0.0001.

Thus, the cancellation in the denominator of | c5 | results in the n = ±5 modes domi-
nating and in fact, since a5 = 0, results in the sin 5t termdominating the Fourier series
for x(t). This means that the steady state response of the system is almost a pure sine
wave with frequency �ve times that of the driving force.
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8.6 Transition to Fourier Transforms

As we noted in the context of analytic continuation, integral representations of func-
tions are often more useful than series representations. Typically, they assume the
form of an integral transform (see Section 5.4)

f (z) =
∫
C
K(z, ζ )g(ζ )dζ

where the function K(z, ζ ) is called the kernel of the representation.We noted further
that a commonly used kernel is named after Fourier, has the functional dependence
K(z, ζ ) = 1

2π e
−izζ and corresponds to a choice of contour C that runs along the entire

real axis, −∞ < ζ < ∞. The representation that results is

f (z) = 1
2π

∞∫
−∞

e−izζ g(ζ )dζ .

The similarity in both name and form to the representation a�orded by a complex
Fourier series suggests that there ought to be a connection and, at the heuristic level
at least, there is.

Our starting point is equations (8.5.4) and (8.5.5):

f (x) =
∞∑

n=−∞
cn ei

nπx
L , −L 6 x 6 L,

cn =
2
L

L∫
−L

f (x) e−i
nπx
L dx. (8.6.1)

If we now de�ne
kn ≡

nπ
L and ∆k ≡ π

L = kn+1 − kn ,

these equations can be rewritten as

f (x) =
∞∑

n=−∞
cL(kn) ei kn x ∆k with

cL(kn) =
L
π cn =

1
2π

L∫
−L

f (x) e−i kn x dx.

Then, taking the limit as L →∞, we have

C(k) = lim
L→∞

cL(k) =
1
2π

∞∫
−∞

f (x) e−ikx dx and

f (x) =
∞∫

−∞

C(k) eikx dk
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which comprise a Fourier transform pair. By modern convention, the Fourier trans-
form pair is de�ned by replacing C(k) by F(k) =

√
2πC(−k); thus,

F(k) = 1√
2π

∞∫
−∞

f (x) eikx dx which yields the representation

f (x) = 1√
2π

∞∫
−∞

F(k) e−ikx dk. (8.6.2)

The function F(k) is identi�ed as theFourier transform of f (x) and f (x) as the inverse
Fourier transform of F(k); symbolically, we write

F(k) = F{f (x)} and f (x) = F
−1{F(k)}.

By construction, the representation of f (x) that this a�ords is intended to be valid for
all real x, −∞ < x < ∞, and periodicity is no longer a consideration.

Not surprisingly, each theorem on the convergence properties of Fourier series
has a Fourier transform counterpart. Thus, the pointwise convergence of (8.6.2) is ad-
dressed by the Fourier integral theorem.
Theorem: Let f (x) be absolutely integrable on −∞ < x < ∞. Then,

1
2 [f (x + 0) + f (x − 0)] =

1
2π

∞∫
−∞

dk
∞∫

−∞

dξ f (ξ ) eik(ξ−x) (8.6.3)

provided that f (ξ ) is of bounded variation on an interval a 6 ξ 6 b that includes the
point ξ = x. Moreover, if the function is continuous on this interval, the integral on
the right hand side of (8.6.3) converges uniformly to f (x) for a 6 x 6 b.

Notice that this theorem does not re�ect the striking symmetry between f (x) and
its Fourier transform F(k); the properties of F(k) are not even mentioned. While a
function and its Fourier coe�cients are quite di�erent mathematical objects, a func-
tion and its Fourier transform are objects of exactly the same type and so the reci-
procity implied by the equations in (8.6.2) is of considerable interest. It is addressed
by Plancherel’s theorem which, as the Fourier transform counterpart of Parseval’s
theorem, also addresses su�cient conditions for convergence in the mean.
Theorem:Let f (x) be ( Lebesgue ) square integrable on−∞ < x < ∞. Then, the integral

F(k, L) = 1√
2π

L∫
−L

f (x) eikx dx

converges in the mean as L → ∞ to a function F(k) which is itself square integrable
on −∞ < k < ∞. Furthermore, the integral

f (x, L) = 1√
2π

L∫
−L

F(k) e−ikx dk
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converges in the mean to f (x) and
∞∫

−∞

|f (x)|2dx =
∞∫

−∞

|F(k)|2dk. (8.6.4)

8.7 Examples of Fourier Transforms

Example 1. Consider the function f (x) = a
a2 + x2 . From equation (8.6.2) its Fourier

transform is given by

F(k) = a√
2π

∞∫
−∞

eikx
a2 + x2 dx.

This can be evaluated by means of the calculus of residues. The function f (z) =
1

a2 + z2 satis�es the conditions speci�ed in the theorem of Section 3.3.3 and so equa-
tions (3.3.11) and (3.3.12) apply:

∞∫
−∞

f (x) eikx dx =


2πi

∑
+
Res[f (z) eikz], k > 0,

−2πi
∑
−
Res[f (z) eikz], k < 0.

There are simple poles at z = ±ia and the residues there are

Res
[
eikz
a2 + z2

]
z=±ia

= eikz
z ± ia

∣∣∣∣
z=±ia

= e
∓ka

±2ia .

Thus,

F(k) =
√
π
2 ·
{
e−ka , k > 0
eka , k < 0

or, F(k) =
√ π

2 e
−|k|a .

Verifying that equation (8.6.3)) holds, we note that

1√
2π

∞∫
−∞

F(k) e−ikx dk = 1√
2π

√
π
2

 0∫
−∞

eka−ikx dk +
∞∫
0

e−ka−ikx dk


= 1
2

[
1

a − ix +
1

a + ix

]
= a
a2 + x2 = f (x)

as required.
Notice that if the parameter a is small, f (x) will be sharply peaked about x =

0; F(k) on the other hand will be relatively spread out on either side of its maximum
which occurs at k = 0. If a is large, the converse obtains: f (x) is �attened while F(k) is
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sharply peaked. This contrast in behaviour between the members of a Fourier trans-
form pair is characteristic and is the mathematical basis for the Heisenberg uncer-
tainty principle in quantummechanics. We shall see it recur evenmore dramatically
in each of the next two examples.
Example 2. Suppose that we now take f (x) to be a Gaussian probability function:
f (x) = e−a x

2
, a = constant > 0. Its Fourier transform is given by

F(k) = 1√
2π

∞∫
−∞

eikx−a x
2
dx

which, apart from the normalization factor 1√
2π

, is just Gauss’s Integral which was
evaluated in Section 3.3.6. That result gives us

F(k) = 1√
2a

e− k
2 /4a

which is also a Gaussian but one with a dependence on a that is the inverse of that
enjoyed by f (x) .

In quantum mechanics it is the squared modulus of the transform pair that has
physical signi�cance; (|f (x)|2dx and |F(k)|2dk are the probabilities that a particle or
system of particles can be localized with position x andwave number k, respectively).
The function |f (x)|2 = e−2a x

2
decreases from its maximum of 1 at x = 0 to a value

of 1
e at x = ± 1√

2a
. Thus , we take its “width” to be ∆x =

√
2
a . Similarly, the width of

|F(k)|2 = 1
2a e

−k2/2a is ∆k = 2
√
2a and so,

∆x · ∆k = 4 & O(1)

which, as indicated, is a number of order 1 .
Another common transform pair is composed of the functions

f (x) =
{

1√
a , −a/2 6 x 6 a/2
0, |x| > a/2.

and

F(k) = 1√
2π

a/2∫
−a/2

1√
a
eikx dx =

√
2
πa

sin ak/2
k .

In this case we can take ∆x and ∆k to be the distances between the central zeros
of |f (x)|2 and |F(k)|2, respectively. Since the zeros are the same as the central zeros of
f (x) and F(k), we �nd ∆x = a and ∆k = 4π

a and so recover the relation ∆x · ∆k & O(1).
Because ∆x and ∆k can be identi�ed with an uncertainty in assigning to x and k their
most probable values, this has come to be called the (Heisenberg) uncertainty relation.
Example 3. As a �nal example, we shall consider a fairly typical function of time

f (t) =
{

0, t < 0
e−t/T sinω0 t, t > 0

.
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Physically, this function might represent the displacement of a damped harmonic os-
cillator, or the electric �eld in a radiated electromagnetic wave, or the current in an
antenna, just to name three possibilities.

The Fourier transform of f (t) is

F(ω) = 1√
2π

∞∫
0

e−t/T sinω0 t eiωt dt =
1

2
√
2π

[
1

ω + ω0 +i/T
− 1
ω − ω0 +i/T

]
.

Once f (t) is identi�ed, we can use Parseval’s equation (Plancherel’s Theorem) to
deduce a complementary physical meaning for F(ω). For example, if f (t) is a radiated
electric �eld, the radiated power will be proportional to |f (t)|2 and the total energy

radiated will be proportional to
∞∫
−∞
|f (t)|2dt. But, according to Parseval’s equation ,

this is equal to
∞∫
−∞
|F(ω)|2dω. Thus, to within a multiplicative constant, |F(ω)|2 must

be the energy radiated per unit frequency interval .
Suppose that T is very large so thatω0 T � 1. Then, as happenedwith the resonat-

ingharmonic oscillator of Section 8.5where one frequency or term in the Fourier series
dominated over all the others, the “frequency spectrum” de�ned by F(ω) is sharply
peaked about ω = ±ω0 . For example, near ω = ω0,

F(ω) ≈ − 1
2
√
2π

1
ω − ω0 +i/T

,

and,
|F(ω)|2 ≈ 1

8π
1

(ω − ω0 )2 +1/ T2
.

When ω = ω0 ±1/T, the radiated energy |F(ω)|2 is down by a factor of 1
2 from its

peak value. Thus, the width of the peak at half-maximum, which is a measure of the
uncertainty in the frequency of the radiation, is given by Γ = 2/T . On the other hand,
T is the time for the amplitude of the oscillator or of the radiated wave to “decay” by
a factor of e−1 and so, is a measure of their mean lifetime which, in turn, is a measure
of the uncertainty in the time of oscillation or of emission of the radiation. Thus, we
recover another (classical) uncertainty relation:

∆t · ∆ω = T · 2T & O(1).

8.8 The Dirac Delta Function and Transforms of Distributions

A reordering of the integrations that appear in the statement of the Fourier Integral
Theorem (equation (8.6.3)) gives rise to a very suggestive result. Assuming continuity
for f (x), (8.6.3) reads

f (x) = 1
2π

∞∫
−∞

dk
∞∫

−∞

dξ f (ξ ) eik(ξ−x) (8.8.1)
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which, after reordering, yields

f (x) =
∞∫

−∞

dξ f (ξ ) δ(ξ − x) (8.8.2)

where

δ(ξ − x) = 1
2π

∞∫
−∞

dk eik(ξ−x) . (8.8.3)

At this juncture we have no idea about the legitimacy of reversing the order of in-
tegration and, given that the improper integral in (8.8.3) is not de�ned in any conven-
tional sense, it does look a bit questionable. Nevertheless, let us ignore such niceties
for the time being and focus on the intriguing fact that, if it does exist, δ(ξ − x) is the
continuous variable generalization of the Kronecker delta function

δ(m, n) =
{

1, m = n
0, m ≠ n

That is to say, just as δ(m, n) picks out the nth term from a summation over m,

fn =
∞∑

m=−∞
fm δ(m, n),

δ(ξ − x) selects and delivers the value at ξ = x of the function that multiplies it in a
summation over the continuous variable ξ .

A functionwith this property is called aDirac delta function andwas introduced
by Paul Dirac in his landmark formulation of quantum mechanics that uni�ed the
earlier Heisenberg and Schrödinger pictures of quantum phenomena.

It is clear from (8.8.3) that the delta function depends only on the di�erence ξ −
x and not on ξ and x individually. Moreover, equation (8.8.2) tells us that the delta
function is normalized for, setting f (x) ≡ 1, we have

1 =
∞∫

−∞

δ(ξ − x)dξ . (8.8.4)

This immediately raises the question of what δ(ξ − x) “looks like” when it is plotted.
From equation (8.8.2) we see that the function f (ξ ) can be modi�ed anywhere except
at the point ξ = x without a�ecting the result of the integration. This implies that
δ(ξ − x) must be zero everywhere except in an in�nitesimal neighbourhood of ξ = x.
Equation (8.8.4) then suggests that

1 = lim
ε→0

x+ε∫
x−ε

δ(ξ − x)dξ
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and hence, that δ(ξ − x) → ∞ as ξ → x. In other words, we can think of the delta
function as having the mathematically ill-de�ned properties

δ(ξ − x) =
{

0 for all ξ ≠ x
∞ for ξ = x.

(8.8.5)

Evidently, neither this “equality” nor equation (8.8.2) from which it was deduced can
be used as a formal de�nition of the Dirac delta function. Nevertheless, they do o�er
an intuitive appreciation of what a delta function is as well as some idea of how to
make use of them.

Another aid for our intuition and one that takes us closer to a formal de�nition of
the Dirac delta function is to think of it as the limit of a sequence of functions that are
strongly peaked about ξ = x and satisfy the condition

lim
n→∞

∞∫
−∞

δn(ξ − x)f (ξ )dξ = f (x) (8.8.6)

for all suitably behaved functions f (x). Such sequences are called delta sequences.
For notational convenience, we are now going to reverse the roles of the symbols

ξ and x and set ξ = 0. Equation (8.8.6) then becomes

lim
n→∞

∞∫
−∞

δn(x)f (x)dx = f (0) (8.8.7)

where {δn(x)} is a sequence of functions that are sharply peaked about x = 0.
Some examples of delta sequences are:

1. δn(x) =
{

0 for |x| > 1/n
n/2 for |x| < 1/n

2. δn(x) =
n√
π
e− n

2 x2 ;

3. δn(x) =
n
π

1
1 + n2 x2 ;

4. δn(x) =
sin nx
πx = 1

2π
n∫
−n
eikx dk;

5. δn(x) =
1
nπ

sin2 nx
x2 .

By de�nition these all satisfy condition (8.8.7). We shall verify this for the �rst and
third sequences. Notice that the fourth sequence links us back to the Fourier trans-
form (8.8.3) that initiated our interest in the delta function.

Using the mean value theorem, substitution of sequence #1 into the integral on
the left hand side of (8.8.7) yields

∞∫
−∞

δn(x)f (x)dx =
1/n∫

−1/n

n
2 f (x)dx =

2
n ·

n
2 f (xm)
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Figure 8.8: δ-sequence #1

where −1/n 6 xm 6 1/n. Clearly, as n →∞, xm → 0 and so,

lim
n→∞

∞∫
−∞

δn(x)f (x)dx = f (0)

as required.
In the case of sequence #3 , the relevant integral is

∞∫
−∞

n
π

1
1 + n2 x2 f (x)dx

which admits evaluation by residue calculus. Provided that the continuation of the
test function, f (z), is meromorphic in the upper half-plane and that |f (z)| is bounded
as |z| →∞, we can use equation (3.3.4) and write

∞∫
−∞

n
π

1
1 + n2 x2 f (x)dx = 2πi

∑
+

Res[δn(z)f (z)]

where
∑
+

denotes the sum over all the poles of δn(z) and f (z) in the upper half-plane.

However, since lim
n→∞ δn(z) = 0 if z ≠ 0, the contributions to the sum from poles of f (z)

will vanish in the limit. Thus,

lim
n→∞

∞∫
−∞

n
π

1
1 + n2 x2 f (x)dx = lim

n→∞
2πiRes

[
n
π

1
1 + n2 z2 f (z)

]
z= i

n

or,

lim
n→∞

∞∫
−∞

n
π

1
1 + n2 x2 f (x)dx = lim

n→∞
2πi f

(
i
n

)
n
π

1
2 n2 i

n
= lim
n→∞

f
(
i
n

)
= f (0)
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as required.
The latter sequence often appears in physical applications with n replaced by 1

ε
so that δn(x) assumes the form

δε(x) =
ε
π

1
x2 + ε2 = 1

2πi

[
1

x − iε −
1

x + iε

]
(8.8.8)

and the appropriate limit is now that as ε → 0.
While it is helpful to think of the Dirac delta function, δ(x), as being the limit of

any of these sequences, we cannot de�ne it this way because the limits themselves
are unde�ned at x = 0. Nevertheless, the delta sequences do play a role in de�ning
the delta function not as a conventional function but as a member of a new class of
mathematical entities called generalized functions or distributions. These are all
de�ned in terms of sequences of conventional functions bymeans of a unique limiting
process that involves the integrals of these functions “against” an appropriately well-
behaved test function. In the case of δ(x) this yields a de�nition that recognizes that
the fundamental property of the function is expressed by

∞∫
−∞

δ(x)f (x)dx = f (0). (8.8.9)

De�nition: Any sequence of continuous functions gn(x) de�nes a distribution g(x)
if, for any function f (x) which is di�erentiable everywhere any number of times and
which is non-zero only on a bounded set, the limit

lim
n→∞

∞∫
−∞

gn(x)f (x)dx ≡
∞∫

−∞

g(x)f (x)dx (8.8.10)

exists.
The right hand side of this equation is not a Riemann integral but rather, it de-

notes the limit of a sequence of Riemann integrals.
Two distributions g(x) and h(x) are equal if the corresponding sequences satisfy

lim
n→∞

∞∫
−∞

gn(x)f (x)dx = lim
n→∞

∞∫
−∞

hn(x)f (x)dx

for any “test function” f (x) that has the properties speci�ed in the de�nition. Thus, for
example, the delta-sequences {δn(x)} all de�ne the same distribution δ(x):

lim
n→∞

∞∫
−∞

δn(x)f (x)dx =
∞∫

−∞

δ(x)f (x)dx = f (0).

The principal result of the theory of distributions, from the perspective of a physicist,
is that they admit manipulation according to the same rules of calculus as apply to
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conventional functions. However, one must remember that they have signi�cance or
meaning only as a multiplicative factor in an integrand.

Because of its peculiar properties, the Dirac delta function is an extremely useful
artifact of mathematical physics. In addition to arising in a very natural way from a
consideration of the representation of functions by means of Fourier series and trans-
forms, they o�er a functional expression of themost common idealizations of physics:
that particles can be localized at points and rigid bodies can be so rigid that their
elastic collisions are mediated by instantaneous impulses. The charge density for a
collection of point charges and the force exerted by one perfectly rigid billiard ball
on another are necessarily delta functions of position and time, respectively. This, in
turn, leads to a central role for the delta function in the Green’s Function approach
to solving non- homogeneous boundary value problems as we shall see in Chapter 12.
Thus, for all these reasons,we shall digresswith an exploration ofwhat canbe learned
about delta functions from an application of the δ-calculus.

The δ-calculus involves the treatment of δ(x) and its derivatives as though they
were conventional functions albeit ones with the “unusual” properties
1.

∞∫
−∞
δ(x)f (x)dx = f (0), and

2. δ(x) =
{
∞, x = 0
0, x ≠ 0

with
∞∫
−∞
δ(x)dx = 1.

It is a shortcut method for obtaining identities that are all derivable by a rigorous but
much more onerous approach involving δ-sequences and the limiting processes that
de�ne distributions.

To begin with we shall “prove” that

δ(x) = d
dx θ(x) (8.8.11)

where θ is the step function

θ(x) =
{

1, x > 0
0, x < 0

Using a continuous but otherwise arbitrary test function f (x), we compose the integral
∞∫

−∞

dθ(x)
dx f (x)dx

and proceed with integration by parts. We �nd immediately that
∞∫

−∞

dθ(x)
dx f (x)dx = θ(x)f (x)

∣∣∣∞
−∞
−
∞∫

−∞

θ(x)f ′(x)dx = f (∞)−
∞∫
0

f ′(x)dx = f (0) =
∞∫

−∞

δ(x)f (x)dx

which establishes the identity (8.8.11).
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Similarly, by integrating
∞∫

−∞

δ′(x)f (x)dx

by parts, we �nd
∞∫

−∞

δ′(x)f (x)dx = δ(x)f (x)
∣∣∞
−∞ −

∞∫
−∞

δ(x)f ′(x)dx

and hence,
∞∫

−∞

δ′(x)f (x)dx = −f ′(0). (8.8.12)

More generally,
∞∫

−∞

dm δ(x)
d xm f (x)dx = (−1 )m d

m f (0)
d xm . (8.8.13)

Next, we note that
∞∫

−∞

xδ(x)f (x)dx = 0 and
∞∫

−∞

xδ′(x)f (x)dx = f (0) =
∞∫

−∞

δ(x)f (x)dx

for arbitrary continuous functions f (x), and deduce the identities

xδ(x) = 0 (8.8.14)

xδ′(x) = δ(x). (8.8.15)

A further identity is

δ(ax) = 1
|a| δ(x), a ≠ 0. (8.8.16)

To establish it, we use the usual continuous test function f (x) and evaluate

∞∫
−∞
δ(ax)f (x)dx =


∞∫
−∞
δ(ξ )f (ξ /a) 1a dξ =

1
a f (0), a > 0

−∞∫
∞
δ(ξ )f (ξ /a) 1a dξ = −

1
a f (0), a < 0

=
∞∫
−∞

1
|a| δ(x)f (x)dx.

Evidently, δ(x) is an even function since, from (8.8.16), we have

δ(−x) = δ(x). (8.8.17)
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This comes as no great surprise given that the δ-sequences all consist of even func-
tions.

A useful extension of (8.8.16) is the identity

δ(x2 − a2) = 1
2a [δ(x − a) + δ(x + a)], a > 0. (8.8.18)

Whereas the argument of the δ-function on the left hand side of (8.8.16) is a linear
function of x, we now have a quadratic function as an argument. The derivation has
the usual starting point:we compose the integral

∞∫
−∞
δ(x2 − a2)f (x)dx for arbitrary con-

tinuous f (x). However, we now invoke the property that δ(ξ ) = 0 except at ξ = 0 to
write

∞∫
−∞

δ(x2 − a2)f (x)dx =
−a+ε∫
−a−ε

δ(x2 − a2)f (x)dx +
a+ε∫
a−ε

δ(x2 − a2)f (x)dx

where 0 < ε < 2a. Introducing the new variable of integration ξ = x2 − a2, we have

dx =
{

dξ /2
√
ξ + a2, x > 0

−dξ /2
√
ξ + a2 , x < 0

and so,

δ(x2 − a2)f (x)dx =
−2εa∫
2εa

−δ(ξ )f (−
√
ξ + a2) dξ

2
√
ξ + a2

+
2εa∫

−2εa

δ(ξ )f (
√
ξ + a2) dξ

2
√
ξ + a

= 1
2a [f (−a) + f (a)]

= 1
2a

∞∫
−∞

[δ(x + a) + δ(x − a)]f (x)dx

as required.
This last identity can be extended to cover all cases of a δ-function whose argu-

ment is a di�erentiable function with simple zeros. If g(x) is di�erentiable everywhere
and g(xn) = 0 with g′(xn) ≠ 0 for a countable set of points xn then,

δ[g(x)] =
∑
n

1
|g′(xn)|

δ(x − xn). (8.8.19)

The δ-calculus can also be used to determine series and integral representations for
delta functions. For example, the Fourier coe�cients of δ(x) are bn = 0(δ(x) is an even
function) and

an =
1
L

L∫
−L

δ(x) cos nπxL dx = 1
L .
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Thus, the Fourier series representation of δ(x) is

δ(x) = 1
2L + 1

L

∞∑
n=1

cos nπxL . (8.8.20)

This is a divergent series, as one might expect, but it possesses the key property

L∫
−L

δ(x)f (x)dx = f (0)

as canbe seenbymultiplying the right hand side of (8.8.20) by anarbitrary continuous
function f (x) and integrating term by term from −L to L:

1
2L

L∫
−L

f (x)dx +
∞∑
n=1

1
L

L∫
−L

f (x) cos nπxL dx = a02 +
∞∑
n=1

an ,

where an , n = 0, 1, 2, . . . are Fourier coe�cients of f (x). If f (x) has the Fourier series

f (x) = a02 +
∞∑
n=1

(
an cos

nπx
L + bn sin

nπx
L

)
,

then
a0
2 +

∞∑
n=1

an = f (0).

Following exactly the same steps we can determine various other series for the
delta function. For instance, if 0 < ξ < L, the Fourier sine and cosine series for δ(x− ξ )
are

δ(x − ξ ) = 2
L

∞∑
n=1

sin nπξL sin nπxL (8.8.21)

and

δ(x − ξ ) = 1
L + 2

L

∞∑
n=1

cos nπξL cos nπxL , (8.8.22)

respectively.
These are called the closure relations for the orthonormal (orthogonal and nor-

malized) sets
{√

2
L sin

nπx
L

}
and

{√
2
L cos

nπx
L

}
on the interval 0 6 x 6 L. The inte-

gral representation

δ(x − ξ ) = 1
2π

∞∫
−∞

eik(x−ξ ) dk (8.8.23)
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that was our initial introduction to the delta function is also a closure relation. In this
case, the set of orthonormal functions is

{√
1
2π e

ikx
}

and their orthogonality and nor-

malization over the interval −∞ < x < ∞ is expressed by

1
2π

∞∫
−∞

ei(k−j)x dx = δ(k − j) (8.8.24)

where, because k and j are continuous indices, the usual Kronecker delta function has
been replaced by a Dirac delta function.

Equation (8.8.23) (and (8.8.24)) can also be interpreted as stating that δ(x − ξ )
and

√
1
2π e

−ikξ (and δ(k − j) and
√

1
2π e

−ijx) comprise Fourier transform pairs. The
trigonometrical exponential does not meet the integrability condition speci�ed in ei-
ther Fourier’s Integral Theorem or Plancherel’s Theorem. Fortunately, however, this
is another apparent impediment that has been removed by appeal to distribution the-
ory. It has been proven that every distribution has a Fourier transform which is itself
a distribution. Thus, not only the trigonometrical functions but even polynomials can
have well-de�ned transforms through the expedient of treating them as distributions
or generalized functions.

We shall conclude this Section by noting that the concept of a delta function and
the δ- calculus can be extended to two ormore dimensions via a corresponding exten-
sion of the concept of a distribution. Using an arbitrary continuous function of posi-
tion f (~r) we have the de�ning equation

f (~r0) =
∫
all space

f (~r)δ(~r −~r0) dn r. (8.8.25)

In terms of three dimensional Cartesian , spherical polar and cylindrical polar coordi-
nates this becomes

f (~r0) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (x, y, z)δ(~r −~r0)dxdydz

=
∞∫
0

1∫
−1

2π∫
0

f (r, cos θ, φ)δ(~r −~r0) r2 drd(cos θ)dφ

=
∞∫
0

2π∫
0

∞∫
−∞

f (ρ, φ, z)δ(~r −~r0)ρdρdφdz

from which we deduce
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δ(~r −~r0) = δ(x − x0)δ(y − y0)δ(z − z0) =
1
r2 δ(r − r0)δ(cos θ − cos θ0)δ(φ −

φ0)

= 1
ρ δ(ρ −

ρ0)δ(φ − φ0)δ(z − z0). (8.8.26)

An interesting representation of δ(~r −~r0) and one that should evoke memories of
Coulomb’s Law is

δ(~r −~r0) = −
1
4π ∇

2
(
1
r

)
. (8.8.27)

To derive this relationship we shall locate the origin of our coordinate system at~r = ~r0
and attempt to show that∫

all space
f (~r)∇2

(
1
r

)
d3 r = −4πf (0)

for an arbitrary but continuous function f (~r). The integral over all space on the left
hand side of this equation can be set equal to the integral over a sphere of volume V
and surface S in the limit as the radius of the sphere R →∞. Before taking that limit,
however, let us apply the divergence theorem to the vector function f (~r)~∇

( 1
r
)
:∫

V
~∇ ·
[
f (~r)~∇

(
1
r

)]
d3 r =

∫
S

[
f (~r)~∇

(
1
r

)]
· d~S.

Thus, since
~∇ ·
[
f (~r)~∇

(
1
r

)]
= ~∇f (~r) · ~∇

(
1
r

)
+ f (~r)∇2

(
1
r

)
,

we have∫
V
f (~r)∇2

(
1
r

)
d3 r =

∫
S

[
f (~r)~∇

(
1
r )
)]
· d~S −

∫
V
~∇f (~r) · ~∇

(
1
r

)
d3 r.

But, ~∇
(
1
r

)
= − 1r2

~r
r and

~r
r · ~∇f (~r) =

∂
∂r f (~r). Therefore,

∫
V
f (~r)∇2

(
1
r

)
d3 r =

1∫
−1

2π∫
0

f (~r)
∣∣
r=R

(
− 1r2

)
r2 d cos θdφ

−
R∫

0

1∫
−1

2π∫
0

[
− ∂∂r f (

~r)
]
drd cos θdφ

or,∫
V
f (~r)∇2

(
1
r

)
d3 r = −

1∫
−1

2π∫
0

f (~r)
∣∣
r=R d cos θdφ +

1∫
−1

2π∫
0

f (~r)
∣∣r=R
r=0 d cos θdφ = −4πf (0),

as required.
We shall now return to the subject of Fourier transforms.
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8.9 Properties of Fourier Transforms

From the de�ning integral,

F{f (x)} ≡ F(k) = 1√
2π

∞∫
−∞

f (x) eikx dx, (8.9.1)

it follows that for real functions f (x)

F(−k) = F*(k). (8.9.2)

This is called the conjugation property and it has two immediate corollaries:
1. F(k) is real if f (x) is an even function,
2. F(k) is imaginary if f (x) is an odd function of x.

Multiplying f (x) by e−ax and then calculating the transform, we have

F{e−ax f (x)} = 1√
2π

∞∫
−∞

f (x) ei(k+ia)x dx = F(k + ia) (8.9.3)

which is called the attenuation property.
Similarly, a displacement of the argument of f (x) results in multiplication of F(k) by a
phase (rather than an attenuation) factor:

F{f (x − a)} = 1√
2π

∞∫
−∞

f (ξ ) eik(ξ+a) dξ = eika F(k) = eika F{f (x)}. (8.9.4)

Next, let us assume that the transform of the derivative of f (x),F{f ′(x)}, exists.
Then, integrating by parts, we have

1√
2π

∞∫
−∞

f ′(x) eikx dx = 1√
2π
f (x)eikx

∣∣∣∞
−∞
− ik√

2π

∞∫
−∞

f (x) eikx dx.

The existence of its Fourier transform implies either that f (x) → 0 as x → ±∞ or that
f (x) is a distribution. In both cases we lose the integrated term and obtain

F{f ′(x)} = −ikF{f (x)}. (8.9.5)

This is called the di�erentiation property and it extends in an obvious way to higher
derivatives:

F{f ′′(x)} = − k2 F{f (x)}...F{f (n)(x)} = (−i )n F{f (x)}. (8.9.6)

As we shall see, this has immediate application in the solution of di�erential equa-
tions.
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The converse of the di�erentiation property ariseswhenwe transform the product
of f (x) and a power of x :

F{xf (x)} = 1
2π

∞∫
−∞

f (x)x eikx dx = 1
2π

∞∫
−∞

f (x)
(
−i ddk

)
eikx dx = −i ddkF{f (x)}, (8.9.7)

provided that we can interchange the order of integration and di�erentiation. This too
can be extended to read

F{xn f (x)} = (−i )n dn
d xn F{f (x)}. (8.9.8)

If F(k) = F{f (x)} and G(k) = F{g(x)}, then the product H(k) = F(k)G(k) is the
Fourier transform of the function

h(x) = 1
2π

∞∫
−∞

f (ξ )g(x − ξ )dξ . (8.9.9)

The integral in (8.9.9) is of a type that yields a convolution of the two functions in
the integrand and so this property is called the convolution theorem. Its proof is
straightforward:

F
−1{F(k)G(k)} = 1√

2π

∞∫
−∞

F(k)G(k) e−ikx dk = 1
2π

∞∫
−∞

F(k)
∞∫

−∞

g(ξ ) eikξ dξ e−ikx dk;

assuming that we can interchange the order of integrations, this becomes

F
−1{F(k)G(k)} = 1

2π

∞∫
−∞

g(ξ )
∞∫

−∞

F(k) e−ik(x−ξ ) dkdξ = 1√
2π

∞∫
−∞

g(ξ )f (x − ξ )dξ ,

as stated .

8.10 Fourier Sine and Cosine Transforms

Suppose that we are given an even function of x, f (x) = f (−x). Its Fourier transform
then reduces to

F{f (x)} ≡ F(k) = 1√
2π

∞∫
−∞

f (x) eikx dx =
√

2
π

∞∫
0

f (x) cos kxdx.

Evidently, F(k) is, in turn, an even function of k and so we also have

f (x) = F
−1{F(k)} =

√
2
π

∞∫
0

F(k) cos kxdk.
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Similarly, if f (x) is odd, f (−x) = −f (x), then

F(k) =
√

2
π i

∞∫
0

f (x) sin kxdx

and,

f (x) = F
−1{F(k)} =

√
2
π (−i)

∞∫
0

f (x) sin kxdk.

This suggests that just as we had Fourier cosine and sine series for functions de-
�ned on the (half-) interval 0 6 x 6 π, we can introduce Fourier cosine and sine
transforms for functions de�ned only on the (half-) interval 0 6 x < ∞ :

Fc{f (x)} ≡ Fc(k) =
√

2
π

∞∫
0

f (x) cos kxdx (8.10.1)

with

F
−1
c {Fc(k)} ≡

√
2
π

∞∫
0

Fc(k) cos kxdk = f (x) (8.10.2)

and,

Fs{f (x)} ≡ Fs(k) =
√

2
π

∞∫
0

f (x) sin kxdx (8.10.3)

with

F
−1
s {Fs(k)} ≡

√
2
π

∞∫
0

Fs(k) sin kxdx = f (x). (8.10.4)

Note that
Fc{f (x)} = F{f (+)(x)}

and
Fs{f (x)} = −iF{f (−)(x)}

where

f (+)(x) =
{

f (x), x > 0
f (−x), x < 0

is the symmetric extension of f (x) and

f (−)(x) =
{

f (x), x > 0
−f (−x), x < 0
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is the antisymmetric extension of f (x). As a result, Fourier sine and cosine trans-
forms possess properties very similar to those of Fourier transforms. Some di�erences
warrant our attention however. For example,

Fc{f ′(x)} =
√

2
π

∞∫
0

f ′(x) cos kxdx =
√

2
π f (x) cos kx

∣∣∣∣∣
∞

0

+
√

2
π k

∞∫
0

f (x) sin kxdx.

As before, we can assume that f (x)→ 0 as x →∞ (or we can treat it as a distribution)
and so obtain

Fc{f ′(x)} = −
√

2
π f (0) + kFs{f (x)}. (8.10.5)

Similarly, integrating by parts twice and assuming that both f ′(x) → 0 and f (x) → 0
as x →∞, we �nd

Fc{f ′′(x)} = −
√

2
π f
′(0) − k2 Fc{f (x)}. (8.10.6)

The corresponding relationships for Fourier sine transforms are

Fs{f ′(x)} = −kFc{f (x)} (8.10.7)

and

Fs{f ′′(x)} =
√

2
π kf (0) − k

2
Fs{f (x)}. (8.10.8)

It should be noted that transforming derivatives of even order yields a transform
of the undi�erentiated function and it is a transform of the same type. On the other
hand, transforms of derivatives of odd order result in a transform of the other type.
This has immediate consequences for the application of Fourier sine and cosine trans-
forms in the solution of di�erential equations: the equations must contain derivatives
of only even or only odd order to avoid mixing the two types of transform. Another
way in which these di�erentiation properties in�uence the application to di�erential
equations is the “boundary condition” information they require: a knowledge of f (0)
in the case of sine transforms and of f ′(0) for cosine transforms.

The interrelation between Fourier sine and cosine transforms surfaces again in
their convolution theorems. If Fc(k) = Fc{f (x)}and Gc(k) = Fc{g(x)}, we have

F
−1
c {Fc(k)Gc(k)} =

√
2
π

∞∫
0

Fc(k)Gc(k) cos kxdk

= 2
π

∞∫
0

Fc(k)
∞∫
0

g(ξ ) cos kξ cos kxdξdk.
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But, cos kx cos kξ = 1
2 [cos k(x − ξ ) + cos k(x + ξ )]. Thus, substituting and then inter-

changing the order of integration, we obtain

F
−1
c {Fc(k)Gc(k)} =

1
π

∞∫
0

g(ξ )
∞∫
0

Fc(k)[cos k(x − ξ ) + cos k(x + ξ )]dkdξ

= 1√
2π

∞∫
0

g(ξ )[f (+)(x − ξ ) + f (x + ξ )]dξ , (8.10.9)

where f (+) appears because (x − ξ ) < 0 when x 6 ξ < ∞.
The same operations performed on the Fourier sine transform requires use of

sin kx sin kξ = 1
2[cos k(x − ξ ) − cos k(x + ξ )]

which leads to

F
−1
s {Fs(k)Gs(k)} =

1
π

∞∫
0

g(ξ )
∞∫
0

Fs(k)[cos k(x − ξ ) − cos k(x + ξ )]dkdξ .

The sine transform Fs(k) is now paired with cosine functions and so does not become
inverted. Instead, we have to de�ne a new function f (∼)(x) = F

−1
c {Fs(k)} in terms of

which the convolution theorem becomes

F
−1
s {Fs(k)Gs(k)} =

1√
2π

∞∫
0

g(ξ )[f (∼)(x − ξ ) − f (∼)(x + ξ )]dξ . (8.10.10)

It only remains to explore applications of the three types of Fourier transforms, the
most important of which are in the solution of di�erential equations. However, before
we do so we shall introduce another and closely related integral transform, that of
Laplace.

8.11 Laplace Transforms

De�nition: A function f (x) is said to be of exponential order σ if σ is the largest real
number such that | e−σx f (x)| is bounded on 0 6 x < ∞. In other words, f (x) does not
increase faster than eσx as x →∞.

The Fourier transform of a function of non-zero exponential order will not exist
because |f (x)|will beunbounded (even in the sense of apolynomial bound) at either∞
or −∞ depending on the sign of σ . Therefore, for such functions, we form the product

g(x) = f (x) e−cx θ(x), where c > σ and θ(x) =
{

1, x > 0
0, x < 0

.
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We are now assured of the convergence of the transform of this function and so de�ne

G(k) ≡ F{f (x) e−cx θ(x)} = 1√
2π

∞∫
0

f (x) e−cx eikx dx (8.11.1)

with

F
−1{G(k)} = 1√

2π

∞∫
−∞

G(k) e−ikx dk = f (x) e−cx θ(x). (8.11.2)

Let us introduce a new transform variable s = c − ik, ds = −idk and set

F(s) =
√
2πG(k).

Then, equations (8.11.1) and (8.11.2) become

F(s) =
∞∫
0

f (t) e−st dt ≡ L{f (t)} (8.11.3)

f (t)θ(t) = 1
2πi

c+i∞∫
c−i∞

F(s) est ds ≡ L
−1{F(s)} (8.11.4)

where, to conform with convention, we have replaced the symbol x for the indepen-
dent variable with the letter t. These are the de�ning equations for the Laplace trans-
form and its inverse. (The integral in (8.11.4) is often referred to as the Mellin inver-
sion integral.) Evidently, the Laplace transformo�ers ameans of extending the appli-
cability of Fourier transforms to functions forwhich the Fourier integral is not de�ned.
As such, they are widely used in the solution of engineering problems.

Not surprisingly, the properties of Laplace transforms are close analogs of those
of Fourier transforms. Speci�cally, there is
– an attenuation property,

L{e−at f (t)} = F(s + a) where F(s) = L{f (t)}; (8.11.5)

– a shifting property,

L{f (t − a)θ(t − a)} = e−as L{f (t)}, a > 0; (8.11.6)

– the derivative property,

L{f ′(t)} = sL{f (t)} − f (0) (8.11.7)

which extends to

L{f ′′(t)} = sL{f ′(t)} − f ′(0) = s2 L{f (t)} − sf (0) − f ′(0), (8.11.8)
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and by induction to

L{f (n)(t)} = sn L{f (t)} −
n∑
k=1

sk−1 f (n−k)(0), (8.11.9)

and is readily established by a single integration by parts,
∞∫
0

e−st f (t)dt = −1s e
−st f (t)|∞0 +

∞∫
0

e−st f ′(t)dt

or s
∞∫
0

e−st f (t)dt = f (0) +
∞∫
0

e−st f ′(t)dt;

– multiplication by a power of t property,

L{tf (t)} = − ddsL{f (t)}

L{tn f (t)} = (−1 )n dn

dsn
L{f (t)}; (8.11.10)

– and the convolution theorem,

L
−1{F(s)G(s)} =

t∫
0

f (τ)g(t − τ)dτ (8.11.11)

if F(s) = L{f (t)} and G(s) = L{g(t)}.

The most important application of Laplace transforms is in the solution of dif-
ferential equations, especially linear di�erential equations. As with the use of Fourier
transforms, themethod consists of transformingagivendi�erential equation to yield a
subsidiary equationwhich, if the choice of method is appropriate, is an easier equa-
tion to solve. In fact, if the di�erential equation is linear, the subsidiary equation is
algebraic and so is solvable by purely algebraic techniques. The choice of Laplace
rather than somevariety of Fourier transformhinges on the boundary conditions asso-
ciated with the di�erential equation. Speci�cally, Laplace transforms are appropriate
to boundaries at t = 0and∞with a knowledge of the values of the solutionand its �rst
derivative at the �rst of these. The �nal step in this method is to invert the transform
obtained as a solution of the subsidiary equation. For Laplace transforms this can be
done by using theMellin inversion integral. More commonly, however, onemakes use
of a knowledge of a few key Laplace transform pairs su�cient to invert any rational
function of s, or if the solution of the subsidiary equation is more complicated, one
consults a comprehensive table of Laplace transform pairs.

The inversion of a rational function proceeds as follows. Let the function be Y(s) =
P(s)/Q(s) where P(s) and Q(s) are polynomials with deg(P) > deg(Q). If Q(s) has n



Laplace Transforms | 221

simple real roots ri , i = 1, 2, . . . , n, we can express Y(s) in terms of the corresponding
partial fractions:

Y(s) =
n∑
i=1

ci
s − ri

+W(s)

whereW(s) is the sum of partial fractions associated with all the other roots of Q(s).
The constants ci can be found bymultiplying both sides of this equation by (s− ri) and
taking the limit as s → ri:

ci = lim
s→ri

(s − ri)Y(s) =
P(ri)
Q′(ri)

.

Thus, using L{eri t} = 1
s − ri

, we have

y(t) = L
−1{Y(s)} =

n∑
i=1

P(ri)
Q′(ri)

eri t +L−1{W(s)}. (8.11.12)

Example: Suppose that we seek L
−1
{

s + 1
s3 + s2 −6s

}
. In terms of partial fractions, we

have
s + 1

s3 + s2 −6s =
s + 1

s(s − 2)(s + 3) =
c1
s + c2

s − 2 + c3
s + 3

where

c1 = P(0)/Q′(0) =
1

3s2 + 2s − 6)|s=0
= −16

c2 = P(2)/Q′(2) =
2

3 · 4 + 4 − 6 = 3
10

c3 = P(−3)/Q′(−3) =
−2

3 · 9 − 6 − 6 = − 2
15 .

Therefore,
y(t) = −16 + 3

10 e
2t − 2

15 e
−3t .

If Q(s) has a real root r of multiplicity m, Y(s) will have a partial fraction decom-
position of the form

Y(s) = cm
(s − r )m

+ cm−1
(s − r )m−1

+ . . . + c1
s − r +W(s)

where W(s) again denotes the sum of the partial fractions associated with the other
roots of Q(s). To determine cm we multiply both sides of this equation by (s − r )m:

G(s) ≡ (s − r )m Y(s) = cm +(s − r) cm−1 + . . . + (s − r )m−1 c1 +(s − r )mW(s).

Setting s = r, we obtain
cm = G(r).
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To determine cm−1 we di�erentiate G(s),

G′(s) = cm−1 +2(s − r) cm−2 +... + m(s − r )m−1W(s) + (s − r )mW ′(s),

and set s = r to obtain
cm−1 = G′(r).

Continuing in this fashion up to and including the (m − 1 )th derivative, we �nd

cm−2 =
1
2!G

′′(r), . . . , ck =
1

(m − k)! G
(m−k)(r), . . . , c1 =

1
(m − 1)! G

(m−1)(r).

Now, L−1
{
1
sk

}
= tk−1
(k − 1)! and so, by the attenuation property,

L
−1

{
1

(s − r )k

}
= ert tk−1
(k − 1)! .

Therefore,

y(t) = L
−1{Y(s)} =

[
cm tm−1
(m − 1)! +

cm−1 tm−2
(m − 2)! + . . . + c2 t + c1

]
ert +L−1{W(s)}

= ert
m∑
k=1

G(m−k)(r)
(k − 1)!(m − k)! t

k−1 +L−1{W(s)}. (8.11.13)

Example: Suppose that we wish to invert s + 2
s5 −2 s4 + s3 . This rational function has the

partial fraction decomposition

s + 2
s5 −2 s4 + s3 = a3s3 + a2s2 + a1s + b2

(s − 1 )2
+ b1
s − 1 .

To determine the coe�cients ai, we de�ne G(s) = s3 Y(s) = s + 2
(s − 1 )2

. Then,

a3 = G(0) = 2, a2 = G′(0) = 5, a3 =
G′′(0)
2! = 8.

To determine the bi , de�ne H(s) = (s − 1 )2 Y(s) = s+2
s3 . Then,

b2 = H(1) = 3 and b1 = H′(1) = −8.

Thus,
y(t) = L

−1{Y(s)} = 2 t2 +5t + 8 + et(3t − 8).

If Q(s) has real coe�cients, any complex roots it may have will occur in conjugate
pairs: r = α + iβ and r* = α − iβ. If P(s) also has real coe�cients, the partial fractions
associated with these roots will have complex conjugate coe�cients since

P(r*)
Q′(r*)

=
[
P(r)
Q′(r)

]*
= c* .
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Thus, using ert = eαt[cos βt + i sin βt] and equation (8.11.12), we deduce for the case of
n pairs of simple complex roots that

y(t) = 2
n∑
j=1

eαj t
[
Re
(
P(rj)
Q′(rj)

)
cos βj t − Im

(
P(rj)
Q′(rj)

)
sin βj t

]
+ L

−1{W(s)} (8.11.14)

where rj = αj +i βjis a member of the jth pair.
For a pair of roots withmultiplicitym, we invoke (8.11.13) rather than (8.11.12) and

obtain

y(t) =
m∑
k=1

2 tk−1
(k − 1)! e

αt[Re ak cos βt − Im ak sin βt] + L
−1{W(s)} (8.11.15)

where ak =
1

(m − 1)! G
(m−k)(r), G(s) = (s − r )m Y(s), and r = α + iβ.

Example: Consider the rational function Y(s) = 2s
s2 +2s+5 . Its denominator has roots at

s = −1 ± 2i. Thus, setting r = α + iβ = −1 + 2i, we have

P(s)
Q′(s) |s=r =

s
s + 1 |s=r =

−1 + 2i
2i = 1 + i

2

and
y(t) = e−t(2 cos 2t − sin 2t).

8.12 Application: Solving Di�erential Equations

One of the most important applications of integral transfoms is in the solution of
boundary value problems. These are problems that seek the one solution of a given
di�erential equation that satis�es certain conditions at the boundaries of the interval
of variation of the independent variable. The conditions can involve speci�cation of
the value of the solution, of its �rst derivative, or of some linear combination of the
two.

Because of the simple form assumed by their respective derivative properties,
(which is due to the exponential nature of their kernels), Fourier and Laplace trans-
forms are best suited to problems involving a di�erential equation with constant
coe�cients. Such equations become transformed into subsidiary equations that
contain no derivatives and admit simple algebraic solutions. The latter are then sub-
jected to an inverse transformation to produce the solutions that are appropriate to
the problems in which the di�erential equations occur.

Since each transform requires a unique set of input or boundary condition infor-
mation, one must be careful in the selection of one to use in the solution of a particu-
lar problem. It is not su�cient that the problem involves a di�erential equation with
constant coe�cients, it must have the correct range, [0,∞) or (−∞,∞), for the inde-
pendent variable and must contain boundary conditions that match the input needs
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of either Laplace, Fourier sine, Fourier cosine or Fourier transforms. These are sum-
marized in the Table below (Table 8.1).

To illustrate these points we begin with the application of the Laplace transfor-
mation to the linear di�erential equation

y′′(t) + ay′(t) + by(t) = r(t)

where a and b are known constants and r(t) is a known function. Using the derivative
property, equations (8.11.7) and (8.11.8), we obtain the subsidiary equation

s2 Y(s) − sy(0) − y′(0) + a(sY(s) − y(0)) + bY(s) = R(s)

where Y(s) = L{y(t)} and R(s) = L{r(t)}. Its solution is

Y(s) = (s + a)y(0) + y′(0)
s2 +as + b + R(s)

s2 +as + b .

Table 8.1: Applicability Conditions of Integral Transforms

Transformation Range of Independent Variable Boundary Conditions
Fourier −∞ < x < ∞ y(±∞) = y′(±∞) = 0

Fourier sine 0 6 x < ∞ y(0) = c1 , y(∞) = y′(∞) = 0
Fourier cosine 0 6 x < ∞ y′(0) = c2 , y(∞) = y′(∞) = 0

Laplace 0 6 t < ∞ y(0) = c1 , y′(0) = c2

The next and �nal step is to determine the inverse transformL
−1{Y(s)} = y(t) and

thus obtain the solution of the di�erential equation. The inverse of the �rst term in our
expression for Y(s) is a solution of the corresponding homogeneous equation and is
called the complementary function. It matches the boundary conditions (or initial
conditions if t is a time variable) y(0) = c1 and y′(0) = c2 that have to accompany
the di�erential equation if this method is to be useful. The inverse of the second term
yields a particular solution of the non-homogeneous equation corresponding to the
conditions y(0) = y′(0) = 0. It is called a particular integral. Note that the �rst term
as well as 1

s2 +as+b are rational functions. They can be inverted by means of the tech-
niques identi�ed at the end of the last Section. The second term can then be inverted
by application of the convolution theorem.
Examples: We shall start by paying a return visit to the forced, damped harmonic
oscillator

md
2 x
d t2

+ r dxdt + kx = f (t), 0 6 t < ∞

or,
d2 x
d t2

+ 2λ dxdt + ω
2
0 x =

1
m f (t) where λ = r

2m and ω2
0 =

k
m .

If the initial conditions specify both x(0) and x′(0), x(0) = x0 and x′(0) = v0 for
example, it is appropriate to use Laplace transforms to solve for the motion of the
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oscillator. The solution of the resulting subsidiary equation is

X(s) = 2λ x0 + v0 +s x0
s2 +2λs + ω2

0
+ F(s)
s2 +2λs + ω2

0
= Xc(s) + Xp(s).

The �rst term can be expressed as

Xc(s) =
x0(s + λ) + (v0 +λ x0)
(s + λ )2 +(ω2

0 − λ2)
.

Assuming that ω2
0 > λ2, which is usually the case, this has the inverse transform

xc(t) = x0 e−λt cos σt +
v0 +λ x0
σ e−λt sin σt, σ =

√
ω2
0 − λ2.

This is the complementary function, or solution of the homogeneous di�erential equa-
tion, that satis�es the initial conditions that have been imposed in this problem.

To invert Xp(s), we note that

L
−1{F(s)} = f (t) and L

−1
{

1
s2 +2λs + ω2

0

}
= 1
σ e

−λt sin σt, σ =
√
ω2
0 − λ2.

Thus, using the convolution theorem, we can write

xp(t) = L
−1
{

F(s)
s2 +2λs + ω2

0

}
=

t∫
0

1
σ e

−λ(t−τ) sin σ(t − τ)f (τ)dτ

so that the complete solution to our problem reads

x(t) = xc(t)+xp(t) = x0 e−λt cos σt+
v0 +λ x0
σ e−λt sin σt+ 1

mσ

t∫
0

e−λ(t−τ) sin σ(t−τ)f (τ)dτ.

To illustrate what happens at resonance, let us assume for simplicity that the
damping is negligible so that λ ≈ 0 and σ ≈ ω0 . Then, if f (t) = K sinω0 t, where
K is a constant, we have

x(t) = x0 cosω0 t +
v0
ω0

sinω0 t +
K

m ω0

t∫
0

sinω0(t − τ) sinω0 τdτ.

But,
t∫

0

sinω0 τ sinω0(t − τ)dτ= sinω0 t
t∫

0

sinω0 τ cosω0 τdτ − cosω0 t
t∫

0

sin2 ω0 τdτ

= 1
4ω0

[
sinω0 t(1 − cos 2ω0 t) − cosω0 t(2ω0 t − sin 2ω0 t)

]
= 1
2ω0

(sinω0 t − ω0 t cosω0 t).
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This means that the last term in the particular integral

xp(t) =
K

2mω2
0
(sinω0 t − ω0 t cosω0 t)

has an amplitude that increases linearly with t corresponding to a resonant response
by the system. The resonance is due, of course, to the frequency of the applied force
coinciding with the natural frequency of the oscillator.

Suppose that instead of an harmonic force, the oscillator is subjected to an instan-
taneous impulse of magnitude I at time t = t0 . The force responsible for the impulse
must be expressible as f (t) = Iδ(t − t0). Rather than use the convolution theorem, we
note that the transform of f (t) is particularly simple: L{f (t)} = e−s t0 . Thus,

Xp(s) =
I
m

e−s t0
s2 +2λs + ω2

0
.

But, according to equation (8.10.6), (the shifting property of Laplace transforms), the
inverse of this product is just L−1{es t0 Xp(s)} · θ(t) with t replaced by t − t0:

L
−1{Xp(s)} = xp(t) =

I
mσ e

−λ(t−t0) sin σ(t − t0)θ(t − t0).

Therefore, the motion of the oscillator is given by

x(t) = x0 e−λt cos σt +
v0 +λ x0
σ e−λt sin σt + I

mσ e
−λ(t−t0) sin σ(t − t0)θ(t − t0)

demonstrating explicitly that whatever motion is initiated at t = 0 ( by assignment of
values to x0 and v0) it is modi�ed at t = t0 and thereafter by the motion caused by the
impulse.

Another example along the same line is provided by an LRC-series consisting of
an inductance L, resistance R and capacitance C connected in series to a switch and
an emf e(t). The switch is closed from t = 0 to t = T . We seek the current i(t) in the
circuit assuming that it is zero at t = 0 along with the charge q(t) on the capacitor:
i(0) = 0 and q(0) = 0.

The current is governed by Kircho�’s Law which requires that

L di(t)dt + Ri(t) + q(t)C = e(t)

where we shall assume

e(t) =
{
e0, 0 < t < T
0, t > T .

Moreover , we know that i(t) = dq(t)dt .
Applying the Laplace transform to these two di�erential equations we obtain

LsI(s) − Li(0) + 1
CQ(s) = E(s), I(s) = sQ(s) − q(0).
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Thus, using our initial conditions and solving for I(s), we �nd

I(s) = E(s)
Ls + R + 1/(sC) =

1
L

sE(s)
s2 +(R/L)s + 1/(LC)

where

E(s) = e0
T∫

0

e−st dt = e0
1 − e−sT

s .

Therefore,

I(s) = e0L
1 − e−sT

s2 +(R/L)s + 1/(LC)
.

The shifting property of Laplace transforms (equation (8.11.6)) takes care of the
factor e−sT in the numerator of the expression for I(s) and so all that remains is to �nd
the inverse of {s2 +(R/L)s + 1/(LC) }−1 . Three cases arise depending on the roots of
this quadratic and to classify them, we introduce the constants α = R/2L and ω2 =
1/LC − R2 /4 L2 . Then, if ω2 > 0, the roots of the quadratic are complex,

L
−1
{

1
s2 +(R/L)s + 1/LC

}
= 1
ω e−αt sinωt

and
i(t) = e0

ωL e
−αt sinωt − e0

ωL e
−α(t−T) sinω(t − T)θ(t − T).

This is called the oscillatory case.
If 0 > ω2 = − β2, the roots are real and, replacing ω by iβ, we have

i(t) = e0
βL e

−αt sinh βt − e0βL e
−α(t−T) sinh β(t − T)θ(t − T).

This is called the overdamped case.
Finally, if ω2 = 0, there is a double root and so

i(t) = e0L t e
−αt − e0L (t − T) e−α(t−T) θ(t − T).

This is called the critically damped case.
The next example involves a di�erential equation with variable coe�cients and

reveals some of the limitations of the Laplace transform method of solution. The dif-
ferential equation is (Bessel’s equation of order zero)

xy′′ + y′ + xy = 0

and the boundary conditions that we wish to impose are y(0) = 1, y′(0) = 0.
If Y(s) = L{y(x)}, equation (8.11.10) tells us that L{xy(x)} = −dY(s)ds . Notice that

if the coe�cient of y(x) were x2, wewould obtain the secondderivative of Y(s) and the
subsidiary equation would be another second order di�erential equation thus doing
little to advance the solution of the equation we started with.
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Using the boundary conditions togetherwith the derivative property, we also have

L{y′(x)} = sY(s) − 1
L{y′′(x)} = s2 Y(s) − s.

Thus, invoking (8.11.10) again, we obtain

L{x2 y(x)} = −2sY(s) − s2 dY(s)ds + 1

and so the subsidiary equation is

−2sY(s) − s2 Y ′(s) + 1 + sY(s) − 1 − Y ′(s) = 0,

or
(s2 +1)Y ′(s) + sY(s) = 0.

The solution of this di�erential equation is easy to �nd:

ln Y(s) = −
∫

s
s2 +1ds = −

1
2 ln(s2 +1) + cnst.

and so, Y(s) = c√
s2 +1

where c is a constant.

To �nd y(x), we expand Y(s) in inverse powers of s (a Laurent series valid for |s| >
1):

Y(s) = cs

(
1 + 1

s2

)−1/2
= c

∞∑
n=0

(−1 )n(2n)!
22n(n! )2

1
s2n+1 .

Inverting term be term, we �nd

y(x) = c
∞∑
n=0

(−1 )n x2n

22n(n! )2
since L

−1
{

1
s2n+1

}
= x2n
(2n)! .

But y(0) = 1. Therefore, c = 1, and our solution becomes

y(x) =
∞∑
n=0

(−1 )n

(n! )2
( x
2

)2n
which is called the Bessel function of order zero and is conventionally denoted by
J0(x).

Aswe shall see in the next Chapter, this di�erential equation has a second linearly
independent solution which has an essential singularity at x = 0. Since the Laplace
transform method requires well-de�ned values for both y(0) and y′(0), it is useless if
that is the solution we seek.

To furnish examples of the application of Fourier transforms to the solution of
di�erential equations, we return to the problem of an harmonic oscillator acted on by
an external force. Using the same notation as before, the equation of motion is

d2 x
d t2

+ 2λ dxdt + ω
2
0 x =

1
m f (t)
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where t is presumed now to have the range −∞ < t < ∞. If we presume also that
x(t) → 0 as t → ±∞ so that it possesses a Fourier transform, we can transform the
di�erential equation to obtain the subsidiary equation

−ω2 X(ω) − 2λωiX(ω) + ω2
0 X(ω) =

1
mF(ω)

where X(ω) = F{x(t)} and F(ω) = F{f (t)}. This has the solution

X(ω) = 1
m

F(ω)
(ω2

0 −ω2) − 2λωi

and so the solution of the original problem is

x(t) = 1√
2π

∞∫
−∞

1
m

F(ω) e−iωt
(ω2

0 −ω2) − 2λωi
dω.

Inmost cases this integral can be evaluated by residue calculus. To illustrate how,
we shall take ω0 > λ, which corresponds to a weakly damped oscillator, and assume
a force of the form

f (t) =
{
f0, |t| < τ
0, |t| > τ

.

We then have

F(ω) = f0√
2π

τ∫
−τ

eiωt dt = f0

√
2
π
sinωt
ω

and so,

x(t) = − f0mπ

∞∫
−∞

sinωτ e−iωt
ω(ω − ω1)(ω − ω2)

dω

where ω1 = σ − λi, ω2 = −σ − λi, σ =
√
ω2
0 − λ2.

Expressing sinωτ in terms of exponentials and deforming the contour to avoid
introducing an extraneous singularity at ω = 0, we can rewrite x(t) as

x(t) = − f0
m2πi

∫
−∪→

e−iω(t−τ)
ω(ω − ω1)(ω − ω2)

dω + f0
m2πi

∫
−∪→

e−iω(t+τ)
ω(ω − ω1)(ω − ω2)

dω

where the subscript on the integral signs indicates that we are going below the real
axis in the neighbourhood ofω = 0. We shall evaluate each term separately beginning
with the �rst.

If t − τ > 0, we must close the contour of the �rst integral in the lower half plane
to be able to use the residue theorem. If t − τ < 0, we close in the upper half plane.
Thus,

the �rst term =


f0
m

e−i ω1(t−τ)

ω1(ω1 −ω2)
− f0m

e−i ω2(t−τ)

ω2(ω1 −ω2)
, t > τ

− f0m
1

ω1 ω2
, t < τ.
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Similarly, the second integral’s contour must be closed in the lower half-plane if
t + τ > 0 and in the upper half-plane if t + τ < 0. Thus,

the second term =


− f0m

e−i ω1(t+τ)

ω1(ω1 −ω2)
+ f0m

e−i ω2(t+τ)

ω2(ω1 −ω2)
, t > −τ

f0
m

1
ω1 ω2

, t < −τ.

This provides us with three cases:
1. when t < −τ, we have

x(t) = − f0m
1

ω1 ω2
+ f0m

1
ω1 ω2

= 0

which con�rms that the damped oscillator is at rest until subjected to the external
force;

2. when −τ < t < τ, the displacement is

x(t) = − f0m
1

ω1 ω2
− f0m

e−i ω1(t+τ)

ω1(ω1 −ω2)
+ f0m

e−i ω2(t+τ)

ω2(ω1 −ω2)

= f0
mω2

0
− f0
mω2

0
[cos σ(t + τ) + λσ sin σ(t + τ)] e−σ(t+τ)

3. and when t > τ, it is

x(t) = f0
m

e−i ω1(t−τ)

ω1(ω1 −ω2)
− f0m

e−i ω2(t−τ)

ω2(ω1 −ω2)
− f0m

e−i ω1(t+τ)

ω1(ω1 −ω2)
+ f0m

e−i ω2(t+τ)

ω2(ω1 −ω2)

= f0
mω2

0
[cos σ(t − τ) + λσ sin σ(t − τ)] e−λ(t−τ)

− f0
mω2

0
[cos σ(t + τ) + λσ sin σ(t + τ)] e−λ(t+τ) .

A rather special problem arises in the (physically unlikely) event that there is no
damping. The equation of motion of the oscillator becomes

d2 x
d t2

+ ω2
0 x =

f (t)
m

which, when solved by the Fourier transform procedure, yields a solution of the form

x(t) = 1
m
√
2π

∞∫
−∞

F(ω) e−iωt
ω2
0 −ω2 dω.

The poles arising from the zeros of the denominator are now on the real axis at ω =
±ω0 and so the integral is unde�ned until we specify how we propose to avoid them.

Additionalphysical information is needed to resolve this ambiguity. For example,
suppose that the oscillator is at rest until disturbed by a sharp blowdelivered at t = t0 .
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Representing the external force by means of a δ-function, f (t) = f0 δ(t − t0) where f0 is
a constant, we have

F(ω) = 1√
2π

∞∫
−∞

f0 δ(t − t0) e
iωt dt = f0√

2π
eiω t0

and,

x(t) = f0
m

1
2π

∞∫
−∞

e−iω(t−t0)

ω2
0 −ω2 dω.

Now, when t − t0 < 0, this expression should yield the value x(t) = 0, since otherwise
wewouldhavemotionoccurringprior to the impulse in violationof our initial assump-
tion and of the principle of causality. Moreover, when t − t0 < 0, Jordan’s Lemma
permits us to close the contour bymeans of a semi-circular arc of in�nite radius in the
upper half-plane and evaluate the integral by means of the Residue Theorem. But the
residues at the two poles ω = ±ω0 of this integrand are

− f0m
e−i ω0(t−t0)

4π ω0

and
f0
m
e+i ω0(t−t0)

4π ω0
,

respectively. Thus, if one or both of the poles is included within the closed contour,
the result will not be zero. We conclude therefore that the integralmust be de�ned by
deforming the contour along the real axis to pass above the polesω = ±ω0 as shown in
the diagram below. (We note that this is the equivalent of adding a vanishingly small
damping force since the latter would shift the poles to ω = ±ω0 −iε.) In other words,
themathematical ambiguity has been resolved by appeal to a fundamental physical
principle; we now have an unambiguous de�nition of the integral and thence, can
determine the oscillator’smotion to be (by closing in the lower half-plane for t−t0 > 0),

x(t) = f0
m
sinω0(t − t0)

ω0
θ(t − t0).
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As a �nal example, we shall solve the equation

d2 x
d t2

− α2 x = f (t), 0 6 t < ∞

subject to the boundary conditions dx(0)dt = b and x(∞) < ∞, that is, x(t) is bounded
at in�nity.

Since the range of the independent variable is restricted to t > 0, we can rule out
Fourier transforms as a possible means of solution. However, that still leaves us with
a choice between Fourier sine, Fourier cosine, and Laplace transforms. The fact that
we have only one boundary condition at t = 0means that we lack an essential piece of
information for use of the latter. Moreover, we are given x(∞) < ∞which is not needed
for Laplace transforms but is needed for Fourier sine and cosine transforms. To decide
between these �nal two options, we note that sine transforms require a knowledge of
x(0) while cosine transforms make use of dx(0)dt . Thus, the clear choice of method in
this case is to apply Fourier cosine transforms.

Since FC{x′′(t)} = −
√

2
π x
′(0) −ω2 XC(ω) where XC(ω) = FC{x(t)}, the di�erential

equation transforms to the subsidiary equation

−
√

2
π b − ω

2 XC(ω) − α2 XC(ω) = FC(ω), FC(ω) = FC{f (t)}

with solution

XC(ω) = −
√

2
π

b
ω2 + α2 −

FC(ω)
ω2 + α2 .

The inverse transform of 1
ω2 + α2 is

x1(t) =
√

2
π

∞∫
0

cosωt
ω2 + α2 dω = 1√

2π

∞∫
−∞

cosωt
ω2 + α2 dω.

Since 1
ω2 + α2 is a rational function with a denominator of degree 2 and numerator of

degree 0 ,we can evaluate this integral byusing a standard formula of residue calculus
where, because t > 0, we select the version that sums over singularities in the upper
half-plane:

x1(t) = −2π
1√
2π

ImRes
{

eiωt
ω2 + α2

}∣∣∣∣
ω=iα

= −
√
2π Im

[
e−αt
2αi

]
=
√
π
2
e−αt
α .

This determines the inverse of the �rst term in our expression for XC(ω) as well as
of the factor multiplying FC(ω) in the second term. Thus, all we need to complete the
solution is to invoke the convolution theorem for Fourier cosine transforms. Thus,

x(t) = −bα e
−αt − 1√

2π

√
π
2
1
α

∞∫
0

f (τ)[e−α|t−τ| + e−α(t+τ)]dτ
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= −bα e
−αt − 1

2α

∞∫
0

f (τ)[e−α|t−τ| + e−α(t+τ)]dτ

where we have used the fact that e−α|t| is the symmetric extension of e−αt .
That completes the solution of the problem.
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9 Ordinary Linear Di�erential Equations
9.1 Introduction

Theorder anddegreeof a di�erential equation (DE) are determinedby thederiva-
tive of highest order after the DE has been rationalized. For example, the DE

d3 y
d x3 + x

√
dy
dx + x

2 y = 0

is of third order and second degree since, when rationalized, it contains
(
d3 y
d x3

)2

:

(
d3 y
d x3

)2

+2 x2 y d
3 y
d x3 − x

2 dy
dx + x

4 y2 = 0.

Thus, a linear nth order DE has the general form

dn y
d xn + an−1(x)

dn−1 y
d xn−1 + . . . + a1(x)

dy
dx + a0(x)y = f (x) (9.1.1)

where f (x), a0(x), a1(x), . . . , an−1(x) are arbitrary functions of x. If f (x) ≡ 0, the DE is
said to be homogeneous. Otherwise, it is non-homogeneous.

For most physical applications one need not worry about orders higher than two.
Moreover, �rst order DE’s can be dispensed with by direct integration. Speci�cally, if
the DE is

dy
dx + a(x)y = f (x), (9.1.2)

we proceed by introducing a new function p(x) whose logarithmic derivative is equal
to a(x):

1
p(x)

dp
dx ≡ a(x) or p(x) ≡ exp

 x∫
a(ξ )dξ

 . (9.1.3)

This transforms the DE into the convenient form

d
dx (p(x)y(x)) = p(x)f (x) (9.1.4)

which integrates immediately to yield

y(x) = 1
p(x)

x∫
x0

p(ξ )f (ξ )dξ (9.1.5)

where x0 is an arbitrary initial point.
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Notice that there is no lower limit for the integration in (9.1.3) but there is for the
integration in (9.1.5). An arbitrary lower limit is a short handway of adding a constant
of integration to what is, in fact, an inde�nite integral. It is needed in (9.1.5) to obtain
the general solution of the DE rather than one particular solution. It is not needed in
(9.1.3) because it would contribute an arbitrary multiplicative constant in p(x) which
would then cancel out in equation (9.1.5).
Example: Suppose that we wish to solve the DE

x2 dydx + 2xy − x + 1 = 0.

To put this in the canonical form of equation (9.1.2) we divide through by x2:

dy
dx +

2
x y =

1
x −

1
x2 .

Comparing this with (9.1.2), we identify

a(x) = 2
x , f (x) = x − 1x2 = 1

x −
1
x2 .

Thus,
p(x) = exp

(∫ x 2
ξ dξ

)
= exp(2 ln x) = x2

and,

y(x) = 1
x2

x∫
x0

ξ2 ξ − 1
ξ2

dξ = 1
x2

(
x2
2 − x + C

)
= 1
2 −

1
x + C

x2 .

where C = constant = x0 − x
2
0
2 .

This is the general solution of the DE. Assigning a speci�c value to Cwill produce
a particular solution. This is usually accomplished by imposing a particular value on
y(x) at some point x0. If x0 is an end-point of the range of variation of x, we say that
we are imposing a boundary condition.

As an example, suppose that we require that y(1) = 0. Solving for C, we determine
that C = 1

2 andhence that theDE togetherwith the boundary conditionhas theunique
solution y(x) = 1

2 −
1
x +

1
2 x2 .

9.2 Linear DE’ s of Second Order

Having dealt with �rst order DE’s so readily, let us turn our attention to second order
equations. The general form for a non-homogeneous, linear, second order DE is

d2 y
d x2 + a(x)dydx + b(x)y(x) = f (x). (9.2.1)
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The corresponding homogeneous equation is

d2 y
d x2 + a(x)dydx + b(x)y(x) = 0. (9.2.2)

A fundamental property of homogeneous linear DE’s is that any linear combina-
tion of solutions is itself a solution. Thus, if y1(x) and y2(x) are solutions of (9.2.2)
so is y(x) = c1 y1(x) + c2 y2(x), c1, c2 = constants.

Two solutions are linearly independent if the algebraic equation

c1 y1(x) + c2 y2(x) = 0 (9.2.3)

can be satis�ed for all x only if c1 = c2 = 0. In other words, they are linearly indepen-
dent if they are not constant multiples of each other.

Di�erentiating (9.2.3) produces a second linear algebraic equation for c1 and c2,

c1
d y1
dx + c2

d y2
dx = 0. (9.2.4)

The simultaneous equations (9.2.3) and (9.2.4) imply that y1 and y2 will be linearly
independent, c1 = c2 = 0, if the determinant of the coe�cients of c1 and c2 is non-
zero:

y1(x)
d y2
dx −

y2(x)
d y1
dx ≡ W[y1, y2] ≠ 0. (9.2.5)

W[y1, y2] is called the Wronskian of y1 and y2 . If W[y1, y2] ≡ 0, y1(x) and y2(x) are
necessarily linearly dependent since

y1
d y2
dx −

y2
d y1
dx = 0

integrates immediately to give y2(x) = constant × y1(x) for all x.
The following theorem extends and formalizes these conclusions.

Theorem: TheWronskian of two solutions of a linear, homogeneous, second order DE
is either identically zero or never zero and hence, a necessary and su�cient condition
for linear independence is that the Wronskian be non-zero at any point x0 .
Proof: From (9.2.5),

dW
dx = y1(x)d

2 y2
d x2 −

y2(x)d
2 y1
d x2 .

But, y1 and y2 are known to satisfy

d2 y1
d x2 + a(x)d

y1
dx + b(x) y1 = 0

d2 y2
d x2 + a(x)d

y2
dx + b(x) y2 = 0.

Multiplying the �rst of these by (− y2(x)) and the second by y1(x) and adding, we ob-
tain

y1(x)d
2 y2
d x2 −

y2(x)d
2 y1
d x2 + a(x)[y1(x)

d y2
dx −

y2(x)
d y1
dx ] = 0
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or,
dW
dx + a(x)W = 0.

Integrating, we �nd that

W(x) = W(x0) exp

−
x∫

x0

a(ξ )dξ

 (9.2.6)

where x0 is an arbitrary point. IfW(x0) = 0,W(x) ≡ 0 and ifW(x0) ≠ 0,W(x) is never
zero and the theorem is proved.

The relevance of linear independence is brought out by the next theorem.
Theorem: If y1(x) and y2(x) are any pair of linearly independent solutions of a homo-
geneous linear DE of second order, then any other solution of that equation can be
expressed as a linear combination of y1 and y2,

y(x) = c1 y1(x) + c2 y2(x) (9.2.7)

where c1 and c2 are constants. The pair y1 and y2 are called a fundamental set of
solutions and the linear combination (9.2.7), with c1 and c2 arbitrary, is the general
solution of the DE.
Proof:We write the DE (9.2.2) in the modi�ed but equivalent form

p(x)d
2 y
d x2 + q(x)dydx + r(x)y = 0, p(x) ≠ 0.

Thus, if y(x), y1(x), y2(x) are any three solutions of the DE then

p(x)s d
2 y
d x2 + q(x)dydx + r(x)y = 0

p(x)d
2 y1
d x2 + q(x)d

y1
dx + r(x) y1 = 0

p(x)d
2 y2
d x2 + q(x)d

y2
dx + r(x) y2 = 0.

Considered as simultaneous, linear, algebraic equations for p, q, and r , these will
admit a non-trivial solution if and only if the determinant of their coe�cients is zero.
Interchanging rows and columns in that determinant we see that this implies that the
algebraic equations

ay + a1 y1 + a2 y2 = 0

a dydx + a1
d y1
dx + a2

d y2
dx = 0

a d
2 y
d x2 + a1 d

2 y1
d x2 + a2 d

2 y2
d x2 = 0

must also admit a non-trivial solution for the constants a, a1 and a2 . Moreover, if y1
and y2 are linearly independent, a cannot be zero. Therefore,

y(x) = c1 y1(x) + c2 y2(x)
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where c1 = − a1 /a and c2 = − a2 /a are constants. Since y, y1 and y2 are any three
solutions of (9.2.2), subject to y1 and y2 being linearly independent, we conclude that
(9.2.7) is the most general solution of (9.2.2).

Is there a similarly simple expression for the most general solution of a non-
homogeneous, linear, second order DE ? The answer is yes and is addressed in detail
by the next theorem.
Theoem: If yp(x) is a particular solution of the non-homogeneous DE

d2 y
d x2 + a(x)dydx + b(x)y = f (x)

and y1(x) and y2(x) are a fundamental set of solutions of the corresponding homoge-
neous equation

d2 y
d x2 + a(x)dydx + b(x)y = 0,

then every other solution of the non-homogeneous equationmay be expressed as the
linear combination

y(x) = yp(x) + yc(x) = yp(x) + c1 y1(x) + c2 y2(x) (9.2.8)

where c1 and c2 are constants. The functions yp(x) and yc(x) are called the particu-
lar integral and the complementary function of the non-homogeneous DE, respec-
tively.
Proof: Substitution of y(x) = yp(x) + yc(x) into the non-homogeneous DE yields

d2 yc
d x2 + a(x)d

yc
dx + b(x) yc = 0

whose general solution is yc = c1 y1(x) + c2 y2(x).

9.3 Given One Solution, Find the Others

Suppose that we know one solution of the homogeneous DE (9.2.2). Can we use this
information to �nd a second linearly independent solution? Not only can we do that,
we can �nd the solution to any non-homogeneous counterpart as well. To see how
this comes about, we return to a consideration of the Wronskian which, according to
(9.2.6), is determined by the coe�cient of the �rst derivative in the DE. And, of course,
it relates a �rst solution y1(x) to a linearly independent second solution y2(x). In fact,

d
dx

(
y2
y1

)
=
y1 y′2 − y2 y′1

y21
= W(x)

y21
.

So, using (9.2.6), we �nd

y2(x)
y1(x)

= W(x0)
x∫ exp[−

ξ∫
x0
a(ζ )dζ ]

[y1(ξ ) ]2
dξ + C
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where C is a constant of integration. Adding a constant times y1(x) to y2(x) does not
provide new information and so we shall set C = 0. Similarly, including the multi-
plicative constantW(x0) is unnecessary and so we arbitrarily set it equal to one. Thus,
our �nal expression for a second linearly independent solution is

y2(x) = y1(x) ·
x∫ exp[−

ξ∫
a(ζ )dζ ]

[y1(ξ ) ]2
dξ . (9.3.1)

This remarkably simple expression is obtainable by another approach which has
the advantage of applying to both the homogeneous and non-homogeneous cases.
Called themethod of variation of constants, it starts from the premise that a second
linearly independent solution is necessarily related to a �rst solution by a multiplica-
tive function or “variable constant”.

Thus, we set y2(x) = u(x) y1(x), u(x) ≠ a constant and substitute into the homo-
geneous DE (9.2.2). The result is a DE for u(x) :

d2 u
d x2 +

[
2 y′1 +a(x) y1

y1

]
du
dx = 0

or,

d
dx ln

(
du
dx

)
= −a(x) − 2 ddx ln

y1(x). (9.3.2)

Integrating, we �nd
du
dx = c1

[y1(x) ]2
exp

− x∫
a(ζ )dζ


whence

u(x) = c1
x∫ exp[−

ξ∫
a(ζ )dζ ]

[y1(ξ ) ]2
dξ + c2

where c1 and c2 are constants of integration. Since any solution for u(x) will do, we
set c1 = 1 and c2 = 0. Then, multiplying u(x) by y1(x) we recover (9.3.1) as expected.

Similarly, a particular integral of (9.2.1)

d2 y
d x2 + a(x)dydx + b(x)y = f (x)

cannot be a constant multiplier of a solution of its homogeneous counterpart (9.2.2).
Therefore, we set yp(x) = v(x) y1(x) where y1(x) is again a known solution of (9.2.2).
Substituting into (9.2.1) we obtain a DE for v(x):

v′′ y1 +2v′ y′1 +v y′′1 +a(x)(v′ y1 +v y′1) + b(x)v y1 = f (x),
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or
v′′ y1 +[2 y′1 +a(x) y1]v′ + [y′′1 +a(x) y′1 +b(x) y1]v = f (x),

or

d2 v
d x2 +

[
a(x) + 2

y1(x)
d y1
dx

]
dv
dx = f (x)

y1(x)
. (9.3.3)

We note from (9.3.2) that a(x) + 2
y1
d y1
dx can be set equal to the logarithmic derivative

1
R(x)

dR
dx where

R(x) =
[
d
dx

(
y2
y1

)]−1
=

y21
W[y1, y2]

(9.3.4)

and y2(x) is a second linearly independent solution of the homogeneous DE. Thus,
(9.3.3) becomes

d
dx

(
dv
dx

)
+ 1
R
dR
dx

dv
dx = f (x)

y1(x)
,

a �rst order, non-homogeneous DE for dvdx . Using (9.1.5) for its solution, we �nd

dv
dx = 1

R(x)

x∫
x0

R(ξ )f (ξ )
y1(ξ )

dξ

= d
dx

(
y2
y1

)
·

x∫
x0

y1(ξ )f (ξ )
W[y1(ξ ), y2(ξ )]

dξ

= d
dx

 y2
y1

x∫
x0

y1(ξ )f (ξ )
W[y1(ξ ), y2(ξ )]

dξ

 − y2(x)f (x)
W[y1(x), y2(x)]

.

Therefore, integrating to obtain v(x) and multiplying the result by y1(x), we conclude
that a particular integral of (9.2.1) is

yp(x) = y2(x)
x∫ y1(ξ )f (ξ )
W[y1(ξ ), y2(ξ )]

dξ − y1(x)
x∫ y2(ξ )f (ξ )
W[y1(ξ ), y2(ξ )]

dξ . (9.3.5)

Notice that we have omitted the lower limits on the integrals which means that we
have omitted the two constants of integration.Were they included, we would have the
general solution, y(x) = yp(x)+c1 y1(x)+c2 y2(x), whereas our original objective was
simply to �nd a particular integral, yp(x).

Thus, knowledge of just one solution of a homogeneous, linear, second orderDE is
su�cient to determine all other solutions of that DE and of all of its non-homogeneous
counterparts!
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Example: Consider the DE

x2 d
2 y
d x2 − 2y = x.

It is clear from inspection that a particular solution of the corresponding homoge-
neous DE,

x2 d
2 y
d x2 − 2y = 0,

is y1(x) = x2 . Thus, noting that a(x) = 0 in this case, we obtain a second linearly
independent solution by performing the integration

y2(x) = x2
x∫
e0

ξ4
dξ

= x2
(
−1
3

)
1
x3

= − 1
3x .

The Wronskian of y1(x) and y2(x) is

W[y1, y2] = y1 y′2 − y2 y′1 = x2
(

1
3 x2

)
−
(
−1
3x

)
2x = 1.

Therefore, using (9.3.5) with f (x) = 1
x , we �nd

yp(x) =
(
−1
3x

) x∫
ξ2 1ξ dξ − x

2
x∫ (
−1
3ξ

)
1
ξ dξ

=
(
−1
3x

)
x2
2 − x

2
(

1
3x

)
= − x2

as a particular integral of the non-homogeneous DE. The general solution of the non-
homogeneous DE is thus

y(x) = − x2 + c1 x2 + c2
1
x .

9.4 Finding a Particular Solution for Homogeneous DE’s

We can now focus on homogeneous DE’s and in particular, on the problem of �nding
a �rst solution. Wemight as well start with the simplest class of such DE’s, those with
constant coe�cients:

d2 y
d x2 + a dydx + by = 0 (9.4.1)
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where a and b are real constants.
The only function that enjoys a linear relationship with its derivatives is the expo-

nential. Therefore, let us try a solution of the form y(x) = eλx . Substituting into (9.4.1)
we �nd

(λ2 +aλ + b) eλx = 0. (9.4.2)

This means that eλx is indeed a solution if and only if λ is a solution of the quadratic
equation

λ2 +aλ + b = 0

which is called the characteristic equation of the original DE (9.4.1).
The roots of the characteristic equation are

λ1 =
1
2(−a +

√
a2 −4b) and λ2 =

1
2(−a −

√
a2 −4b). (9.4.3)

If a2 ≠ 4b, λ1 ≠ λ2 and we have two linearly independent solutions

y1(x) = eλ1 x and y2(x) = eλ2 x . (9.4.4)

If a2 < 4b, the roots will be complex. Should an explicitly real solution be required,
the two solutions in (9.4.4) can be combined to give

y1(x) = e−ax/2 cos
(√

4b − a2 x2

)
and y2(x) = e−ax/2 sin

(√
4b − a2 x2

)
. (9.4.5)

If a2 = 4b, λ1 = λ2 = − a2 and we have only one solution y1(x) = e−ax/2 . A second,
linearly independent solution is then obtained from an application of (9.3.1):

y2(x) = e−ax/2
x∫ exp[−

ξ∫
adζ ]

e−aξ
dξ

= e−ax/2
x∫
dξ

= x e−ax/2 . (9.4.6)

Examples: Consider y′′ + y′ − 2y = 0. The characteristic equation is λ2 +λ − 2 = 0
with roots λ1 = 1 and λ2 = −2. Therefore, this DE has the general solution y(x) =
c1 ex + c2 e−2x .

Next, suppose that we wish to solve y′′ −2y′ +10y = 0. Its characteristic equation
is λ2 −2λ + 10 = 0 with roots λ1 = 1 + 3i and λ2 = 1 − 3i. So, the general solution in
this case is y(x) = ex(c1 cos 3x + c2 sin 3x).

Finally, consider the DE y′′ +8y′ +16y = 0. The characteristic equation is λ2 +8λ+
16 = 0 which has the double root λ = −4. This means that the general solution must
be y(x) = e−4x(c1 + c2 x).
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When we make the transition to DE’s with variable coe�cients, the task of �nd-
ing a solution becomes more complicated as do the solutions themselves. In fact, the
solutions are seldom expressible in terms of elementary functions. Experience tells
us that we should therefore seek solutions in the form of power series or integral rep-
resentations. We shall examine both approaches in due course but will discover that
power series provide su�cient insight into the analytical properties of solutions that
we can make them a principal focus of our attention.

The power series approach is called the method of Frobenius and it is fairly
straight forward to apply. Therefore, before launching into an exposition of the un-
derlying theory, we shall illustrate its practical content by means of some simple ex-
amples.

Ferdinand Georg Frobenius (1849-1917) was a student of Weierstrass. Best known
for his contributions to the theory of di�erential equations and to group theory,he taught
at the University of Berlin and at ETH Zurich.

As we can quickly verify by checking its characteristic equation, the DE

d2 y
d x2 + ω2 y = 0, ω = a real constant (9.4.7)

has the general solution y(x) = c1 cosωx+ c2 sinωx. Our challenge is to re-derive this
result starting from the assumption that the DE admits a solution that can be repre-
sented by a Taylor series about x = 0:

y(x) = a0 + a1 x + a2 x2 + . . . =
∞∑
m=0

am xm . (9.4.8)

We begin by di�erentiating (9.4.8) term by term (which means we are assuming
uniform convergence) to obtain

y′′ = 2 · 1 a2 +3 · 2 a3 x + 4 · 3 a4 x2 + . . . =
∞∑
m=2

m(m − 1) xm−2 .

Inserting this together with (9.4.8) into the DE, we have
∞∑
m=2

m(m − 1) am xm−2 +
∞∑
m=0

ω2 am xm = 0.

Remembering that power series representations are unique, we recognize that this
equality of series implies equality on a term by term basis. Simply put, this means
that we can equate the coe�cient of each power that appears on the left hand side to
zero:

2 · 1 a2 +ω2 a0 = 0,
3 · 2 a3 +ω2 a1 = 0,
4 · 3 a4 +ω2 a2 = 0, . . . ,

m(m − 1) am +ω2 am−2 = 0, . . . .
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This means that a2 = − ω
2

2·1 a0, a3 = − ω
2

3·2 a1, a4 = − ω
2

4·3 a2 = (−1 )2 (ω2 )2
4·3·2·1 a0, and in

general,

am = − ω2

m(m − 1) am−2 = . . . = (−1 )k (ω2 )k

m(m − 1) . . . (m − k + 1) am−2k . (9.4.9)

This is a recurrence relation for the coe�cients. It expresses them all in terms of
either a0 or a1 depending on whether m is even or odd. This splits the solution into
two linearly independent parts, one which is an even function and the other an odd
function of x. More speci�cally, we �nd

y(x) = a0
(
1 − ω

2 x2
2! + ω

4 x4
4! − + . . .

)
+ a1ω

(
ωx − ω

3 x3
3! + ω

5 x5
5! − + . . .

)
or,

y(x) = c1 cosωx + c2 sinωx

where c1 and c2 are arbitrary constants. Thus, as we hoped we would, we have recov-
ered the general solution of the DE.

Suppose that we up the ante by using the same approach to solve the (non-
homogeneous) DE with variable coe�cients

d2 y
dx2 + xy = x3 . (9.4.10)

Proceeding in a tentative fashion, we start with the homogeneous counterpart

d2 y
d x2 + xy = 0 (9.4.11)

and substitute into it a Taylor series representation y(x) =
∞∑
m=0

am xm . We �nd

∞∑
m=2

m(m − 1) am xm−2 +
∞∑
m=0

am xm+1 = 0.

Next, we set m − 2 = n in the �rst series and m + 1 = n in the second series to obtain
∞∑
n=0

(n + 2)(n + 1) an+2 xn +
∞∑
n=1

an−1 xn = 0

or,

2 · 1 a2 +
∞∑
n=1
{(n + 2)(n + 1) an+2 + an−1} xn = 0.

Then, equating the coe�cients of successive powers of x to zero, we have a2 = 0 and

an+2 = −
an−1

(n + 2)(n + 1) , n ≥ 1. (9.4.12)
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Applying this recurrence relation a few times gives

a2 = 0, a3 = −
a0
3 · 2 , a4 = −

a1
4 · 3 , a5 = −

a2
5 · 4 = 0, a6 = −

a3
6 · 5 = a0

6 · 5 · 3 · 2 ,

a7 = −
a4
7 · 6 = a1

7 · 6 · 4 · 3 , a8 = −
a5
8 · 7 = 0, a9 = −

a6
9 · 8 = − a0

9 · 8 · 6 · 5 · 3 · 2 , . . . .

and hence,

y(x) = a0
(
1 − x3

3 · 2 + x6
6 · 5 · 3 · 2 − + . . .

)
+ a1

(
x − x4

4 · 3 + x7
7 · 6 · 4 · 3 − + . . .

)
(9.4.13)

where a0 and a1 are arbitrary. Each of the two terms in brackets in (9.4.13) is a partic-
ular solution of the homogeneous DE. Since they are also linearly independent, their
linear combination is the general solution. Thus, once again, the assumption of a Tay-
lor series representation about x = 0 has lead directly to the general solution. The
only apparent di�erence from the previous example being that we do not recognize
the series as ones that sum to some combination of elementary functions.

Using the same approach to solve the non-homogeneous DE (9.4.10) looks like
a reasonable proposition because the non-homogeneous term is a monomial. If it
were anything more complicated than a polynomial, we would have to expand it in
a power series and the solution of the DE, while still feasible, would become much
more complicated. Proceeding as we did for the homogeneous case, we substitute
y(x) =

∞∑
m=0

am xm into (9.4.10) and obtain

∞∑
m=2

m(m − 1) am xm−2 +
∞∑
m=0

am xm+1 = x3,

or

2 · 1 a2 +
∞∑
n=1
{(n + 2)(n + 1) an+2 + an−1} xn = x3 .

Equating the coe�cients of successive powers of x on the left hand side of the equality
to their counterparts on the right, we have

a2 = 0, 3 · 2 a3 + a0 = 0, 4 · 3 a4 + a1 = 0, 5 · 4 a5 + a2 = 1,

and
m(m − 1) am + am−3 = 0, m ≥ 6.

Thus,

a3 = −
a0
3 · 2 , a4 = −

a1
4 · 3 , a5 = 1, a6 =

a0
6 · 5 · 3 · 2 , a7 =

a1
7 · 6 · 4 · 3 , a8 = −

1
8 · 7 , . . .

and so,

y(x) = a0
(
1 − x3

3 · 2 + x6
6 · 5 · 3 · 2 − + . . .

)
+a1

(
x − x4

4 · 3 + x7
7 · 6 · 4 · 3 − + . . .

)
+yp(x)
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where yp(x) is the particular integral

yp(x) = x5 −
1

8 · 7 x
8 + 1

11 · 10 · 8 · 7 x
11 − + . . . . (9.4.14)

Thus, regardless of whether the DE is homogeneous or non-homogeneous, the
power series method appears to yield not just one solution but the general solution.
But wait. There must be DE’s whose solutions do not admit a Taylor series expansion
about x = 0. In fact, invoking equation (9.3.1), we see that if a(x) = 1

x , the relationship
between any two linearly independent solutions is

y2(x) = y1(x)
x∫

dξ
ξ [y1(ξ ) ]2

.

Therefore, if y1(x) is non-singular and non-zero at x = 0 then y2(x) will have a loga-
rithmic singularity there and if y1(x) has a zero at x = 0 then y2(x) will have a pole of
the same order there. In other words, one can have a DE that has a particular but not a
general solution that is expressible as a Taylor series about x = 0. There is a physically
important DE whose solutions illustrate this point.

The DE

d2 y
d x2 + 1

x
dy
dx −

m2

x2 y = 0, m = an integer, (9.4.15)

is a special case ofwhat is known as Cauchy’s DE of order 2, x2 d2 y
d x2 +ax

dy
dx +by = 0with

a and b held constant. The standard approach to solving this class of DE’s is to attempt
a solution of the general power y(x) = xs . However, because we want to illustrate the
power series method of solution, we shall attempt a Taylor series, y(x) =

∞∑
n=0
an xn .

Substituting into (9.4.15), we have
∞∑
n=2

n(n − 1) an xn−2 +
∞∑
n=1

n an xn−2 −
∞∑
n=0

m2 an xn−2 = 0.

Assuming m ≠ 0 and equating coe�cients of successive powers of x to zero, we �nd

m2 a0 = 0, 1 a1 −m2 a1 = 0, 2 · 1 a2 +2 a2 −m2 a2 = 0, . . . ,

m(m − 1) am +m am −m2 am = 0, . . . , n(n − 1) an +n an −m2 an = 0, . . . .

Thus, an = 0 for all n ≠ m, and am is arbitrary. In other words, y(x) = xm is the only
non-trivial solution with a Taylor series representation about x = 0. To �nd a second
linearly independent solution we are obliged to resort to (9.3.1):

y2(x) = y1(x)
x∫

dξ
ξ [y1(ξ ) ]2

= xm
x∫

dξ
ξ2m+1

= −1
2m + 1 x

−m .
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So, the general solution of this DE is

y(x) = c1 xm + c2 x−m , m ≠ 0. (9.4.16)

If m = 0, a0 will be the only non-zero coe�cient implying that y1 = 1 is now
the non-trivial solution with a Taylor series representation about x = 0. Using (9.3.1)
again, we �nd that

y2(x) =
x∫
dξ
ξ = ln x

is the second linearly independent solution and so the general solution becomes

y(x) = c1 + c2 ln x, m = 0. (9.4.17)

Evidently, we need some answers to questions regarding when and where the
power series method can be used and what sort of solutions we can expect when a
Taylor series is no longer valid for the general solution. As we shall now discover, the
answers are provided by a sequence of theorems due to a nineteenth century mathe-
matician called Frobenius.

9.5 Method of Frobenius

As we know, the most appropriate language for a discussion of power series represen-
tations is that of complex analysis. Therefore, we replace the real variable x by the
complex variable z and rewrite the canonical DE (9.2.2) in the format

d2 y
d z2 + a(z)dydz + b(z)y = 0, (9.5.1)

where a(z), b(z) and y(z) are complex functions of the complex variable z that satisfy
the reality conditions a*(z) = a(z*), b*(z) = b(z*), y*(z) = y(z*). Next, we de�ne as
ordinary points of the DE all points at which both a(z) and b(z) are holomorphic.
Theorem: If z = z0 is an ordinary point of (9.5.1) then every solution of the DE is
holomorphic there.

The proof is quite straight forward. The holomorphy of a(z) and b (z) implies that
they have Taylor series about z = z0 . Substituting these as well as an assumed Taylor
series for y(z),

y(z) =
∞∑
m=0

cm(z − z0 )m , (9.5.2)

into (9.5.1), we determine a consistent set of equations for the cm by equating the coef-
�cients of successive powers of (z− z0) to zero. The radius of convergence of the series
(9.5.2) will be the distance from z = z0 to the nearest point which is not ordinary.
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This con�rms and extends the experience we acquired via the examples of the
preceding Section. It also brings us to the question ofwhat happens at “non-ordinary”
or singular points.

If a(z) and /or b(z) have poles at z = z0 but

(z − z0)a(z) and (z − z0 )2 b(z)

are holomorphic there, z = z0 is de�ned to be a regular singular point of the DE
(9.5.1). If one or both of these functions has an isolated singularity at z = z0, the DE
has as an irregular singular point there.
Theorem: If z = z0 is a regular singular point then at least one solution of the DE
(9.5.1) can be expressed as a Frobenius series

y(z) = (z − z0 )s
∞∑
m=0

cm(z − z0 )m , c0 ≠ 0 and s is real or complex, (9.5.3)

which converges in any circle about z = z0 that contains no other singularities.
Note that if

1. s = n, n = an integer, y(z) has a zero of order natz = z0;
2. s = 0, y(z) is holomorphic and non-zero at z = z0;
3. s = −n, n = an integer, y(z) has a pole of order natz = z0;
4. s ≠ 0, ±1, ±2, . . . , z = z0 is a branch point of y(z).

To prove this theorem, we rewrite (9.5.1) in the form

(z − z0 )2 d
2 y
d z2 + (z − z0)A(z)

dy
dz + B(z)y = 0 (9.5.4)

where

A(z) = (z − z0)a(z) =
∞∑
m=0

am(z − z0 )m = a0 + a1(z − z0) + a2(z − z0 )2 + . . . (9.5.5)

and

B(z) = (z − z0 )2 b(z) =
∞∑
m=0

bm(z − z0 )m = b0 + b1(z − z0) + b2(z − z0 )2 + . . . (9.5.6)

are holomorphic at z = z0 and so have Taylor series expansions about that point.
Substituting the series (9.5.3), (9.5.5) and (9.5.6) into the DE (9.5.4), we �nd

(z − z0 )s
[
s(s − 1) c0 +

∞∑
m=1

(m + s)(m + s − 1) cm(z − z0 )m
]

+ (z − z0 )s
[
s c0 +

∞∑
m=1

(m + s) cm(z − z0 )m
]
×

∞∑
m=0

aM(z − z0 )m

+ (z − z0 )s
[
c0 +

∞∑
m=1

cm(z − z0 )m
]
×

∞∑
m=0

bm(z − z0 )n = 0. (9.5.7)
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Equating coe�cients of successive powers of (z − z0) to zero, we obtain

c0[s(s − 1) + a0 s + b0] = 0
c1[(s + 1)s + a0(s + 1) + b0] + c0[s a1 + b1] = 0
c2[(s + 2)(s + 1) + a0(s + 2) + b0] + c1[(s+!) a1 + b1] + c0[s a2 + b2] = 0
...
cm[(s + m)(s + m − 1) + a0(s + m) + b0] + . . . = 0
... (9.5.8)

Since c0 ≠ 0, the �rst of these equations becomes the indicial equation

s(s − 1) + a0 s + b0 = 0 (9.5.9)

whose roots, s1 ands2, Re s1 ≥ Re s2, are the only permissable values for the index s.
Substituting the value s1 for s in the remaining equations of (9.5.8), we can solve

successively for c1, c2, . . . cn , . . . in terms of c0 . The latter becomes an arbitrary mul-
tiplicative constant which can be assigned any value but zero. Often but certainly not
invariably, the value assigned to it is one.

Thus, we have generated the one Frobenius solution guaranteed by our theorem.
Note that this �rst solution corresponds to the root of the indicial equation with the
largest real part, s1. Does the other root, s2 , generate a second linearly independent
solution? The answer is obviously no if s1 = s2, that is, if the indicial equation has
a double root. In that case, we have to rely on equation (9.3.1) to produce a second
solution from our knowledge of the �rst. The result is novel within the context of our
current level of experience. This is because

a(z) = a0
z − z0

+ a1 + a2(z − z0) + . . . ,

and so,
z∫
a(ζ )dζ = a0 ln(z − z0) + a1 z +

a2
2 (z − z0 )2 + . . . .

Thus,

exp

− z∫
a(ζ )dζ

 = 1
(z − z0 )a0

exp[− a1 z −
a2
2 (z − z0 )2 − . . .] (9.5.10)

which, when multiplied by 1
[y1(z) ]2

where y1(z) = (z − z0 )s1
∞∑
m=0

cm(z − z0 )m , yields

y2(z) = y1(z)
z∫

1
(ζ − z0 )a0 +2 s1

f (ζ )dζ (9.5.11)
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where f (z) has a Taylor series expansion about z = z0 and is non-vanishing there:
f (z) =

∞∑
m=0

fm(z − z0 )
m , f0 ≠ 0. But, when we examine the indicial equation, we see

that a double root occurs when b0 = (a0 −1 )2
4 in which case the root is s1 = (1−a0)

2 . This
means that (9.5.11) becomes

y2(z) = y1(z)
z∫

f (ζ )
(ζ − z0)

dζ = y1(z) ×
[
f0 ln(z − z0) +

∞∑
m=1

fm
m (z − z0 )m

]
.

In other words, the second linearly independent solution is of a form that is de�ned
to be a generalized Frobenius series. Speci�cally,

y2(z) = y1(z) · ln(z − z0) + (z − z0 )s1
∞∑
m=1

dm(z − z0 )m . (9.5.12)

Therefore, when the indicial equation has a double root, a �rst solution of the
Frobenius form (9.5.3) is determined by substituting into the DE, determining the in-
dicial equation and its root, and then solving the recurrence equation(s) (9.5.8) for
the coe�cients cm . A second, linearly independent solution of the generalized Frobe-
nius form is then determined by substituting (9.5.12) into the DE and solving for the
coe�cients dm.

A similar kind of phenomenon occurs when the two roots of the indicial equation
di�er by an integer, s1 − s2 = N . Because s1 is a root of the indicial equation, we know
that

(s2 +N)(s2 +N − 1) + a0(s2 +N) + b0 = 0. (9.5.13)

But the left hand side of this equation is the coe�cient of cN in theNth of the equations
(9.5.8). This means that we cannot solve for cN . If the other terms in the Nth equation
are non-zero, cN as well as all subsequent coe�cients is unde�ned and we cannot de-
termine a second solution of the Frobenius form. If the other terms in the equation are
zero, cN is arbitrary. The result is a second solution consisting of a superposition that
contains cN multiplied by the �rst solution or, put another way, the result is the gen-
eral solution of the DE. Curiously, expanding about an ordinary point is one instance
of this situation. If z = z0 is an ordinary point, a0 = b0 = b1 = 0 and the indicial
equation becomes s(s − 1) = 0 with roots s1 = 1 and s2 = 0.

To cover either situation, cN unde�ned or cN arbitrary, we can again use (9.3.1)
leading to equation (9.5.11). However, now we have s1 + s2 = 1 − a0 and so a0 +2 s1 =
1 + N . Therefore, in this case,

y2(z) = y1(z)
z∫

f (ζ )
(ζ − z0 )N+1

dζ

= y1(z)
[
1
N

− f0
(z − z0 )N

+ . . . + − fN−1z − z0
+ fN ln(z − z0) +

∞∑
m=1

fN+m(z − z0 )
m

]
.

(9.5.14)
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We have no a priori information about fN . Depending on the DE it may be either zero
or non- zero corresponding to either a Frobenius or a generalized Frobenius represen-
tation for y2(z).

We can allow for both cases by using a multiplicative constant and setting

y2(z) = c y1(z) ln(z − z0) + (z − z0 )s2
∞∑
m=0

dm(z − z0 )m . (9.5.15)

Notice that, consistent with (9.5.14), we have chosen
1. the index for the Frobenius series in the second term of (9.5.15) to be s2, and
2. the summation to begin with m = 0.

Thus, should themultiplicative constant c turn out to be zero, not onlywill theDEhave
two linearly independent solutions of the Frobenius form but they will correspond
respectively to the two distinct roots of the indicial equation. This happy outcome
always obtains when the distinct roots di�er by a non-integer.

When the roots are distinct and do not di�er by an integer, the equations (9.5.8)
yield two distinct andwell-de�ned sets of solutions for the coe�cients cm correspond-
ing to the two allowed values of s, s1 and s2 . Denoting these to sets by {cm} and {dm}
respectively, we again have two linearly independent solutions of the Frobenius form,

y1(z) = (z − z0 )s1
∞∑
m=0

cm(z − z0 )m , c0 ≠ 0 and

y2(z) = (z − z0 )s2
∞∑
m=0

dm(z − z0 )m , d0 ≠ 0. (9.5.16)

We will illustrate all of these possibilities with some examples. But �rst, a comment
about irregular singular points is in order. It is easy to verify that if a(z) and b(z) are
more singular than we have assumed, the indicial equation will have at most one root
and so the DE may have no solution of the Frobenius form. In that case, often corre-
sponding to solutions with an essential singularity at z = z0, other techniques are
required.

9.6 The Legendre Di�erential Equation

Adrien-Marie Legendre (1752-1833), a Parisian from a wealthy background, taught more
or less continuously at the ÉcoleMilitaire and the École Normale despite themany, often
turbulent, regime changes of that period. Although best known as a geometer, he also
made important contributions to classical mechancs, mathematical analysis, number
theory and statistics. He was made an o�cer of the Légion d’Honneur in 1831.
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ADE that arises in agreatmanyphysical applications that require theuseof spher-
ical coordinates is named after Legendre. Using real variable notation again, it is

(1 − x2)d
2 y
d x2 − 2x

dy
dx + λy = 0, λ = a real constant. (9.6.1)

In applications, the variable x is actually the cosine of the polar angle θ and so it has
the range −1 ≤ x ≤ 1. Recognizing that x = ±1 are regular singular points of the
DE we begin to worry that its solutions will be singular there. This is something we
cannot permit and so this DE is always accompanied in applications by the boundary
conditions |y(±1)| < ∞.

The point x = 0 is an ordinary point of the DE. Therefore, we know that its gen-
eral solution has a Taylor series representation y(x) =

∞∑
m=0

cm xm , |x| < 1. Given our

observation about x = ±1 we expect that the series will diverge there, an expectation
that can be con�rmed explicitly. Thus, while seeking the coe�cients cm we will also
be interested in �nding some means of modifying the representation so that its range
of validity is extended to include ±1.

Rather than start with the normal assumption of a Taylor series, we shall assume
a Frobenius series

y(x) =
∞∑
m=0

cm xs+m , c0 ≠ 0 (9.6.2)

and then con�rm that the roots of the indicial equation give rise to a Taylor series for
the general solution.

Di�erentiating (9.6.2) and substituting into (9.6.1) we have
∞∑
m=0

cm(s + m)(s + m − 1) xs+m−2 −
∞∑
m=0

cm[(s + m)(s + m − 1) + 2(s + m) − λ] xs+m = 0.

(9.6.3)

The �rst term corresponds to y′′, the second to − x2 y′′, the third to −2xy′, and the
fourth to λy.

The lowest power of x in this equation is xs−2 (from them = 0 term in the�rst sum).
Its coe�cient c0 s(s − 1) and the constraint c0 ≠ 0 gives us the indicial equation:

s(s − 1) = 0 (9.6.4)

whose roots are s1 = 1 and s2 = 0. We note that the roots di�er by an integer.
The next power of x is xs−1 (from the m = 1 term in the �rst sum). Its coe�cient

c1(s + 1)s

must also be zero. Therefore,
1. if s = 1, c1 = 0 and
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2. if s = 0, c1 is arbitrary.

So far, everything is working out as our analysis in the previous section suggested it
would.

Now we consider the coe�cient of the general power xs+m−2 . Equating it to zero
we have

cm(s + m)(s + m − 1) − cm−2[(s + m − 2)(s + m − 3) + 2(s + m − 2) − λ] = 0.

This becomes a recurrence relation for the coe�cients. In fact, inserting the value s =
1, we �nd

cm = [(m − 1)m − λ]
m(m + 1) cm−2, m ≥ 2, (9.6.5)

which expresses all of the even coe�cients in terms of c0 and all of the odd coe�cients
in termsof c1 . But, since c1 is zero for this value of s, thismeans thatweobtain a single
solution, multiplied by the arbitrary constant c0:

y1(x) = x +
1 · 2 − λ

3! x3 +(3 · 4 − λ)(1 · 2 − λ)5! x5 +(5 · 6 − λ)(3 · 4 − λ)(1 · 2 − λ)7! x7 + . . .

(9.6.6)

where we have set c0 = 1. Note that the solution is an odd function of x.
If we use the other root s = 0, the recurrence relation becomes

cm = [(m − 2)(m − 1) − λ]
m(m − 1) cm−2,m ≥ 2. (9.6.7)

Again, all of the even coe�cients relate back to c0 and the odd coe�cients to c1 but
this time c1 is arbitrary. Thus, as expected for an expansion about an ordinary point,
(9.6.7) generates the general solution in the form of a linear combination of two lin-
early independent Taylor series. Moreover, as predicted in the commentary following
equation (9.5.13), the particular solution multiplying c1 is just the y1(x) in equation
(9.6.6). The solution multiplying c0 is

y0(x) = 1 + (−λ)
2! x2 +(3 · 2 − λ)(−λ)4! x4 +(5 · 4 − λ)(3 · 2 − λ)(−λ)6! x6 + . . . . (9.6.8)

Neither series converges at x = ±1. Therefore, the only way we can be assured
of having a solution that is well-de�ned for all x in the range −1 ≤ x ≤ 1 is to take
advantage of the fact that thenumerator of (9.6.7) can vanish. In fact, cl+2 = 0when λ =
l(l + 1), l = 0, 1, 2, . . . , and one of the two linearly independent solutions becomes a
polynomial of degree l. Whennormalized to have the value 1 at x = 1, these solutions
are called Legendre polynomials and are denoted by Pl(x). They occur in a wide
range of physical applications and will be studied in some detail in Chapter 11. For
now it su�ces to note that our normalization requirement can be met by setting

cl =
(2l)!
2l(l! )2

. (9.6.9)
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Then, using (9.6.7) in the form

cm−2 =
(m − 1)m

(m − 2)(m − 1) − l(l + 1) cm ,

we �nd

cl−2k = (−1 )k (2l − 2k)!
2l k!(l − k)!(l − 2k)!

. (9.6.10)

Thus, for example,

P0(x) = 1,

P1(x) = x,

P2(x) =
1
2(3 x

2 −1),

P3(x) =
1
2(5 x

3 −3x),

P4(x) =
1
8(35 x

4 −30 x2 +3), . . . .

The linearly independent solution for λ = l(l+1) is denotedbyQl(x) and is singular
at x = ±1. In fact, it has branch points there. For the special case of l = 0, equation
(9.6.7) gives

Qo(x) = x +
x3
3 + x

5

5 + x
7

7 + . . . = 1
2 ln 1 − x

1 + x .

9.7 Bessel’s Di�erential Equation

Friedrich Wilhelm Bessel (1784-1846) was a German astronomer who, in the course of
studying the dynamics of many body systems, systematized the functions that now bear
his name. Although this would be a su�cient accomplishment to rank him as one of the
more importantmathematicians of this period, his contributions to astronomywere even
more important. In particular, he was the �rst to use parallax to calculate the distance
to a star.

Another DE that occurs in many, many physical guises is called Bessel’s equa-
tion. In its most general (real variable) form it is

x2 d
2 y
d x2 + x dydx + (x

2 − µ2)y = 0. (9.7.1)

Here µ is a non-negative real parameter called the order of the equation.
We notice immediately that x = 0 is a regular singular point. As we shall see,

everything that can happenwith expansions about a regular singular point do happen
for the solutions of (9.7.1) as we let the order parameter vary. However, we are always
assured of the existence of at least one solution with a Frobenius expansion about x =
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0:

y(x) =
∞∑
m=0

cm xs+m , c0 ≠ 0. (9.7.2)

Substituting this into (9.7.1) we �nd
∞∑
m=0

(s +m)(s +m − 1) cm xs+m +
∞∑
m=0

(s +m) cm xs+m +
∞∑
m=0

cm xs+m+2 −
∞∑
m=0

µ2 cm xs+m = 0

or,
∞∑
m=0

[(s + m )2 − µ2] cm xs+m +
∞∑
m=0

cm xs+m+2 = 0. (9.7.3)

Equating the coe�cients of successive powers of x in (9.7.3) to zero yields the fol-
lowing equations

c0(s2 − µ2) = 0
c1[(s + 1 )2 − µ2] = 0 (9.7.4)
cm[(s + m )2 − µ2] + cm−2 = 0, m ≥ 2.

From the �rst of these we obtain the indicial equation

s2 − µ2 = 0 (9.7.5)

which has the roots s = ±µ. Recalling the conclusions of our theoretical analysis in
Section 9.5,wenote that there is a need to consider four cases based onpossible values
of µ:

µ = 0; µ = an integer; µ = a half − integer; µ = anything else.

From the second equationwe see that c1 must be zero unless µ = 1
2 andwe choose

the root s = −µ. In that one exceptional case c1 is arbitrary and so we are free to set
c1 = 0. As we learned in Section 9.5, the terms that we lose by exercising this freedom
sum to the solution obtained with the larger root s = µ = + 1

2 .
From the third equation we obtain the recurrence relation

cm = −1
(s + µ + m)(s − µ + m) cm−2, m ≥ 2. (9.7.6)

This relates all even coe�cients to c0 and all odd coe�cients to c1 . Thus, since c1 = 0,
all of the odd coe�cients must be zero also.

The solution corresponding to the largest root of the indicial equation, s = µ, will
have a Frobenius expansion about x = 0 regardless of the value of µ and we are now
in a position to determine what it is. Setting s = µ in (9.7.6) we have

cm = −1
(2µ + m)m cm−2
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or, since m is even, m = 2k, k = 0, 1, 2, . . . ,

c2k =
−1

22 k(µ + k)
c2k−2 . (9.7.7)

Thus, starting with c2k and applying (9.7.7) k times, we have

c2k =
(−1 )k

22k k!(µ + 1)(µ + 2) . . . (µ + k)
c0 . (9.7.8)

At this point it is conventional to choose

c0 =
1

2µ Γ(µ + 1)

so that (9.7.8) becomes

c2k =
(−1 )k

2µ+2k k!Γ(µ + k + 1)
. (9.7.9)

This completes the determination of the solution corresponding to s = µ which, fol-
lowing convention, we will denote Jµ(x):

Jµ(x) =
∞∑
k=0

(−1 )k

k!Γ(µ + k + 1)

( x
2

)µ+2k
. (9.7.10)

The rather lengthy name that is attached to this series is Bessel function of the
�rst kind of order µ. It looks a good deal more friendly when we assign µ integer or
half-integer values.

Speci�cally, if µ = m, an integer or zero, we can replace Γ(m + k + 1) by (m + k)!
and obtain

Jm(x) =
∞∑
k=0

(−1 )k

k!(m + k)!

( x
2

)m+2k
, m ≥ 0. (9.7.11)

And, if µ = 1
2 ,

J 1
2
(x) =

√
x
2

∞∑
k=0

(−1 )k

k!Γ( 12 + k + 1)

( x
2

)2k
=
√

2x
π

∞∑
k=0

(−1 )k

(2k + 1)! x
2k+1

=
√

2
πx sin x (9.7.12)

where we have used the Taylor series for sin x and the identity

Γ(k + 1 + 1
2) =

(2k + 1)!
22k+1 k!

√
π.
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Weshall now turn our attention to �nding a second, linearly independent solution
to Bessel’s equation. The �rst case we will consider is µ not equal to zero, an integer
or a half- integer so that the two roots of the indicial equation will be distinct and will
not di�er by an integer. According to our analysis in Section 9.5, the second solution
will then be the Frobenius series obtained with the root s = −µ. Thus, making that
substitution in (9.7.6) we obtain the recurrence relation

c2k =
−1

22 k(k − µ)
c2k−2, k ≥ 1. (9.7.13)

Applying this k times we �nd

c2k =
(−1 )k

22k k!(1 − µ)(2 − µ) . . . (k − µ)
c0 . (9.7.14)

Therefore, choosing
c0 =

1
2−µ Γ(1 − µ)

in analogy to what was done for the �rst solution, we obtain as a second, linearly
independent solution the Bessel function of the �rst kind of order −µ:

J−µ(x) =
∞∑
k=0

(−1 )k

k!Γ(k − µ + 1)

( x
2

)2k−µ
. (9.7.15)

This continues to be a well-de�ned, independent solution of Bessel’s equation
when µ has half-integer value. In fact,

J− 1
2
(x) =

√
2
πx cos x. (9.7.16)

Evidently, this is an instance of both solutions having Frobenius representations
even though the roots of the indicial equation di�er by an integer. Will our luck hold
with the same being true when µ = m, an integer? The answer is no. Since Γ(k−m+1)
is in�nite for k = 0, 1, 2, . . . ,m − 1, the coe�cients of the �rst m terms in the series
for J−m(x) vanish and the summation starts with k = m:

J−m(x) =
∞∑
k=m

(−1 )k

k!(k − m)!

( x
2

)2k−m
.

But, changing the summation index to j = k − m, this becomes

J−m(x) =
∞∑
j=0

(−1 )m+j

j!(j + m)!

( x
2

)2j+m
= (−1 )m Jm(x), m = 1, 2, . . . . (9.7.17)

Thus, for the case of µ = m, an integer, the second, linearly independent solu-
tion can only be expanded about x = 0 in a generalized Frobenius series. And, of
course, the same is true for µ = 0. These solutions are called Bessel functions of the
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second kind and are denoted by Ym(x),m = 0, 1, 2, . . .. Their generalized Frobenius
representations are

Ym(x) = Jm(x) ln x + x−m
∞∑
k=0

dk xk ,m = 1, 2, . . . , (9.7.18)

and

Y0(x) = J0(x) ln x +
∞∑
k=1

dk xk . (9.7.19)

We shall solve explicitly for the coe�cients {dk} for the case m = 0 and state the
outcome of such solution for integer values of m.

Substituting (9.7.19) into Bessel’s equation of order zero,

x d
2 y
d x2 + dydx + xy = 0, (9.7.20)

and using the fact that J0(x) is known to be a solution of this DE, we �nd

2d J0dx +
∞∑
k=1

k(k − 1) dk xk−1 +
∞∑
k=1

k dk xk−1 +
∞∑
k=1

dk xk+1 = 0. (9.7.21)

From (9.7.11) we know that

d J0
dx =

∞∑
k=1

(−1 )k

k!(k − 1)!

( x
2

)2k−1
and so inserting this series in (9.7.21), we have

2
∞∑
k=1

(−1 )k

k!(k − 1)!

( x
2

)2k−1
+

∞∑
k=1

k2 dk xk−1 +
∞∑
k=1

dk xk−1 = 0.

The coe�cient of the lowest power of x(x0) is just d1 and sowe immediately obtain

d1 = 0.

Equating the coe�cient of any even power of x(x2k) to zero, we have

(2k + 1 )2 d2k+1 + d2k−1 = 0, k = 1, 2, . . . .

Therefore, since d1 = 0, so must d3 = 0, d5 = 0, . . . , successively.
Equating the coe�cient of any odd power of x(x2k+1) to zero, we have

− 1 + 4 d2 = 0, k = 0, and

(−1 )k+1

22k(k + 1)!k!
+ (2k + 2 )2 d2k+2 + d2k = 0, k = 1, 2, . . . . (9.7.22)



Bessel’s Di�erential Equation | 259

Thus, d2 = 1
4 ,

1
8 + 16 d4 + d2 = 0 or, d4 = −3

128 and, in general ,

d2k =
(−1 )k−1

22k(k! )2

{
1 + 1

2 + 1
3 + 1

4 + . . . + 1
k

}
, k = 1, 2, . . . . (9.7.23)

Collecting all of these results and applying them to (9.7.19) we can express the Bessel
function of the second kind of order zero as

Y0(x) = J0(x) ln x +
∞∑
k=1

(−1 )k−1

(k! )2

{
1 + 1

2 + 1
3 + . . . + 1

k

}( x
2

)2k
= J0(x) ln x +

1
4 x

2 − 3
128 x

4 + − . . . . (9.7.24)

Exactly the same procedure can be followed to determine the second linearly in-
dependent solution of

x2 d
2 y
d x2 + x dydx + (x

2 −m2)y = 0, m = 1, 2, . . . . (9.7.25)

That is to say, we can assume a solution of the form

Ym(x) = Jm(x) ln x + x−m
∞∑
k=0

dk xk , (9.7.26)

substitute it into (9.7.25) and solve for the coe�cients {dk}. This is precisely what we
would do if (9.7.25) were just any oldDE. However, because of the physical relevance of
Bessel’s equation, it is conventional to take an approach that yields a second solution
that is de�ned in an order-independent way.

The de�nition of the second, linearly independent solution that is used for all
values of the order parameter µ is

Nµ(x) =
Jµ(x) cos µπ − J−µ(x)

sin µπ . (9.7.27)

This is called the Neumann function of order µ. For µ ≠ an integer or zero it is a
well-de�ned linear combination of Jµ(x) and J−µ(x) and in particular, for µ = 2l+1

2 , l =
0, 1, 2, . . .,

N 2l+1
2
(x) = (−1 )l J− 2l+1

2
(x). (9.7.28)

For µ = an integer or zero (9.7.27) produces 0
0 by dint of the identity (9.7.17). For these

cases the Neumann function is de�ned by an application of L’Hospital’s rule:

Nm(x) = lim
µ→∞

Jµ(x) cos µπ − J−µ(x)
sin µπ = lim

µ→∞

dJµ
dµ cos µπ − π sin µπJµ(x) −

dJ−µ
dµ

π cos µπ

= 1
π

{
dJµ(x)
dµ

∣∣∣
µ=m

− (−1)m dJµ(x)dµ

∣∣∣
µ=m

}
, m = 0., 1, 2 . . . . (9.7.29)
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To calculate the derivatives with respect to µ we use the series expansions (9.7.10)
and (9.7.15):

d Jµ(x)
dµ

∣∣∣∣
µ=m

= Jm(x) ln
x
2 +

∞∑
k=0

(−1 )k
k!

( x
2

)m+2k d
dz

1
Γ(z)

∣∣∣∣
z=m+k+1

; (9.7.30)

d J−µ(x)
dµ

∣∣∣∣
µ=m

= − J−m(x) ln
x
2 −

∞∑
k=0

(−1 )k
k!

( x
2

)−m+2k d
dz

1
Γ(z)

∣∣∣∣
z=−m+k+1

. (9.7.31)

We know from Section 5.2 that

d
dz

1
Γ(z)

∣∣∣∣
z=n

=


− 1
(n−1)!

[
1

n − 1 + 1
n − 2 + . . . + 1

1 − γ
]
, n ≥ 2

γ, n = 1
(−1 )|n| |n|!, n = 0, −1, −2, . . .

(9.7.32)

where γ is the Euler-Mascheroni constant,

γ = lim
n→∞

[
1
1 + 1

2 + . . . + 1
n − lnn

]
= 0.5772 . . . .

Thus, on substituting (9.7.30) through (9.7.32) in (9.7.29), we obtain �nally

Nm(x) =
2
π Jm(x) ln

x
2

+ 1
π

∞∑
k=0

(−1 )k
k!

( x
2

)m+2k −1
(m + k)!

{
1

m + k +
1

m + k − 1 + . . . + 1
1 − γ

}

+ 1
π

m−1∑
k=0

(−1 )k+m
k!

( x
2

)−m+2k
(−1 )m−k−1(m − k − 1)!

+ 1
π

∞∑
k=m

(−1 )k+m
k!

( x
2

)−m+2k (−1)
(k − m)!

{
1

k − m + 1
k − m − 1 + . . . + 1

1 − γ
}
.

(9.7.33)

Setting m = 0 and simplifying we recognize the series that emerges for N0(x) as the
linear combination

N0(x) =
2
π [Y0(x) + (γ − ln 2) J0(x)]. (9.7.34)

Hadwe solved explicitly for Ym(x),m = an integer,wewould �nd that this relationship
between Neumann functions and Bessel functions of the second kind obtains for non-
zero values of the order as well:

Nm(x) =
2
π [Ym(x) + (γ − ln 2) Jm(x)], m = 0, 1, 2, . . . . (9.7.35)
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9.8 Some Other Tricks of the Trade

Representation of the solution by a series about the origin is a su�ciently powerful
approach that we can undertake the solution of most physical problems with con�-
dence. Nevertheless, the method does have its limitations. Therefore, it is useful to be
aware of the supplementary techniques discussed in this Section. Each is designed to
circumvent one or more of the limitations.

9.8.1 Expansion About the Point at In�nity

Expansion about the origin is possible when the DE

d2 y
d z2 + a(z)dydz + b(z)y = 0 (9.8.1)

has an ordinary or regular singular point at z = 0. Two immediate limitations are
1. it yields a solution whose domain of de�nition is restricted to |z| < |ζ |where z = ζ

is the location of the next or nearest singularity, and
2. it cannot be used at all if z = 0 is an irregular singular point.

These can be circumvented if z = ∞ is an ordinary or regular singular point because
that means that the DE admits at least one solution with a representation of the form

y(z) =
(
1
z

)s ∞∑
m=0

cm
(
1
z

)m
(9.8.2)

for |z| > |ζ | where z = ζ is the singularity furthest from the origin.
As usual, we test the status of z = ∞ by making the substitution z = 1

w and de-
termining whether w = 0 is an ordinary, regular singular or irregular singular point.
Since

dy
dz = dy

dw
dw
dz = −1z2

dy
dw = −w2 dy

dw
d2 y
d z2 = d

dw

(
dy
dz

)
dw
dz = −w2

[
−2w dydw − z

2 d2 y
d z2

]
= 2w3 dy

dw + w4 d2 y
d z2 ,

the DE (9.8.1) becomes

w4 d2 y
d w2 + [2w3 −w2 a(w−1)] dydw + b(w−1)y = 0. (9.8.3)

Thus, if 2w −
a(w−1)
w2 has noworse than a �rst order pole and b(w

−1)
w4 has noworse than

a second order pole at w = 0, our original DE (9.8.1) will admit a solution that can be
expanded in a Frobenius series about z = ∞ like that in (9.8.2).
Examples: Consider the Legendre DE of order zero,

(1 − x2)d
2 y
d x2 − 2x

dy
dx = 0
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We know that it has the two linearly independent solutions

P0(x) = 1 and Q0(x) = x +
x3
3 + x

5

5 + . . . , |x| < 1.

Since we know that the series sums to ln
(
1 + x
1 − x

)
we have an analytic continuation

for |x| > 1. However, we shall ignore this knowledge and seek a series solution that is
valid in the latter domain.

Setting x = 1
u and noting that

a(u−1) = −2/u
1 − 1/ u2 = −2u

u2 −1 and b(u−1) = 0,

we �nd that

2
u −

1
u2 a(u

−1) = 2u
u2 −1 and b(u−1)

u4 = 0 and so the DE becomes

d2 y
d u2 + 2u

u2 −1
dy
du = 0.

Recognizing that the transformed DE is still Legendre’s equation of order zero, we can
write down two linearly independent solutions without further ado:

y1(u−1) = 1 and y2(u−1) = u +
u3
3 + u

5

5 + . . . for |u| < 1.

Transforming back, this means that the original DE has the solutions

y1(x) = 1 and y2(x) =
1
x + 1

3x +
1
5x + . . . =

∞∑
m=0

x−(2m+1)
2m + 1 for |x| > 1.

Evidently, y1(x) is just P0(x) while y2(x) may be identi�ed with Q0(x). Thus, we have
found the representation we were seeking and, of course, it sums to 1

2 ln
( x+1
x−1
)
.

As a second example, consider the DE

x4 d
2 y
d x2 + 2 x3 dydx − y = 0

which has an irregular singular point at x = 0. Substituting u = 1
x , we �nd

2
u −

1
u2 a(u

−1) = 2
u −

1
u2 · 2u = 0,

and
1
u4 b(u

−1) = 1
u4 (− u

4) = −1

so that the transformed DE reads

d2 y
d u2 − y = 0.
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This has constant coe�cients and can be readily solved. The result is

y1(u−1) = eu =
∞∑
m=0

um
m! and y2(u−1) = e−u =

∞∑
m=0

(−1 )m um
m! .

Thus, transforming back to x = u−1, the solutions of our original DE are

y1(x) = e
1
x =

∞∑
m=0

x−m
m! and y2(x) = e−

1
x =

∞∑
m=0

(−1 )m x−m
m! , |x| > 0.

9.8.2 Factorization of the Behaviour at In�nity

In appropriate units, the Schrodinger equation for a one-dimensional harmonic oscil-
lator reduces to

d2 y
d x2 + (λ − x2)y = 0, λ = a real constant. (9.8.4)

This equationhas an irregular singular point at in�nity and its solutionshave essential
singularities there. In fact, for large values of x and all values of λ, the DE is approxi-
mated by the equations

d2 y
d x2 − (x

2 ±1)y = 0

whose solutions are y(x) = e±
x2
2 . Therefore, it is plausible to expect the solutions

of (9.8.4) to behave like either e
x2
2 or e−

x2
2 as x → ∞. However, to be physically ac-

ceptable, solutions must be bounded everywhere. To ensure that we comply with this
(boundary) condition, we factor in the desired behaviour at in�nity and set y(x) =
v(x) e−

x2
2 . The DE is then transformed into a simpler DE for v(x):

d2 v
d x2 − 2x

dv
dx + (λ − 1)v = 0. (9.8.5)

This is known as the Hermite equation. It has an ordinary point at the origin and so
both of its linearly independent solutions can be represented by Taylor series about
x = 0. Both of these series behaves like ex

2
for large x. However, as with the Legendre

DE, we can arrange to have one of the series terminate and become a polynomial of
degree n by restricting λ to the the integer values λ = 2n + 1, n = 0, 1, 2, . . .. With
appropriate normalization, this solution de�nes the Hermite polynomial of order
n and is denoted by Hn(x). Thus, the physically acceptable solution of (9.8.4), (the
wavefunction of a one-dimensional harmonic oscillator in its nth energy level), is

y(x) = e−
x2
2 Hn(x).

Explicitly solving (9.8.5) provides a useful exercise. We start with the usual as-
sumption for an expansion about an ordinary point:

v(x) =
∞∑
m=0

cm xm , c0 ≠ 0.
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Substitution into the DE then yields
∞∑
m=0

cm m(m − 1) xm−2 +
∞∑
m=0

cm(λ − (2m + 1)) xm = 0.

Equating coe�cients of successive powers of x to zero, we �nd that c0 and c1 are ar-
bitrary and that all coe�cients cm are linked by the recurrence relation

cm+2 =
(2m + 1) − λ
(m + 2)(m + 1) cm .

This yields the general solution

v(x) = c0
[
1 + 1 − λ

2! x2 +(1 − λ)(5 − λ)4! x4 + . . .
]
+c1

[
x + 3 − λ

3! x3 +(3 − λ)(7 − λ)5! x5 + . . .
]
.

For a speci�c set of values of λ, λ = 2n + 1, n = 0, 1, 2, . . . , one of these series ter-
minates after the xn term and, suitably normalized, yields the Hermite polynomial,
Hn(x). The large x behaviour of the other series is determined by the higher order
terms, those with m � n. For such large m, the recurrence relation is approximately

cm+2
cm

≈ 2
m

which is the relation satis�ed by the coe�cients in the Taylor series expansion of ex
2
.

Thus, the corresponding solution of (9.8.4) behaves like y(x) ≈ e
x2
2 as x →∞.

9.8.3 Changing the Independent Variable

If we make the substitution x → t = T(x), the DE

d2 y
d x2 + a(x)dydx + b(x)y = 0 (9.8.6)

becomes

[T′(x) ]2 d
2 y
d t2

+ [T′′(x) + a(x)T′(x)]dydt + b(x)y = 0. (9.8.7)

One can now choose T(x) to simplify the transformed equation and thereby obtain a
DE that (one hopes) is easier to solve. The obvious choice is to require

d2 T
d x2 + a(x)dTdx = 0,

or
dT
dx = exp

−
x∫
a(ξ )dξ

 ,
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or

T(x) =
x∫
exp

−
ζ∫
a(ξ )dξ

 dζ (9.8.8)

so that we eliminate the second term in (9.8.7).
Example: The Euler equation

x2 d
2 y
d x2 + x dydx + y = 0 (9.8.9)

can be simpli�ed by setting

t = T(x) =
x∫
exp

−
ζ∫
1
ξ dξ

 dζ =
x∫
dζ
ζ = ln x

or, x = et . Under this transformation the DE becomes(
1
x

)2
d2 y
d t2

+ 1
x2 y = 0 or d2 y

d t2
+ y = 0

whose solutions are y1(t) = cos t and y2(t) = sin t. Therefore, two linearly independent
solutions of the Euler equation are

y1(x) = cos(ln x) and y2(x) = sin(ln x). (9.8.10)

The Euler equation can be solved almost as quickly using the Frobenius method. As
an exercise, show that this yields an equivalent linearly independent pair, y1(x) = xi

and y2(x) = x−i .

9.8.4 Changing the Dependent Variable

Factoring the behaviour at in�nity illustrated the utility of replacing the dependent
variable y(x) by a product u(x) · v(x) where u(x) is a known function or a function that
can be selected with the express purpose of simplifying the resulting DE for v(x). In
fact, making the substitution y(x) = u(x) · v(x) in

d2 y
d x2 + a(x)dydx + b(x)y = 0

we obtain

uv′′ + (2u′ + a(x)u)v′ + (u′′ + a(x)u′ + b(x)u)v = 0. (9.8.11)

At this point we need to know the functional dependence of a(x) and b(x) if we are
to make the optimal choice for the function u(x). However, one simpli�cation that
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can always be achieved is to eliminate the second term in (9.8.11) because that simply
requires

2dudx + a(x)u = 0 or u(x) = exp

−
x∫
a(ξ )dξ

 . (9.8.12)

The DE for v(x) then becomes

d2 v
d x2 −

(
b(x) − 1

2
da
dx −

1
4[a(x) ]

2
)
v = 0. (9.8.13)

With just two terms in this DE, one can more readily estimate the behaviour of its so-
lutions at in�nity which turns out to be the principal application of this technique.
Example: The equation x2 y′′ + 2xy′ + (x2 −2)y = 0 is a variant of Bessel’s DE called
the spherical Bessel equation of order two. If we divide through by x2 it becomes

d2 y
d x2 + 2

x
dy
dx +

(
1 − 2

x2

)
y = 0.

The large x behaviour of the solutions of this equation is not apparent. However, if we
make the substitution y(x) = u(x) · v(x) where u(x) is de�ned by (9.8.12),

u(x) = exp

−12
x∫
2
ξ dξ

 = exp{− ln x} = 1
x ,

then v(x) is a solution of
d2 v
d x2 +

(
1 − 2

x2

)
v = 0

which is approximated by v′′ + v = 0 for large values of |x|. This implies that v(x)
behaves like cos x or sin x asymptotically and hence that y(x) ≈ cos x

x or sin x
x as |x| →

∞. The exact solutions for v(x) can be found by a straightforward application of the
Frobenius method. The result is v1(x) = cos x − sin x

x and v2(x) = sin x + cos x
x which do

indeed behave like cos x and sin x for large |x|.

9.9 Solution by De�nite Integrals

This Section will pull together a couple of loose ends from earlier chapters. We have
seen that integral representations o�er an alternative to representation by power se-
ries and that they are often more useful because of a larger domain of de�nition and
because they provide a basis from which still other representations such as asymp-
totic expansions can be derived. We have also seen that Fourier and Laplace trans-
forms o�er a particularly e�ective means of solving a specialized class of di�erential
equations accompanied by appropriate boundary conditions. And of course the result
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of their application is solutions expressed as Fourier and Laplace integrals. All of this
suggests that we should explore the possibility of a general method of solving DE’s
based on the representation of the solutions as de�nite integrals.

We start by introducing an operator notation that will turn out to be very conve-
nient both here and in Chapter 10 where we address boundary value problems in a
formal way. In this notation the DE

a2(x)d
2 y
d x2 + a1(x)

dy
dx + a0(x)y = 0 (9.9.1)

becomes

Lx y(x) = 0 where Lx ≡ a2(x) d
2

d x2 + a1(x)
d
dx + a0(x) (9.9.2)

and is called adi�erential operator. It indicates the operations involved in obtaining
the di�erential equation but is itself only symbolic. Notice that we have abandoned
our usual convention of taking the coe�cient of the highest derivative to be one. This
is for ease of discussion later on and has no fundamental signi�cance.

For any such operator Lx and a speci�c interval α ≤ x ≤ β, one can de�ne an
adjoint L+

x with respect to a weight function w(x) by the requirement that for any
su�ciently di�erentiable functions u(x) and v(x),

w(x)[v(x)Lx u(x) − u(x)L+
x v(x)] =

d
dx Q(u, v) (9.9.3)

where Q(u, v) is a bilinear combination of u(x), v(x), dudx and dv
dx and w(x) is some func-

tion that is positive de�nite on the interval in question. Thepreceding sentence is quite
a mouthful. Put more succinctly, it simply requires the left hand side of (9.9.3) be a
perfect di�erential so that L+

x can be determined by a process of partial integration.
We will illustrate with an example as soon as we introduce some more nomenclature.
Equation (9.9.3) is called the Lagrange identity and if we integrate it over the interval
α ≤ x ≤ β, we obtain the generalized Green’s identity

β∫
α

[v(x)Lx u(x)]w(x)dx −
β∫
α

[u(x)L+
x v(x)]w(x)dx = Q(u, v)

∣∣
x=β − Q(u, v)

∣∣
x=α . (9.9.4)

The right hand side of this equation is called the boundary or surface term.
Joseph-Louis Lagrange (1736-1813) was born Giuseppe Lodovico Lagrangia in Turin.

Although he did not take up residence in France until 1787 at the age of 51, he is generally
considered to have been a French mathematician and physicist. Indeed, after surviving
the French Revolution, his accomplishments were recognized by Napoleon who made
him a Count of the Empire. When he died at age 77, he was buried in the Panthéon in
Paris. Lagrange made signi�cant contributions to analysis and number theory but he is
most noted for his work in classical mechanics. His two volume monograph on analyti-
cal mechanics, published in 1788, was the most comprehensive presentation of classical
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mechanics since Newton. It provided a foundation for the development of mathematical
physics over the next century.

George Green (1793-1841) was an English miller and a self-taught mathematician
and physicist. In 1828, four years prior to his admission as a mature undergraduate at
Cambridge, he published a treatise that contained the �rst mathematical theory of elec-
tricity and magnetism. Like Lagrange’s famous treatise, this provided a foundation for
the work of subsequent phyicists such as Maxwell and Lord Kelvin.
Example: The simplest di�erential operator possible is just Lx = d

dx . A single partial
integration applied to the product u(x)Lx v(x) = u(x) dvdx gives us

β∫
α

v(x)dudx dx −
β∫
α

u(x)
[
−dvdx

]
dx = u(β)v(β) − u(α)v(α).

Comparing with (9.9.4), we deduce that the adjoint of Lx = d
dx with respect to a weight

w(x) = 1 is L+
x = − d

dx and that the function Q(u, v) = u(x)v(x). Notice that L+
x ≠ Lx .

If they had been equal, we would say that the operator Lx is self-adjoint. As it turns
out one can convert d

dx into a self-adjoint operator by the simple expedient of multi-
plication by the pure imaginary i.

When complex functions are involved, the products in the Lagrange identity have
to be modi�ed accordingly and (9.9.4) becomes

β∫
α

[v*(Lx u)]wdx −
β∫
α

[u(L+
x v )*]wdx = Q(u, v*)

∣∣∣
x=β
− Q(u, v*)

∣∣∣
x=α

. (9.9.5)

Applying this to Lx = i ddx , we have

β∫
α

v*
[
i dudx

]
dx −

β∫
α

u
[
i dvdx

]*
dx = i[u(β) v*(β) − u(α) v*(α)].

Thus, L+
x = i ddx = Lx , which con�rms that this operator is self-adjoint with respect to

the weight w(x) = 1.
Finding the adjoint is just as straight forward but somewhat more tedious as one

increases the order of the di�erentials in the operator Lx . In the case of the second
order operator with real coe�cients,

Lx = a2(x) d
2

d x2 + a1(x)
d
dx + a0(x), (9.9.6)

one can show that the adjoint, with respect to weight w(x) = 1, is

L
+
x = a2(x) d

2

d x2 + (2 a′2(x) − a1(x))
d
dx + (a

′′
2 (x) − a′1(x) + a0(x)). (9.9.7)
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Wenote in passing that theLx of (9.9.6) becomes self-adjointwith respect to theweight
function

w(x) = 1
a2(x)

exp


x∫
a1(ξ )
a2(ξ )

dξ

 . (9.9.8)

As we saw in Section 5.3, an integral representation of a solution of our DE would
take the form (cf. equation (5.3.2))

y(z) =
∫
C

K(z, t)v(t)dt

for some kernel K(z, t) and spectral function v(t). Specializing to real variables and
choosing C to be the real line segment α ≤ t ≤ β, this becomes

y(x) =
β∫
α

K(x, t)v(t)dt. (9.9.9)

Substitution into the DE (9.9.1) results in

Lx y(x) =
β∫
α

[Lx K(x, t)]v(t)dt (9.9.10)

and so the �rst question to address is what can we do with Lx K(x, t) short of assum-
ing an explicit functional form for the kernel K(x, t)? The answer is to assume the
existence of a di�erential operator in t, Mt , such that

Mt K(x, t) = Lx K(x, t). (9.9.11)

Then, applying the Lagrange identity to Mt and its adjoint, we have

v(t)[Mt K(x, t)] − K(x, t)[M+
t v(t)] =

∂
∂t Q(K, v) (9.9.12)

where Q(K, v) is a bilinear function of K(x, t), v(t), and their derivatives. This means
that

Lx y(x) =
β∫
α

[Mt K(x, t)]v(t)dt =
β∫
α

K(x, t)M+
t v(t)dt + Q(K, v)

∣∣t=β
t=α . (9.9.13)

Therefore, y(x) will be a solution of Lx y(x) = 0 if
1. Q(K, v)

∣∣
t=b − Q(K, v)

∣∣
t=a = 0, and

2. v(t) is a solution of the (adjoint) equation
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M+
t v(t) = 0. (9.9.14)

Evidently, the success of this approach rests on the relative ease of solving (9.9.14) in
comparison with (9.9.1). This in turn depends on a judicious matching of the kernel
K(x, t) to the di�erential operator Lx . We shall illustrate this point with a few exam-
ples.

Aswe saw in the last chapter, Laplace Transforms are an e�ectivemeans of solving
DE’s with coe�cients that are either constant or at worst, linear functions of x. In the
present context, this suggests that choosing the kernel

K(x, t) = ext

should be useful. Not surprisingly, this is called the Laplace kernel.
Because of the unique properties of the exponential, it is particularly easy to

match up any Lx with its Mt counterpart. In fact, one merely replaces each power xi

with the di�erential di
d ti and each di�erential dj

d xj by the power tj . For speci�city, let’s
consider the DE

Lx y(x) ≡ x d
2 y
d x2 + (a + b + x)dydx + by = 0 (9.9.15)

where a and b are constants. Making the prescribed replacements, we have

Mt v(t) = t2
dv
dt + (a + b)tv + t

dv
dt + bv = t(t + 1)

dv
dt + [(a + b)t + b]v. (9.9.16)

Therefore, from (9.9.7), the adjoint equation that we must solve is

M+
t v(t) = −t(t + 1)

dv
dt + [(a + b − 2)t + b − 1]v = 0. (9.9.17)

In addition, the Lagrange identity (9.9.12) is

vMt K − KM+
t v =

∂
∂t [t(t + 1)vK]. (9.9.18)

The �rst order DE (9.9.17) can be rewritten as

1
v(t)

dv
dt =

(a + b − 2)t + b − 1
t(t + 1) = b − 1t + a − 1t + 1 .

Thus, integrating and exponentiating, we �nd that it has the solution

v(t) = tb−1(t + 1 )a−1 . (9.9.19)

This means that the right hand side of the Lagrange identity is

∂
∂t Q(v, K) =

∂
∂t [t

b(t + 1 )a ext]

and hence, the solution of the original DE (9.9.15) is

y(x) =
β∫
α

ext tb−1(t + 1 )a−1 dt (9.9.20)
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where α and β are chosen so that

ext tb(t + 1 )a
∣∣∣
t=β
− ext tb(t + 1 )a

∣∣∣
t=α

= 0. (9.9.21)

Rather than complete the solution by making an appropriate choice for α and β,
we shall pause to consider what would happen if we just used the Laplace Transform
techniques of the preceding chapter. Using the notation of that chapter, Laplace trans-
formation of the DE (9.9.15) gives us

−s(s + 1)dYds + [(a + b − 2)s + b − 1]Y(s) − (a + b − 1)y(0) = 0. (9.9.22)

We do not kow the value of y(0) and so we shall set it to zero arbitrarily. The result is
a DE that is identical to the adjoint equation (9.9.17) but with t replaced by s and v(t)
by Y(s). Therefore, we know that it has the solution

Y(s) = sb−1(s + 1 )a−1 .

The next and last step is to invert the transform which, as we have seen can be done
with the Mellin inversion integral. Thus, we �nd

y(x)θ(x) = 1
2πi

c+i∞∫
c−i∞

esx sb−1(s + 1 )a−1 ds (9.9.23)

which, apart from the multiplicative constant, is the same as our solution (9.9.20) but
with a speci�c choice for the integration limits α and β. Recall that c is any real number
greater than the exponential order of y(x). We do not know what that is of course but
the requirement that the integral vanish for x < 0 implies that c > 0. By inspection
we can see that the surface term (9.9.21) will vanish with these limits only if a + b <
0. Presumably, the same constraint applies to the domain of de�nition of the Mellin
integral (9.9.23). Thus, Laplace transformation, while similar, is less general than the
assumptionof an integral representationwith aLaplace kernel. The latter requires less
input knowledge and is subject to fewer restrictions on both the independent variable
x and the parameters a and b.

Continuingwherewe left o� in the solution by integral representation,wenow list
pairs of values for α and β that will result in the vanishing of the surface term (9.9.21):
1. α = −1 and β = 0 (a > 0, b > 0),
2. α = −∞ and β = 0 (x > 0, b > 0),
3. α = −∞ and β = −1 (x > 0, a > 0),
4. α = 0 and β = ∞ (x < 0, b > 0),
5. α = −1 and β = ∞ (x < 0, a > 0).

Thus, for example, when a, b and x are all positive, the general solution of (9.9.15) can
be written

y(x) = c1
0∫

−1

ext tb−1(t + 1 )a−1 dt + c2
−1∫

−∞

ext tb−1(t + 1 )a−1 dt (9.9.24)
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where c1 and c2 are arbitrary constants.
Our second example involves DE’s in which the coe�cient of d

m y
d xm is a polynomial

in x of degree m. Such equations can always be expressed as, (this generalizes in an
obvious way for DE’s of order higher than 2),

Lx y(x) ≡G0(x)d
2 y
d x2 − µ G

′
0(x)

dy
dx +

µ(µ + 1)
1 · 2 G′′0 (x)y − G1(x)

dy
dx + (µ + 1)G

′
1(x)y

+ G2(x)y = 0 (9.9.25)

where µ is a constant and Gj(x) is a polynomial of degree 2 − j. Such equations can be
solved by using the Euler kernel, K(x, t) = (x − t )µ+1 since this results in

Lx[(x − t )µ+1] = CMt[(x − t )µ+p−1] (9.9.26)

where C is a constant, p is the largest value for which Gp(x) is non-zero, and

Mt ≡ G0(t) d
p

d tp
+ G1(t) d

p−1

d tp−1
+ . . . + Gp(t). (9.9.27)

Thus, if G2(x) = 0, Mt will be of �rst order and so will the adjoint equation

M+
t v(t) = 0.

Notice that in this case the kernel K(x, t) does not satisfy equation (9.9.11),
Lx K(x, t) = Mt K(x, t), but rather a generalization of it: Lx K(x, t) = Mt κ(x, t) where
κ(x, t) = C(x − t )µ+p−1 . Thus, assuming a representation of the form

y(x) =
β∫
α

(x − t )µ+1 v(t)dt, (9.9.28)

we obtain

Lx y(x) = C
β∫
α

Mt[(x − t )µ+p−1]v(t)dt = C
β∫
α

(x − t )µ+p−1M+
t v(t)dt +

[
Q(κ, v)

]t=β
t=α .

(9.9.29)

Therefore, (9.9.28) will be a solution of Lx y(x) = 0 if v(t) is a solution of the adjoint
equation M+

t v(t) = 0 and if α and β are so chosen that
[
Q(κ, v)

]t=β
t=α = 0.

To illustrate, we recall that the Legendre DE �ts the description prescribed for this
type of kernel. It reads

Lx y(x) = (1 − x2)d
2 y
d x2 − 2x

dy
dx + l(l + 1)y = 0.

Thus, using the notation introduced above, we have

G0(x) = 1 − x2
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µ G′0(x) + G1(x) = 2x
1
2µ(µ + 1)G

′′
0 (x) + (µ + 1)G′1(x) + G2(x) = l(l + 1).

Since G′0(x) = −2x, G1(x) = 2(µ+1)x. This means G′′0 (x) = −2 and G′1(x) = 2(µ+1) and
so the third equation becomes

(µ + 1)(µ + 2) + G2(x) = l(l + 1)

which is consistent with G2(x) = 0 provided that µ = l − 1 or µ = −l − 2. Therefore, p
is indeed equal to one and the di�erential operator Mt is

Mt ≡ (1 − t2) ddt + 2(µ + 1)t.

This yields an adjoint equation of the form

M+
t v(t) = (1 − t2)dvdt − 2(µ + 2)tv = 0.

Rewriting this as
1
v(t)

dv
dt =

2(µ + 2)t
1 − t2

,

we integrate and exponentiate to �nd v(t) = (1 − t2 )−µ−2 .
The surface term can be found from

∂
∂t Q(κ, x) = v(t)Mt κ(x, t) − κ(x, t)M+

t v(t) = v(t)Mt κ(x, t) = C
∂
∂t [(x − t )

µ(1 − t2 )−µ−1].

Thus, we require values of α and β such that[
(x − t )µ(1 − t2 )−µ−1

]t=β
t=α

= 0.

Using the value µ = −l − 2 with l ≥ 0 and assuming |x| ≠ 1, Q(κ, x) = 0 when
t = ±1. Therefore, we set α = −1 and β = 1 and obtain the function

y(x) =
1∫

−1

(x − t )−l−1(1 − t2 )l dt

as a solution of Legendre’s equation. As a matter of fact, this is an integral represen-
tation of the Legendre function of the second kind, Ql(x):

Ql(x) =
1
2l+1

1∫
−1

(x − t )−l−1(1 − t2 )l dt.

As a �nal example we return to Bessel’s equation which reads

Lx y(x) ≡ d2 y
d x2 + 1

x
dy
dx +

(
1 −

µ2
x2

)
y = 0.
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This does not �t into a class of DE’s associated with any of the standard kernels or
transformations. However, it has been found by experiment that the kernel

K(x, t) =
( x
2

)µ
exp

(
t − x

2

4t

)
is e�ective in producing a solution. In fact, one can readily show that

Lx K(x, t) =
(
∂
∂t +

µ + 1
t

)
K(x, t)

and so, we identify

Mt ≡
d
dt −

µ + 1
t .

This means the adjoint equation is

M+
t v(t) = −

dv
dt −

µ + 1
t v = 0

which has the solution
v(t) = t−µ−1 .

Therefore, a solution of Bessel’s equation is

y(x) =
( x
2

)µ β∫
α

t−µ−1 e(t−x
2 /4t) dt (9.9.30)

where α and β are chosen so that

Q(K, v)
∣∣t=β
t=α =

[
t−µ−1 e(t−x

2 /4t)
( x
2

)µ]t=β
t=α

= 0. (9.9.31)

The only pair of points that quali�es is t = 0 and t → −∞. Thus, we �nd as a solution,

y(x) =
( x
2

)µ 0∫
−∞

t−µ−1 exp
(
t − x

2

4t

)
dt. (9.9.32)

This is not quite equal to the Bessel function Jµ(x). As we will show in Chapter 11,
the latter can be represented by the closely related contour integral

Jµ(z) =
1
2πi

( z
2

)µ ∫
C

t−µ−1 exp
(
t − z

2

4t

)
dt (9.9.33)

where −π < arg t < π and C is a contour that encloses the cut along the negative real
axis.

When µ is an integer, µ = m, the contour C can be closed around the origin. This is
an obvious generalization of the real de�nite integral (9.9.30) subject to the constraint
(9.9.31) since, by using a contour that does not cross the cut, we are assured that∫

C

d
dt Q(K, v)dt =

∫
C

d
dt

[
t−µ−1 exp

(
t − z

2

4t

)]
dt = 0.
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9.10 The Hypergeometric Equation

Gauss’s hypergeometric di�erential equation is

x (1 − x) y′′ + [c − (a + b + 1)x]y′ − aby = 0 (9.10.1)

where a, b, c are constants. It has regular singular points at x = 0, 1 and ∞.
Attempting a series solution about the origin produces an indicial equation with

roots 0 and 1 − c. Thus there is a solution y1that has a Taylor series expansion about
the origin and which can be normalized to unity. It is

y1 (x) = 1 + ab
1!c x +

a (a + 1) b (b + 1)
2!c (c + 1)

x2 + . . .

or

y1 (x) =
Γ(c)

Γ (a) Γ(b)

∞∑
n=0

Γ (a + n) Γ(b + n)
Γ (c + n) Γ(n + 1)

xn , c ≠ 0, −1, −2, . . . . (9.10.2)

This series is called the hypergeometric series. Its sum is denoted by F(a, b; c; x)
and is called the hypergeometric function. Note that the expansion of F (1, b; b; x)
is just the geometric series which explains the use of the term “hypergeometric”.

If 1 − c ≠ an integer, a second solution of (9.10.1) is of the form

x1−cu(x)

where u (x) has a Taylor series expansion about the origin. Substituting into (9.10.1)
yields a di�erential equation for u (x):

x (x − 1) u′′ + [(a + b − 2c + 3)x + c − 2]u′ + (a − c + 1) (b − c + 1) u = 0.

Comparing this with (9.10.1) shows that u (x) is itself the hypergeometric function

F (b − c + 1, a − c + 1; 2 − c; x) .

Therefore, when c − 1 is not an integer, the general solution of (9.10.1) is a linear com-
bination of F (a, b; c; x) and x1−cF (b − c + 1, a − c + 1; 2 − c; x) .

The importance of the hypergeometric function F (a, b; c; x) stems from its gener-
ality. A great many functions can be written in terms of it. For example,

F (−a, b; b; −x) = (1 + x)a and F (1, 1; 2; −x) = ln (1 + x)
x .
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Also, by making the substitutions a = −l, b = l + 1, c = 1 and x → 1−x
2 we see that

(9.10.1) becomes Legendre’s equation(
1 − x2

) d2y
dx2 − 2x

dy
dx + l(l + 1)y = 0.

Thus, the Legendre polynomial Pl (x) = F
(
−l, l + 1; 1; 1−x2

)
.

To relate Bessel functions to the hypergeometric function we must accompany a
substitution with a limiting process that results in the singularity at x = 1 coalescing
with that at in�nity. Speci�cally, we make the substitution x → x/b so that (9.10.1)
becomes

x (x − b) y′′ + [cb − (a + b + 1)x]y′ − aby = 0.

Dividing through by x − b and taking the limit as b →∞, this simpli�es to

x d
2y
dx2 + (c − x) dydx − ay = 0 (9.10.3)

which is called the con�uent hypergeometric equation. It is important to note that
the point at in�nity is now an irregular singular point.

The roots of the indicial equation corresponding to the regular singular point at
the origin continue to be 0 and 1 − c. Thus, there is a solution that has a Taylor series
expansion about the origin and can be normalized to unity. By convention, this solu-
tion is denoted by Φ (a, c; x) and called the con�uent hypergeometric function.

We shall use this as an opportunity to illustrate the method of de�nite integrals
and in so doing obtain an integral representation of Φ (a, c; x).

Comparison of (9.10.3) with (9.9.15) suggests that we again try the Laplace kernel
K (x, t) = ext and seek a solution of (9.10.3) of the form

y (x) =
β∫
α

extv (t) dt.

Making the replacements prescribed in Section 9.9 we �nd the di�erential operator

Mt = t (t − 1)
d
dt + (ct − a)

and so v (t) must be a solution of the adjoint equation

M+
t v (t) = −t (t − 1)

dv
dt (2t − 1) v (t) + (ct − a) v (t) = 0

where M+
twas obtained by an application of (9.9.7). This gives us

1
v(t)

dv
dt =

(c − 2) t + 1 − a
t(t − 1) or

1
v(t)

dv
dt =

a − 1
t + c − a − 1t − 1 .
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Integrating, we have
v (t) = kta−1(1 − t)c−a−1

where k is an integration constant and we have anticipated that 0 ≤ t ≤ 1.
The end-points of the integral must be chosen so that the surface term

Q [K, v] |βα = t (t − 1) v (t) ext|
β
α = −kta(1 − t)

c−aext|βα = 0.

Here we have used the Lagrange identity to obtain Q [K, v]:

∂
∂t Q [K, v] = vMtK − KM+

t v =
∂
∂t

[
t (t − 1) v (t) ext

]
.

If c > a > 0, this will happen with∝= 0 and β = 1. Therefore, we obtain the solution

y (x) = k
1∫

0

ext ta−1(1 − t)c−a−1dt.

At x = 0 this becomes

y (0) = k
1∫

0

ta−1(1 − t)c−a−1dt = k Γ (a) Γ(c − a)
Γ(c)

where we have used Euler’s Integral of the �rst kind. Therefore, the solution that is
normalized to unity has

k = Γ(c)
Γ (a) Γ(c − a)

and is the con�uent hypergeometric function

Φ (a, c; x) = Γ(c)
Γ (a) Γ(c − a)

1∫
0

ext ta−1(1 − t)c−a−1dt, c > a > 0. (9.10.4)

Replacing ext by its Taylor series, (9.10.4) becomes

Φ (a, c; x) = Γ(c)
Γ (c − a) Γ(a)

∞∑
n=0

xn
Γ(n + 1)

1∫
0

ta+n−1(1 − t)c−a−1dt.

But a second application of Euler’s Integral gives us

1∫
0

ta+n−1(1 − t)c−a−1dt = Γ (a + n) Γ(c − a)
Γ(c + n) .

Therefore,

Φ (a, c; x) = Γ(c)
Γ(a)

∞∑
n=0

Γ(a + n)
Γ (c + n) Γ(n + 1)

xn (9.10.5)
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which is called the con�uent hypergeometric series. As one would expect, this can
be obtained from the hypergeometric series (9.10.2) by making the substitution x →
x/b and taking the limit b →∞,

Φ (a, c; x) = lim
b→∞

F(a, b; c; xb ).

An interesting special case of (9.10.4) occurs for a = 1
2 , c =

3
2 and x → −x2:

Φ
(
1
2 ,

3
2; −x

2
)
= 1
2

1∫
0

e−x
2 t t−

1
2 dt.

Changing the variable of integration to u where u2 = x2t, this becomes

Φ
(
1
2 ,

3
2; −x

2
)
= 1
x

x∫
0

e−u
2
du = 1

x erf (x)

where erf (x) is the error function.
But what is the connection with Bessel’s equation and Bessel functions? A little

work is required to transform

d2y
dx2 + 1

x
dy
dx +

(
1 − µ

2

x2

)
y = 0

into the con�uent hypergeometric form. Speci�cally, we have to set

y (x) = xµe−ixu(x)

and substitute into Bessel’s equation to obtain

x d
2u
dx2 + [(2µ + 1) − 2ix] dudx − i (2µ + 1) u = 0.

Comparing this with (9.10.3) we see that a solution for u (x) is

Φ
(
2µ + 1
2 , 2µ + 1; 2ix

)
.

Therefore, a solution of Bessel’s equation must be

xµe−ixΦ(2µ + 12 , 2µ + 1; 2ix)

which, when multiplied by 1
2µ

1
Γ(µ+1) , yields the same power series as we obtained for

Jµ (x) . Thus,

Jµ (x) =
1

2µΓ(µ + 1) x
µe−ixΦ

(
2µ + 1
2 , 2µ + 1; 2ix

)
. (9.10.6)

Other special functions that can be expressed in terms of con�uent hypergeometric
functions include both the Hermite and the Laguerre polynomials.
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10 Partial Di�erential Equations and Boundary Value
Problems

10.1 The Partial Di�erential Equations of Mathematical Physics
Almost all of classical physics and a signi�cant part of quantum physics involves

only three types of partial di�erential equation (or PDE). These are
– Laplace’s / Poisson’s equation∇2 ψ(r) =σ(r),
– the di�usion / heat conduction equation D∇2 ψ(r, t) − ∂ψ

∂t =σ(r, t), and
– the wave equation∇2 ψ(r, t) − 1

c2
∂2 ψ
∂ t2 =σ(r, t).

In each case σ represents a “source” or “sink” of the scalar �eld ψ; if it is zero, which
happens inmany applications, the equations become homogeneous. Familiar exam-
ples are provided by Maxwell’s equations expressed in terms of the potentials A and
Φ. In SI units these reduce to the wave equation

∇2 A − 1
c2

∂2 A
∂ t2

= − µ0 j and ∇2 Φ − 1
c2
∂2 Φ
∂ t2

= − ρε0

or, in the event of time independence, to Poisson’s equation.
Pierre-Simon Laplace (1749-1827) was a French mathematician whose work was

central to the development of both astronomy and statistics. Among his many accom-
plishments, he derived the equation and introduced the transform that bear his name.
The Poisson equation (and distribution) are named after Simeon Denis Poisson (1781-
1840) who was one of Laplace’s students. Bonaparte made Laplace a count of the Em-
pire in 1806. Demonstrating that he too could recognize genius, Louis-Phillipe made him
a marquis in 1817, after the restoration of the monarchy.

What distinguishes the di�erent physical phenomena that are described by any
one of these equations are the identity of the scalar �eld ψ (i.e. whether it is an elec-
trostatic potential, a temperature, a density, a transverse displacement of a vibrating
medium, or what have you) and the boundary conditions and, where time is an in-
dependent variable, the initial conditions that are imposed on it. Indeed, it is only
when a partial di�erential equation is accompanied by such conditions that it will
admit a unique solution.

The impact of boundary conditions ormore precisely of the geometrical character
of the boundaries is �rst experienced in the choice of coordinate system to use when
ψ is de�ned on a multi-dimensional space. It is enormously convenient to be able to
specify the boundary of the domain or region of de�nition by means of �xed values
of one or more of the coordinates. Thus, for example, if the boundary is a rectangular
box,which canbe speci�ed by x = a and b, y = c and d, z = e and f , where a, b, c, d, e
and f are constants, one should choose Cartesian coordinates; if it is a sphere, which
can be speci�ed by r = a constant, 0 6 θ 6 π, 0 6 φ 6 2π, use spherical polars;
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and if it is a cylinder, corresponding to ρ = R, z = a and b, 0 6 φ 6 2π, where R, a
and b are constants, cylindrical polars are the obvious choice. Consequently, we need
to be able to express the∇2 di�erential operator in any type of curvilinear coordinate
system.

10.2 Curvilinear Coordinates

A point in space can be described by any three independent parameters (u1, u2, u3).
To move in either direction between such a system of coordinates and the Cartesian
system, there must be some de�nite functional relationship relating the two sets of
coordinates at any point:

x = f1(u1, u2, u3), y = f2(u1, u2, u3), z = f3(u1, u2, u3) (10.2.1)

and

u1 = F1(x, y, z), u2 = F2(x, y, z), u3 = F3(x, y, z). (10.2.2)

The three coordinate surfaces ui = aconstant can be drawn. If the orientations of these
surfaces change from point to point, the ui are called curvilinear coordinates and if
the three surfaces aremutually perpendicular everywhere, they are calledorthogonal
curvilinear coordinates.

At any point, speci�ed by the radius vector from the origin r= xi+yj+zk, we can
construct unit vectors ei normal to the surfaces ui = a constant by means of

ei ≡
∂r/∂ ui
|∂r/∂ ui |

. (10.2.3)

These clearly form an orthogonal system when the coordinates are orthogonal. The
quantities

hi = |∂r/∂ ui | =

√(
∂x
∂ ui

)2
+
(
∂y
∂ ui

)2
+
(
∂z
∂ ui

)2
(10.2.4)

are called scale factors and depend upon the position of r in space.
Consider a small displacement dr= dxi+dyj+dzk. Its curvilinear components can

be read o� from

dr= ∂r
∂ u1

d ui +
∂r
∂ u2

d u2 +
∂r
∂ u3

d u3 = h1 d ui e1 + h2 d u2 e2 + h3 d u3 e3 . (10.2.5)

Let us assume that the curvilinear system is orthogonal. The line element or element
of arc length is then given by the square root of

d s2 = dr · dr= h21 (d u1 )
2 + h22 (d u2 )

2 + h23 (d u3 )
2 . (10.2.6)
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In addition, the volume element, the volume of the parallelepiped formed by the
surfaces

u1 = c1, u1 = c1 +d u1, u2 = c2, u2 = c2 +d u2, u3 = c3, u3 = c3 +d u3,

is

dV = h1 h2 h3 d u1 d u2 d u3 . (10.2.7)

To express gradψ in terms of curvilinear coordinates we start with

(gradψ) · dr= dψ ≡ ∂ψ
∂ u1

d u1 +
∂ψ
∂ u2

d u2 +
∂ψ
∂ u3

d u3

and rewrite it in the form

(gradψ) · dr=
(

1
h1

∂ψ
∂u1

)
h1 d u1 +

(
1
h2

∂ψ
∂u2

)
h2 d u2 +

(
1
h3

∂ψ
∂u3

)
h3 d u3 .

It follows immediately that

gradψ = 1
h1

∂ψ
∂ u1

e1 +
1
h2

∂ψ
∂ u2

e2 +
1
h3

∂ψ
∂ u3

e3 . (10.2.8)

To determine the divergence of a vector �eld A we make use of the de�nition

∇·A ≡ lim
∆V→0

∫
∆S A·ds
∆V = lim

∆V→0

net �ux of A through surface ∆ S bounding ∆V
∆V

and note that the �ux through an elementary area oriented perpendicular to the e1 di-
rection is A1 h2 d u2 h3 d u3 . Thus, the net �ux of A through two such areas separated
by a distance h1 d u1 is

h1 d u1
1
h1

∂
∂ u1

(A1 h2 h3)d u2 d u3 .

Adding the corresponding contributions from the other four faces of a volume element
and dividing by its volume, we obtain

divA= 1
h1 h2 h3

[
∂
∂ u1

(A1 h2 h3 )+
∂
∂ u2

(A2 h3 h1 )+
∂
∂ u3

(A3 h1 h2 )
]
. (10.2.9)

The expression for the Laplacian is obtained by combining the formulas for gra-
dient and divergence:

∇2 ψ = 1
h1 h2 h3

[
∂
∂ u1

(
h2 h3
h1

∂ψ
∂ u1

)
+ ∂
∂ u2

(
h3 h1
h2

∂ψ
∂ u2

)
+ ∂
∂ u3

(
h1 h2
h3

)]
.

(10.2.10)

Examples: The most common curvilinear coordinates in physics are
– plane polar: x = r cos θ, y = r sin θ
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– cylindrical polar: x = r cos θ, y = r sin θ, z = z
– spherical polar: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ .

The scale factors hi are de�ned for any set of coordinates by

hi =

√(
∂x
∂ ui

)2
+
(
∂y
∂ ui

)2
+
(
∂z
∂ ui

)2
.

Thus, for spherical polars, we have

hr = 1, hθ = r, hφ = r sin θ

and so,
d s2 = d r2 + r2 d θ2 + r2 sin2 θd φ2,

dV = r2 sin θdrdθdφ,

divA = 1
r2 sin θ

[
∂
∂r (r

2 sin θAr) +
∂
∂θ (r sin θAθ) +

∂
∂φ (rAφ)

]
or,

divA = ∂Ar∂r + 2
r Ar +

1
r
∂Aθ
∂θ + cot θ

r Aθ +
1

r sin θ
∂Aφ
∂φ ,

and,

∇2 ψ = 1
r2
∂
∂r

(
r2 ∂ψ∂r

)
+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂ψ∂θ

)
+ 1
r2 sin2 θ

∂2 ψ
∂ φ2 .

An analogous determination in cylindrical polars canbe easily done andone�nds
in particular that the Laplacian is

∇2 ψ = ∂
2 ψ
∂ r2 + 1

r
∂ψ
∂r + 1

r2
∂2 ψ
∂ θ2

+ ∂
2 ψ
∂ z2 .

10.3 Separation of Variables

Various methods have been devised for the solution of partial di�erential equations
corresponding to di�erent kinds of boundaries (whether �nite or at in�nity) and dif-
ferent kinds of boundary and initial conditions. What we shall come to recognize is
that they all involve representation of the solution as an expansion in terms of eigen-
functions of one or more of the partial di�erential operators in the equation which
achieves a separation of the dependence on the individual coordinate variables in-
volved. Eigenfunction is a term that we have not encountered before. Therefore, to
provide some context, we shall present a method of solution that is actually called
the separation of variables method. We will then abstract from it the key elements
that are common to all methods of solution.
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The “laboratory”wewill use to investigate separation of variables is thevibrating
string problem. Suppose that we have a string of mass per unit length ρ stretched
under a tension T along the line x = 0 to x = L and �xed at both ends. The string is
set in motion at time t = 0 by means of some combination of plucking and striking it.
Denoting the transverse displacement of the string by ψ(x, t), the string’s equation of
motion (obtained by an application of Newton’s 2nd law) is the one-dimensional wave
equation

∂2 ψ
∂ x2 = 1

c2
∂2 ψ
∂ t2

where c =
√
T
ρ . (10.3.1)

The manner in which motion is initiated is described by the initial conditions
ψ(x, 0) = u0(x) and ∂ψ(x,t)

∂t

∣∣∣
t=0

= v0(x), where u0(x) and v0(x) are known functions.
Finally, the fact that the string has �xed end-points is captured by the boundary
conditions ψ(0, t) = 0 and ψ(L, t) = 0.

One can prove that the solution of a linear partial di�erential equation accom-
panied by a complete set of boundary/initial conditions is unique. Thus, if we �nd a
solution, no matter by what means, we are assured that it is the only solution to the
problem. Themeanswe shall employ here beginswith the assumption that themotion
at any point 0 6 x 6 L, and time t > 0, can be expressed in the form

ψ(x, t) = X(x)T(t). (10.3.2)

If our method works, if we obtain a solution, this assumption will be justi�ed a poste-
riori.

Substituting into the wave equation and dividing through by ψ = XT we �nd

1
X(x)

d2 X
d x2 = −λ = 1

c2
1
T(t)

d2 T
d t2

, (10.3.3)

where λmust be a constant since the �rst equality implies it is independent of t while
the second equality implies it is independent of x. The two equalities yield the same
ordinary di�erential equation (ODE) with constant coe�cients. The general solutions
are

Xλ(x) =


A cos

√
λx + B sin

√
λx if λ > 0

A e
√
−λx +B e−

√
−λx if λ < 0

Ax + B if λ = 0
(10.3.4)

and

Tλ(t) =


A cos

√
λct + B sin

√
λct if λ > 0

A e
√
−λct +B e−

√
−λct if λ < 0

Act + B if λ = 0
. (10.3.5)

The initial conditions on ψ(x, t) involve functions of x and so place no restrictions
on Tλ(t) other than a general requirement of boundedness on 0 6 t < ∞. Such condi-
tions are called non-homogeneous. In contrast, the boundary conditions on ψ(x, t)
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are homogeneous: they require that ψ(x, t) and hence each Xλ(x) vanish at x = 0 and
x = L. A quick check tells us that these conditions cannot be satis�ed for any values
of λ 6 0 (except in the trivial case of A = B = 0). On the other hand, there is an in�-
nite set of values of λ > 0, λn = n2 π2

L2 , n = 1, 2, 3, . . . , which admit these conditions
and the corresponding solutions are, to within an arbitrary multiplicative constant,
Xn(x) = sin nπx

L . The latter are called the eigenfunctions of the di�erential operator
d2
d x2 appropriate to these boundary conditions and the λn are its eigenvalues (char-
acteristic values). This means that of those functions that vanish at x = 0 and x = L,
there is a unique subset ,{Xn}, with the property that when operated on by d2

d x2 they
are reproduced multiplied by a characteristic constant (an eigenvalue).

With λ determined, so is Tλ . In fact, we now have an in�nite set of factored solu-
tions

ψn(x, t) = Xn(x) Tn(t) = sin nπxL

(
An cos

nπct
L + Bn sin

nπct
L

)
, n = 1, 2, 3, . . . ,

each of which satis�es both the wave equation and the boundary conditions. More-
over, because the equation is linear, every linear combination of solutions satis�es
both the wave equation and the boundary conditions. But, what about the initial con-
ditions? Evidently, unless u0(x) and v0(x) are themselves sinusoidal with period 2L,
wewill not be able to reproduce themwith one or even a linear combination of several
of the ψn(x, t). Therefore, we shall use all of them. We form the superposition

ψ(x, t) =
∞∑
n=1

sin nπxL

(
An cos

nπct
L + Bn sin

nπct
L

)
(10.3.6)

and impose the initial conditions via

u0(x) =
∞∑
n=1

sin nπxL An , and (10.3.7)

v0(x) =
∞∑
n=1

sin nπxL Bn
nπc
L . (10.3.8)

We recognize the summations in these three equations as Fourier sine series.
Thus, so long as u(x, t), u0(x) and v0(x) are continuous functions of x, the series will
converge uniformly to these functions when An and nπc

L Bn are replaced by the Fourier
sine coe�cients of u0(x) and v0(x), respectively; that is, when

An =
2
L

L∫
0

u0(x) sin
nπx
L dx, and (10.3.9)

Bn =
2
nπc

L∫
0

v0(x) sin
nπx
L dx. (10.3.10)
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This completes the solution of the problem.
Evidently, the method of separation of variables works. Let us be certain we un-

derstand why.
Working backwards, we see that a critical element is the implicit representation

of ψ(x, t) by the eigenfunction expansion

ψ(x, t) =
∞∑
n=1

bn(t) sin
nπx
L (10.3.11)

which is a Fourier sine series, every term of which satis�es the boundary conditions.
Thus, it must converge uniformly toψ(x, t) and so, whenwe substitute it into thewave
equation, we can interchange the order of summation and integration. The result is

∞∑
n=1

bn(t) d
2

d x2 sin
nπx
L =

∞∑
n=1

bn(t)
(
− n2 π2

L2

)
sin nπxL =

∞∑
n=1

1
c2
d2 bn(t)
d t2

sin nπxL .

Because the sine functions are orthogonal, the second equality implies that

d2 bn
d t2

+
(nπc
L

)2
bn(t) = 0

and hence, that
bn(t) = An cos

nπct
L + Bn sin

nπct
L .

The solution is then completed by relating An and Bn to the Fourier sine coe�cients
of u0(x) and v0(x).

The separation of variables method is successful because it amounts to an expan-
sion of ψ(x, t) in terms of the eigenfunctions of the di�erential operator associated
with homogeneous boundary conditions. The di�erential operator is replaced by its
eigenvalues and thereby eliminated from the partial di�erential equation. The PDE is
replaced by a series of ODE’s with constant coe�cients.

That being said, we shall now perform a practical inventory of the steps that com-
prise this method and do so in the course of solving another boundary value problem.
The problem is to �nd the electrostatic potential everywhere inside a conducting rect-
angular box of dimensions a × b × c which has all of its walls grounded except for the
top which is separated from the other walls by thin insulating strips and maintained
at a potential V .

The PDE to be solved is Laplace’s equation

∇2 ψ = 0.

Here is how we proceed with its solution.
Step 1. Choose an appropriate coordinate system.

We choose Cartesian coordinates with the origin at one corner of the box so that
its interior and boundaries are de�ned by 0 6 x 6 a, 0 6 y 6 b, 0 6 z 6 c. The
boundary conditions then become

ψ(0, y, z) = ψ(a, y, z) = ψ(x, 0, z) = ψ(x, b, z) = ψ(x, y, 0) = 0 and ψ(x, y, c) = V .
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Step 2. Separate the PDE into ODE’s.
Substitute ψ(x, y, z) = X(x)Y(y)Z(z) into the PDE and then divide through by ψ to

obtain
1
X
d2 X
d x2 + 1

Y
d2 Y
d2 y

+ 1
Z
d2 Z
d z2 = 0.

This can hold for all x, y and z if and only if each term is separately equal to a constant
with the three constants summing to zero:

d2 X
d x2 = λ1 X, d

2 Y
d y2

= λ2 Y and d
2 Z
d z2 = λ3 Z with λ1 + λ2 + λ3 = 0.

These three DE’s are identical to each other and to the separated DE’s of the stretched
string problem. Therefore, they have the same three sets of solutions (10.3.4) corre-
sponding to positive, negative and null values of the separation constants.
Step 3. Impose the single-coordinate boundary conditions that are homogeneous at both
boundaries and solve the corresponding eigenvalue equations for the functions of those
coordinates.

In this case, the homogeneous boundary conditions require that

X(0) = X(a) = 0, Y(0) = Y(b) = 0.

We know from the stretched string problem that this implies eigenvalues

λ1 = −
(nπ
a

)2
, n = 1, 2, . . . and λ2 = −

(mπ
b

)2
,m = 1, 2, . . . ,

corresponding to the eigenfunctions

Xn(x) = sin nπxa and Ym(y) = sin mπyb .

Notice that while we know that Z(0) = 0 we have no information bearing directly on
Z(c).
Step 4. Solve for the remaining function(s).

We now know that
λ3 =

(nπ
a

)2
+
(mπ
b

)2
.

Since this is always positive, the corresponding solution for Z(z) is a linear combina-
tion of e

√
λ3z and e−

√
λ3z . But we must also satisfy Z(0) = 0. Therefore, an appropriate

linear combination is

Znm(z) = sinh
(√(nπ

a

)2
+
(mπ
b

)2
z
)
.

Step 5. Form a linear superposition of all factored solutions.
We now have a doubly in�nite set of factored solutions

Xn(x) Ym(y) Znm(z), n,m = 1, 2, . . .
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each of which satis�es the PDE as well as the homogeneous boundary conditions.
To prepare for the imposition of the non-homogeneous boundary condition, we take
advantage of the linearity of the PDE and form the superposition

ψ(x, y, z) =
∞∑
n=1

∞∑
m=1

Anm sin
nπx
a sin mπyb sinh

(√(nπ
a

)2
+
(mπ
b

)2
z
)
.

Step 6. Impose the remaining boundary condition(s).
In this case there remains only one condition: ψ(x, y, c) = V . Imposing it on our

superposition we have the requirement that

V =
∞∑
n=1

∞∑
m=1

Anm sin
nπx
a sin mπyb sinh

(√(nπ
a

)2
+
(mπ
b

)2
c
)
.

This is a double Fourier sine series and so we can use the Euler formula for the coe�-
cients of such series to determine Anm . Thus,

Anm = V

sinh
(√( nπ

a
)2 + (mπb )2c)

4
ab

a∫
0

b∫
0

sin nπxa sin mπyb dxdy

or,
Anm = V

sinh
(√( nπ

a
)2 + (mπb )2c)

4
nm π2 (1 − (−1 )

n)(1 − (−1 )m).

Substituting back into the superposition we obtain as our solution

ψ(x, y, z) = 16V
π2

∞∑
n=1,3,5,...

∞∑
m=1,3,5,...

1
nm sin nπxa sin mπyb

sinh
(√( nπ

a
)2 + (mπb )2z)

sinh
(√( nπ

a
)2 + (mπb )2c) .

10.4 What a Di�erence the Choice of Coordinate System Makes!

We shall now investigate the solution of the homogeneous versions of the partial dif-
ferential equations we introduced in Section 10.1 when applied to a three dimensional
medium with either rectangular, spherical or cylindrical symmetry.

Recall that the PDE’s are

∇2 ψ = 0,

∇2 ψ − 1
D
∂ψ
∂t = 0,

∇2 ψ − 1
c2
∂2 ψ
∂ t2

= 0. (10.4.1)
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We start by separating o� the time dependence in the case of the last two of these. We
do this by assuming a solution of the form

ψ(r, t) = u(r)T(t). (10.4.2)

Substituting into the di�usion equation and dividing by ψ = uT we �nd

1
u(r) ∇

2 u(r) = − λ = 1
D

1
T(t)

dT
dt , (10.4.3)

where λ must be a constant since the �rst equality implies it is independent of t and
the second equality implies it is independent of r. The second equality is a simple
di�erential equation for T(t) with solution

T(t) = A e−λDt .

Unlike the vibrating string problem, we will not assume an initial condition but re-
quire only that T(t) be bounded for 0 6 t < ∞, (i.e. that it satisfy the homogeneous
boundary condition |T(∞)| < ∞). This means that λ must be positive and so we set
λ = k2 . Thus,

T(t) = A e− k
2 Dt (10.4.4)

and the �rst part of (10.4.3) is

∇2 u(r)+ k2 u(r) = 0 (10.4.5)

which is calledHelmholtz’ equation. Note that Laplace’s equation is the special case
of Helmholtz’ equation corresponding to k2 = 0.

The Helmholtz’ equation is named for Hermann von Helmholtz (1821-1894), a Ger-
man physician and physicist. He made signi�cant contributions in neurophysiology,
physics (electrodynamics and thermodynamics), and philosophy. The Helmholtz Asso-
ciation of German research centres is named after him.

We can do a similar separation of the time dependence in the case of the wave
equation. Assuming a solution of the form (10.4.2), substituting into the equation, and
dividing by ψ = uT, we �nd

1
u ∇

2 u = −λ = 1
c2

1
T
d2 T
d t2

, (10.4.6)

with λ a constant. The second part of (10.4.6) is the same di�erential equation for T
that we encountered in the vibrating string problem. This time we will accompany it
with the homogeneous boundary condition |T(±∞)| < ∞whichmakes it an eigenvalue
equation with solution λ = k2, 0 6 k < ∞ and

Tλ(t) = Tk(t) = Ak eikct + Bk e−ikct =
{
eikct

e−ikct

}
=
{
sin kct
cos kct

}
. (10.4.7)
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The use of curly braces in (10.4.7) is a convenient short-hand for a linear combination
of the functions that appear between them.

This means that we obtain the Helmholtz equation

∇2 u + k2 u = 0

once again to describe the space dependence.
To proceed further with the separation of variables we must now adopt one or

another type of coordinate system.
In Cartesian coordinates Helmholtz’ equation is

∂2 u
∂ x2 + ∂

2 u
∂ y2

+ ∂
2 u
∂ z2 + k2 u = 0 (10.4.8)

and so, assuming a separated solution of the form u = X(x)Y(y)Z(z), substituting
into (10.4.8), and dividing through by u = XYZ, we have

1
X
d2 X
d x2 + 1

Y
d2 Y
d y2

+ 1
Z
d2 Z
d z2 + k2 = 0. (10.4.9)

Thus,

1
X
d2 X
d x2 = − λ1 = − k2 −

1
Y
d2 Y
d y2

− 1
Z
d2 Z
d z2 , (10.4.10)

where λ1 must be a (separation) constant. Then, as in the potential problem of the last
Section, we �nd

1
Y
d2 Y
d y2

= − λ2 (10.4.11)

and,

1
Z
d2 Z
d z2 = − λ3 (10.4.12)

but now

λ1 + λ2 + λ3 = k2 . (10.4.13)

Wenowneed some information about the spatial boundaries. Rather than con�ne
the medium to a �nite box as was the case in the potential problem, we shall assume
that themedium is in�nite and that the boundary conditions require X, Y , and Z to be
bounded for all x, y, and z. The di�erential equations for X, Y , and Z are the same as
the di�erential equation for T(t) and so we know that they admit bounded solutions
if and only if λi > 0 for i = 1, 2, and 3. Thus, we set λ1 = k21, λ2 = k22, λ3 = k23 with
−∞ < k1, k2, k3 < ∞ to obtain

X(x) ∝ ei k1 x
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Y(y) ∝ ei k2 y

Z(z) ∝ ei k3 z , (10.4.14)

with

k21 + k22 + k23 = k2. (10.4.15)

Multiplying these together we get (plane wave) solutions for u(r) of the form

u(r) =Ak eik·r (10.4.16)

where k is a three-dimensional vector with norm k · k=k2.
This is as far as we can gowithout having information about how thewavemotion

or di�usion was initiated, that is, without having initial conditions to impose. There-
fore, let us turn instead to the question of the kind of waves we would obtain if there
was cylindrical geometry.

In cylindrical coordinates Helmholtz’ equation is

∂2 u
∂ r2 + 1

r
∂u
∂r +

1
r2
∂2 u
∂ θ2

+ ∂
2 u
∂ z2 + k2 u = 0. (10.4.17)

Assuming a separated solution of the form u = R(r)Θ(θ)Z(z), substituting in (10.4.17)
, and dividing through by u = RΘZ, we �nd

1
R

[
d2 R
d r2 + 1

r
dR
dr

]
+ 1
r2

1
Θ
d2 Θ
d θ2

+ 1
Z
d2 Z
d z2 + k2 = 0. (10.4.18)

Separating variables yields the equations

1
Z
d2 Z
d z2 = − λ2 (10.4.19)

1
Θ
d2 Θ
d θ2

= − λ1 (10.4.20)

1
R

[
d2 R
d r2 + 1

r
dR
dr

]
− λ1r2 − λ2 + k

2 = 0. (10.4.21)

Most physical applications involve the boundary condition Θ(θ + 2π) = Θ(θ) to
ensure that Θ is a single valued function. It then follows that λ1 = m2,m = 0, 1, 2, . . .
and

Θ(θ) ≡ Θm(θ) = Am cosmθ + Bm sinmθ (10.4.22)

are the eigensolutions (or characteristic solutions) of equation (10.4.19) .
There is no common boundary condition that can be applied to the solutions

of (10.4.20) and so we write them for now as

Z(z) = C exp(
√
− λ2z) + D exp(−

√
− λ2z) (10.4.23)
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and note that this will be a trigonometric function if λ2 > 0 and a hyperbolic function
if λ2 < 0.

Setting k2 − λ2 = α2 and ρ = αr, equation (10.4.21) becomes

d2 R
d ρ2

+ 1
ρ
dR
dρ +

(
1 − m

2

ρ2

)
R = 0 (10.4.24)

which isBessel’s equation. As we have seen, its general solution can be expressed as
the linear combination

R(r) = E Jm(αr) + F Nm(αr) (10.4.25)

where Jm(x) andNm(x) are theBessel andNeumann functions of orderm , respectively.
These have an oscillatory dependence on xwith an in�nite number of zeros.Moreover,
the Neumann function, Nm(x), is singular at x = 0. Thus, if there are homogeneous
boundary conditions such as R(0) = R(a) = 0, we would require F = 0 for all m and
determine eigensolutions Jm(αm,n r) where αm,n = xm,n /a and xm,n is the nth zero of
Jm(x).

If λ2 > k2, α will be a pure imaginary. In that case it is conventional to re-
place (10.4.25) by the linear combination

R(r) = G Im(|α|r) + H Km(|α|r) (10.4.26)

where Im(x) andKm(x) are calledmodi�edBessel functions.Themodi�edBessel func-
tions are not oscillatory in behaviour but rather behave exponentially for large x.
Speci�cally, Im → ∞ and Km → 0 as x → ∞. At the other end of the scale , as
x → 0, Km → ∞ while Im → 0 if m ≠ 0 and I0 → 1. Note that the modi�ed Bessel
functions arise when the z- dependence is given by oscillatory sine and cosine func-
tions. The converse is true also: if Z(z) is non-oscillatory, λ2 < 0 and R(r) is given by
the oscillatory form (10.4.25).

In the event that λ2 = k2, α = 0 and one must require that m = 0 and F = 0
in (10.4.25) to obtain a bounded but non-null solution. The overall solution is then the
plane wave

u(r, θ, z) ∼ e±ikz .

A second special case involving α = 0ariseswhen k2 = 0 (so thepartial di�erential
equation is Laplace’s equation) and λ2 = 0 (so there is no z dependence). The equation
for R becomes

d2 R
d r2 + 1

r
dR
dr −

m2

r2 R = 0 (10.4.27)

which has the general solutions

R(r) =
{
G rm +H r−m , m ≠ 0
G + H ln r, m = 0.

(10.4.28)



292 | Partial Di�erential Equations and Boundary Value Problems

Forming a superposition of solutions as we did in the examples of Section 10.3
gives us the potential

ψ(r, θ) = A0 + B0 ln r +
∞∑
m=1

(Am rm + Bm r−m)(Cm cosmθ + Dm sinmθ) (10.4.29)

which we recognize as a full Fourier series in θ. The coe�cients Am , Bm , Cm and
Dm ,m > 0 can be determined by imposing non-homogeneous boundary conditions
at two �xed values of r, ψ(a, θ) = V1(θ) and ψ(b, θ) = V2(θ) for example, and then
using the Euler formulae for the Fourier coe�cients of the functions V1(θ) and V2(θ).

As if (10.4.29) is not complicated enough, a superposition of solutions of the
Helmholtz equation with homogeneous boundary conditions at r = 0 and r = a has
the form

u(r, θ, z) =
∞∑
n=1

∞∑
m=0

Jm(αmn r)(Amn cosmθ + Bmn sinmθ)

× (Cmn cosh
√
α2mn − k2z + Dmn sinh

√
α2mn − k2z).

(10.4.30)

This is a Fourier series in the θ coordinate as well as a series unlike anything we have
seen thus far: an expansion in terms of an in�nite set of Bessel functions. Evidently,
our knowledge of series representations requires extension if we are to feel comfort-
able working with cylindrical polars.

What further complications await uswhenwe switch to spherical polars? In spher-
ical coordinates Helmholtz’ equation assumes the form

1
r
∂2
∂ r2 (ru) +

1
r2 sin θ

[
∂
∂θ (sin θ

∂u
∂θ ) +

1
sin θ

∂2 u
∂ φ2

]
+ k2 u = 0. (10.4.31)

Assuming a separated solution u = R(r)Y(θ, φ), substituting into (10.4.31), and divid-
ing by u = RY, we obtain

1
R
1
r
d2
dr2 (rR) +

1
r2

1
Y sin θ

[
∂
∂θ

(
sin θ ∂Y∂θ

)
+ 1
sin θ

∂2Y
∂ φ2

]
+ k2 = 0. (10.4.32)

Separating variables yields the equation

1
Y

1
sin θ

[
∂
∂θ (sin θ

∂Y
∂θ ) +

1
sin θ

∂2 Y
∂ φ2

]
= −λ (10.4.33)

for the angular dependence of u(r, θ, φ) plus the radial equation

1
R
1
r
d2
d r2 (rR) + k

2 − λr2 = 0 (10.4.34)

where λ is the separation constant.
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We shall start with the angular equation (10.4.33) which we subject to a further
separation of variables. Setting Y = Θ(θ)Φ(φ), we obtain

1
Θ

1
sin θ

d
dθ (sin θ

dΘ
dθ ) +

1
sin2 θ

1
Φ
d2 Φ
d φ2 + λ = 0

and hence,

1
Φ
d2 Φ
d φ2 = −m2, m = 0, ±1, ±2, . . . , (10.4.35)

and

1
sin θ

d
dθ (sin θ

dΘ
dθ ) +

(
λ − m2

sin2 θ

)
Θ = 0, (10.4.36)

where we have invoked the boundary condition Φ(φ + 2π) = Φ(φ) to ensure single-
valued solutions and determine the second separation constant. The corresponding
eigensolutions are a linear combination of cosmφ and sinmφ or of e±imφ . In this in-
stance we will choose the latter and write

Φ ≡ Φm(φ) = Am eimφ + Bm e−imφ . (10.4.37)

To identify solutions of (10.4.36) , we introduce the new variable x = cos θ which
transforms the equation into a version of Legendre’s equation:

(1 − x2)d
2 P
d x2 − 2x

dP
dx +

[
λ − m2

1 − x2

]
P = 0 where P(x) = Θ(cos−1 x). (10.4.38)

Since θ varies over the range 0 6 θ 6 π, x has the range −1 6 x 6 1. But as we
know, the boundary points x = ±1 are regular singular points of Legendre’s equation.
Therefore, an obvious boundary condition to impose on the solutions of (10.4.38) is
that they be bounded at x = ±1. This can be satis�ed if and only if λ is assigned one of
the discrete eigenvalues λ = l(l + 1), l = 0, 1, 2, . . . with l > |m|; the corresponding
eigensolutions are the associated Legendre polynomials, denoted Pml (x). How do
these relate to the Legendre polynomials whose acquaintance we made in Chapter 9?
The answer will be derived in Chapter 11 but here is a preview:

Pml (x) = (1 − x2 )
m
2 d

m Pl(x)
d xm , m = 0, 1, 2, . . . l. (10.4.39)

The product
Y = Θ(θ)Φ(φ) = Pml (cos θ) eimφ ,

with appropriate normalization to be de�ned later, is called a spherical harmonic.
We will have occasion in Chapter 11 to study its properties in some detail. It su�ces
at present to note that it is an eigenfunction solution of (10.4.33) combined with the
periodicity and boundedness conditions and hence, an eigenfunction of the angular
part of the partial di�erential operator∇2 .
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We can now turn our attention to the radial equation (10.4.34) with λ set equal to
l(l + 1):

d2 R
d r2 + 2

r
dR
dr +

[
k2 −

l(l + 1)
r2

]
R = 0. (10.4.40)

If k2 ≠ 0, we set r = ρ/k and R = 1√ρ S to transform this equation into

d2 S
d ρ2

+ 1
ρ
dS
dρ +

[
1 − (l + 1/2 )2

ρ2

]
S = 0 (10.4.41)

which we recognize as Bessel’s equation of order l + 1/2. Thus, we conclude that the
general solution of the radial equation is

R(r) = A 1√
kr
Jl+1/2(kr) + B

1√
kr
Nl+1/2(kr) = A′ jl(kr) + B

′ nl(kr), (10.4.42)

where jl(x) ≡
√ π

2x Jl+1/2(x) and nl(x) ≡
√ π

2x Nl+1/2(x) are called spherical Bessel and
Neumann functions of order l, respectively.

If k2 = 0, which corresponds to Laplace’s equation, the radial equation is

d2 R
d r2 + 2

r
dR
dr −

l(l + 1)
r2 R = 0 (10.4.43)

which has the general solution

R = A rl +B 1
rl+1

. (10.4.44)

Summarizing, the sort of superpositionswe can expect in problemswith spherical
geometry are potentials of the form

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[Alm rl + Blm r−l−1] Yml (θ, φ) (10.4.45)

and waves like

u(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[Alm jl(kr) + Blm nl(kr)] Y
m
l (θ, φ). (10.4.46)

Thus, Fourier series do not �gure in the solutions at all when spherical coordinates are
used. Rather, we have a double series expansion in terms of the spherical harmonics
and so yet another type of series representation to become familiar with. Fortunately,
all of these representations are special cases of a Sturm-Liouville eigenfunction ex-
pansion and so we can acquire a comprehensive understanding by considering a sin-
gle eigenvalue problem.

A student of Poisson at the École Polytechnique, Joseph Liouville (1809-1882) con-
tributedwidely tomathematics,mathematical physics and astronomy. The Liouville the-
orem of complex analysis and the Liouville theorem of classical mechanics are both
named after him as is the Liouville crater on the moon. He developed Sturm-Liouville
theory in collaboration with a colleague at the École Polytecnique, Jacques Sturm (1803-
1855).
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10.5 The Sturm-Liouville Eigenvalue Problem

To review, the separation of variables in a partial di�erential equation results in two
or more ordinary di�erential equations which, when combined with homogeneous
boundary conditions, become eigenvalue equations whose solutions correspond to
characteristic values of the separation constant(s). Once all of these are known,weuse
them to express the solution of the original partial di�erential equation as an eigen-
function expansion and then impose whatever non-homogeneous boundary condi-
tions may be associated with the problem. In the vibrating string problem the eigen-
function expansion is a Fourier sine series which is a type of series that is reasonably
familiar to us. But what are the convergence properties of series involving Legendre
polynomials or Bessel functions? How do we determine their coe�cients? Is there a
connection with the theory of Fourier representations?

The most general way of answering these questions is to study the Sturm-
Liouville eigenvalue problem. It consists of solving a di�erential equation of the
form

Lu(x) ≡ d
dx

[
p(x)du(x)dx

]
− q(x)u(x) = −λρ(x)u(x) (10.5.1)

where ρ(x) > 0 on the interval a 6 x 6 b of the real line and the solution u(x) is
subject to (homogeneous) boundary conditions such as u(a) = u(b) and u′(a) = u′(b),
(the periodicity condition is an example of this), or

α1 u + β1
du
dx = 0 at x = a and

α2 u + β2
du
dx = 0 at x = b (10.5.2)

where α1, β1, α2, and β2 are given constants. The form of the di�erential operator L
in (10.5.1) is quite general since after multiplication by a suitable factor any second
order linear di�erential operator can be expressed this way.

The di�erential equations obtained by separating variables in the preceding Sec-
tion are all of the Sturm-Liouville type, the separation constants being the eigenvalue
parameters λ. The boundary conditions to go with them, such as boundedness or pe-
riodicity, were determined by the requirements of the physics problem in which the
equations arise and this is invariably the case.

Changing the boundary conditions can result in a profound change to the eigen-
value spectrum of a di�erential operator. To illustrate, we shall consider the simple
operator L ≡ d2

d x2 . Its Sturm-Liouville equation is

Lu(x) ≡ d2
d x2 u(x) = −λu(x), (10.5.3)
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corresponding to p(x) ≡ 1, q(x) ≡ 0, ρ(x) ≡ 1. We know already that this equation
has solutions

u(x) =


A cos

√
λx + B sin

√
λx if λ > 0

A cosh
√
−λx + B sinh

√
−λx if λ < 0

Ax + B if λ = 0
(10.5.4)

So, if the boundary conditions are
– u(x + 2π) = u(x) then,

λ = m2 and um(x) = Am cosmx + Bm sinmx, m = 0, 1, 2, . . . , (10.5.5)

– u(0) = 0 and u(b) = 0 then,

λ = n
2 π2

b2
and un(x) = An sin

nπx
b , n = 1, 2, 3, . . . , (10.5.6)

– u′(0) = 0 and |u(∞)| < ∞ then,

λ = k2 and uk(x) = Ak cos kx, 0 6 k < ∞, (10.5.7)

– |u(±∞)| < ∞ then,

λ = k2 and uk(x) = Ak eikx , −∞ < k < ∞. (10.5.8)

The multiplicative constants in these expressions are determined by some nonlinear
normalization condition such as

b∫
0

| un(x) |2 dx = 1. (10.5.9)

Some other Sturm-Liouville problems encountered in Section 10.4 are reviewed in
the following table (Table 10.1).

Table 10.1: Sturm-Liouville Problems in Section 10.4

Equation Boundary Eigenfunctions Eigenvalues ρ(x) p(x) q (x)
Conditions

Legendre |u(±1) |2 < ∞ Pl(x)
l=0,1,2,...

l(l + 1) 1 1 − x2 0

Associated
Legendre

ditto Pml (x) l(l + 1) 1 1 − x2 m2

1−x2

Bessel |u(0)| < ∞ Jm(x) 1 x x m2

x
Spherical
Bessel

ditto jl(x) 1 x2 x2 l(l + 1)
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The Sturm-Liouville eigenvalue problem is an in�nite-dimensional analogue of
the matrix eigenvalue problem

Mu = λu, (10.5.10)

where M is an n × n matrix and u is an n−dimensional column vector, encountered
in connection with �nite dimensional vector spaces. In both cases there are solutions
un only for certain values of the eigenvalue λn. These are called the eigenvectors of
M while in the case of L ,they are the eigenfunctions corresponding to the particu-
lar choice of boundary conditions that accompany the equation. Signi�cantly, like the
eigenvectors of matrices, the eigenfunctions of L can be used as basis vectors span-
ning a type of vector space in which the vectors are functions. Such function spaces
are generally in�nite dimensional corresponding either to a countable in�nity or to a
continuum of eigenfunctions and eigenvalues. An example of the former is the space
consisting of all square integrable functions de�ned on a �nite interval a 6 x 6 b. A
continuum normally arises when one or both of the end-points is at in�nity.

In a conventional vector space each vector is an ordered n-tuple of numbers,

a ≡ |a >≡ ( a1 , a2 , . . . , an ). (10.5.11)

The numbers can be real or imaginary. The number of dimensions, n, can be �nite
or in�nite. Various operations such as addition, subtraction and multiplication by a
scalar are de�ned as is the operation of scalar product,

a · b ≡ < a|b > ≡
∑
i=1

a*i bi . (10.5.12)

The ordering is discrete and even if the number of dimensions is in�nite, it is a “count-
able in�nity”.

Functions also provide ordered sets of numbers although now the ordering is con-
tinuous: f (x), a 6 x 6 b, denotes an ordered continuum of numbers. Thus, the set
of all functions which satisfy certain behavioural conditions on an interval of the real
line, a 6 x 6 b, can de�ne a vector space called a function space. An example is the
set of functions which are square integrable. The scalar product is de�ned in analogy
with the de�nition for a conventional vector space,

< u|v > ≡
∑

all components

u*(x)v(x) ≡
b∫
a

u*(x)v(x)ρ(x)dx. (10.5.13)

Here, ρ(x) is a weight function that determines how one counts “components” as x
varies along the real line from a to b : ρ(x)dx = the number of “components” in the
interval dx about x.

In conventional vector spaces it is convenient to de�ne a basis (or bases) of or-
thogonal unit vectors ei , i = 1, 2, . . . n with ei · ej = δi,j so that each vector a can be
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expressed as

a=
∑
i=1

ai ei , aj = ej · a (j = 1, 2, . . .). (10.5.14)

Notice that ei · ej = δi,j captures both orthogonality and normalization. The corre-
sponding expressions in “ket” notation are

|a >=
∑
i=1

ai | ei >, aj =< ej |a > and < ei | ej >= δi,j . (10.5.15)

When all vectors in a space can be so expressed the basis is said to be completewith
respect to the space. (The adjective complete should have a familiar ring to it.)

The same is true of function spaces. One can determine basis vectors (functions)
un(x) which are orthonormal,

< um | un >=
b∫
a

u*m(x) un(x)ρ(x)dx = δm,n , (10.5.16)

and which are complete with respect to the space. That means that each f (x) in the
space can be expanded in the series

f (x) =
∞∑
m=1

cm um(x) where cm =
b∫
a

u*m(x)f (x)ρ(x)dx. (10.5.17)

Now we remember where we have encountered the term complete before. It was
in connection with Parseval’s equation and the representation of functions that are
square integrable on −π 6 x 6 π in terms of the Fourier functions {cos nx, sin nx}.

Having digressed into the algebraic perspective on series representations, let us
return to the analysis of the Sturm-Liouville problem. Its solutions have some general
properties of key importance. These follow in large part from general properties pos-
sessed by the Sturm-Liouville operator L . Speci�cally, suppose that u(x) and v(x) are
arbitrary twice di�erentiable functions. For increased generality, we shall take them
to be complex. We write

v*(x)Lu(x) ≡ v*(x) ddx [p(x)
du(x)
dx ] − v*(x)q(x)u(x),

u(x)(Lv(x) )* ≡ u(x) ddx [p(x)
d v*(x)
dx ] − u(x)q(x) v*(x),

take the di�erence, and then integrate by parts to obtain
b∫
a

v*(Lu)dx −
b∫
a

u(Lv)*dx = p(x)
[
v*(x)du(x)dx − u(x)dv

*(x)
dx

] ∣∣∣x=b
x=a

. (10.5.18)

This is an instance of the generalized Green’s identity that we encountered in Sec-
tion 9.9 and its appearance here tells us that the Sturm-Liouville operator L is self-
adjoint wth respect to the weight function w(x) = 1.
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Note that if the functions u(x) and v(x) both satisfy the homogeneous boundary
conditions

α1 y(a) + β1 y
′(a) = 0 (10.5.19)

α2 y(b) + β2 y
′(b) = 0 (10.5.20)

or the conditions

y(a) = y(b) and y′(a) = y′(b) together with p(a) = p(b), (10.5.21)

the surface term on the right hand side of (10.5.18) vanishes and we obtain the
Green’s identity for self-adjoint operators

b∫
a

v*(x)(Lu(x))dx =
b∫
a

u(x)(Lv(x) )* dx. (10.5.22)

In algebraic terms, imposing homogeneous boundary conditions on a set of func-
tions u(x) de�nes a function space; a self-adjoint di�erential operator L then de�nes
a Hermitian operator on that space.

The fact that the Sturm-Liouville operator is self-adjoint has important conse-
quences for its eigenfunctions and eigenvalues. Suppose that we have two di�erent
eigenfunctions un(x) and um(x) corresponding to the eigenvalues λn and λm , λn ≠ λm :

L un(x) = − λn ρ(x) un(x), (10.5.23)

L um(x) = − λm ρ(x) um(x). (10.5.24)

We shall allow for the possibility of complex eigenfunctions and even complex eigen-
values but, by de�nition, ρ(x) and L are real. Multiplying (10.5.23) by u*m(x) and the
complex conjugate of (10.5.24) by un(x), subtracting and integrating, we �nd

b∫
a

[u*m(x)L un(x) − un(x)L u*m(x)]dx = −(λn − λ*m)
b∫
a

u*m(x) un(x)ρ(x)dx. (10.5.25)

Since un(x)and um(x) are eigenfunctions, they satisfy homogeneous boundary condi-
tions and, as we have seen, thatmeans that the left hand side of (10.5.25) must vanish.
Thus,

(λn − λ*m)
b∫
a

u*m(x) un(x)ρ(x)dx = 0. (10.5.26)

If n = m, the integral cannot vanish because both ρ(x) and | um(x) |2 are non-
negative. Therefore, we conclude that λ*m = λm; all the eigenvalues of the Sturm-
Liouville operator are real.
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If n ≠ m and λn ≠ λm , we conclude that

b∫
a

u*m(x) un(x)ρ(x)dx = 0. (10.5.27)

Two functions un(x) and um(x) satisfying a condition like (10.5.27) are said to be
orthogonal with respect to the weight function ρ(x). In other words, the func-
tions{um(x)} comprise an orthogonal set of vectors in a function space where the
scalar product between two vectors u(x) and v(x) is de�ned to be

v* · u ≡ < v|u > ≡
b∫
a

v* (x)u(x)ρ(x)dx. (10.5.28)

If we normalize the eigenfunctions by requiring

b∫
a

| um(x) |2 ρ(x)dx ≡ || um ||2 = 1, (10.5.29)

we obtain an orthonormal set and (10.5.27) and (10.5.29) combine to read

b∫
a

u*m(x) un(x)ρ(x)dx = δm,n . (10.5.30)

It is also possible to have n ≠ m, but λn = λm = λ. If this happens, we say that λ is de-
generate and equation (10.5.26) no longer requires the corresponding eigenfunctions
to be orthogonal.. However, we can always choose or construct them to be orthogonal
by forming orthogonal linear combinations.

The most important consequence of the self-adjoint character of the Sturm-
Liouville operator is one that we shall state without proof. (The proof can be found in
a variety of analysis texts such as Courant and Hilbert or E.C. Titchmarsh.) Its state-
ment is as follows: the eigenfunctions of a Sturm-Liouville operator comprise a
complete set of functions. Algebraically, this means that they span the function
space on which they are de�ned and can be used as basis vectors for that space.
Thus, any other function (vector) f (x) in the space can be expanded in terms of them,

f (x) =
∑
m
cm um(x) (10.5.31)

where the coe�cients cm are the “components of f (x) along the ‘unit’ vectors um(x)”,

cm =< um |f >=
b∫
a

u*m(x′)f (x′)ρ(x′)dx′. (10.5.32)
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Keep in mind that we have normalized the functions {um(x)}. If that were not the
case, (10.5.32) would become

cm =

b∫
a
u*m(x′)f (x′)ρ(x′)dx′

b∫
a
| um(x′) |2 ρ(x′)dx′

. (10.5.33)

In general, the eigenfunction expansion in (10.5.31) is an in�nite series and so
the statement of completeness implies a statement about the convergence of the
series. Since the Fourier functions

{
1√
T
exp

[
i 2πmT x

]}
are Sturm-Liouville eigenfunc-

tions, it is not surprising that the convergence properties of Fourier series characterize
those of all such eigenfunction expansions. In fact, (10.5.31) is sometimes referred to
as a generalized Fourier series and the cm as generalized Fourier coe�cients. In
particular, if f (x) is square integrable with respect to ρ(x) over a 6 x 6 b, then we are
assured that the series

∞∑
m=1

cm um(x) with cm =
b∫
a

u*m(x′)f (x′)ρ(x′)dx′ (10.5.34)

must at least converge in the mean to f (x) and therefore,

< f |f >=
b∫
a

|f (x) |2 ρ(x)dx =
∞∑
m=1
| cm |2 =

∞∑
m=1

< f | um >< um |f > . (10.5.35)

Equation (10.5.35) is called a completeness relation. Having it hold for all vectors
f (x) in a function space de�ned over a 6 x 6 b is a necessary and su�cient condition
for the set {um(x)} to be complete with respect to that space.

We encountered convergence in the mean in connection with Fourier series. To
remind, it means that if SN is the Nth partial sum of the series,

SN =
N∑
m=1

cm um(x),

then,

lim
N→∞

b∫
a

|f (x) − SN(x) |2 ρ(x)dx = 0. (10.5.36)

This does not imply point-wise convergence let alone uniform convergence of the se-
ries. However, one can prove that if we further restrict f (x) so that it is piecewise con-
tinuous with a square integrable �rst derivative over a 6 x 6 b, the eigenfunction ex-
pansion (10.5.34) converges absolutely anduniformly to f (x) in all sub-intervals free of
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points of discontinuity and at the points of discontinuity it converges to the arithmetic
mean of the right and left hand limits of f (x). If there are no points of discontinuity
and in addition, if f (x) satis�es the boundary conditions imposed on {um(x)}, the ex-
pansion converges uniformly throughout a 6 x 6 b.

In physics texts the completeness relation is often complementedby and confused
with an equation called the closure relation. Substituting (10.5.32) into (10.5.31) and
reversing the order of summation and integration, we have

f (x) =
b∫
a

[ρ(x′)
∑
m
um(x) u*m(x′)]f (x′)dx′

for an arbitrary function f (x). Comparing this with the de�ning property of Dirac delta
functions,

b∫
a

δ(x′ − x)f (x′)dx′ = f (x), a 6 x 6 b,

we conclude that

ρ(x′)
∑
m
um(x) u*m(x′) = δ(x′ − x). (10.5.37)

10.6 A Convenient Notation (And Another Algebraic Digression)

We have de�ned the scalar product in a complex function space as

v* · u=< v|u >=
b∫
a

v* (x)u(x)ρ(x)dx, (10.6.1)

where ρ(x) is a suitable weight function. This is a generalization of the expression

< a|b >= a* · b =
N∑
j=1

a*j bj (10.6.2)

for the scalar product in an N-dimensional complex number vector space in which an
orthonormal basis has been chosen. In a function space, the vector |u > corresponds
to the entire set (or continuum) of values assumed by a function u(x) for a 6 x 6 b.
Therefore, it is convenient to consider the number u(x) for a speci�c value of x to be
the xth component of the vector |u >. This implies the existence of a set of basis vectors
|x >, a 6 x 6 b, such that

u(x) ≡< x|u > . (10.6.3)
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The continuity of x gives rise to di�culties in de�ning the normalization of |x > . We
assume, of course, that two distinct basis vectors |x > and |x′ > are orthogonal,

< x′|x >= 0 for x′ ≠ x.

Moreover, we assume that the analogue of the familiar decomposition of a vector in
terms of an orthonormal basis,

|a >=
N∑
j

aj | ej >, ak =< ek |a > (k = 1, 2, . . . , N),

is

|u >=
b∫
a

dxρ(x)u(x)|x > . (10.6.4)

This means the scalar product of |u > with |x′ > can be written

< x′|u >= u(x′) =
b∫
a

dxρ(x)u(x) < x′|x >

which implies that ρ(x) < x′|x > has the properties of a Dirac δ-function. Evidently, we

cannot normalize |x > to unity. Rather, the analogue of < ej | ek >= δj,k =
{
1 if j = k
0 if j ≠ k

is

< x|x′ >= 1√
ρ(x)ρ(x′)

δ(x − x′) = 1
ρ(x) δ(x − x

′) = 1
ρ(x′) δ(x − x

′), (10.6.5)

which is not so surprising oncewe remember that the Dirac δ-function is a continuous
variable analogue of the Kronecker δ-function δj,k .

As we saw in the preceding Section, our function space can also have an enu-
merable orthonormal basis consisting of vectors | um > represented by the functions
um(x),

um(x) =< x| um >, m = 1, 2, . . . .

The closure relation satis�ed by these functions is (see (10.5.37))

1
ρ(x′) δ(x

′ − x) =
∞∑
m=1

um(x) u*m(x′).

Using the normalization equation (10.6.5), we can rewrite this as

< x|x′ >=
∞∑
m=1

< x| um >< um |x′ >=< x|
( ∞∑
m=1
| um >< um |

)
|x′ > .
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Since |x > and |x′ > are arbitrary basis vectors, the object in brackets must be the
identity operator I. Thus, an alternative expression of closure is

I =
∞∑
m=1
| um >< um |. (10.6.6)

The analogous relation for the basis |x >, a 6 x 6 b, is

I =
b∫
a

dxρ(x)|x >< x|. (10.6.7)

10.7 Fourier Series and Transforms as Eigenfunction Expansions

The most familiar examples of complete sets are the Fourier functions

1√
T
exp

[
i2πmT x

]
, m = 0, ±1, ±2, . . . , a 6 x 6 a + T (10.7.1)

and

1√
2π

e−ikx , −∞ < k < ∞, −∞ < x < ∞. (10.7.2)

As we have seen already, the �rst of these is comprised of the eigenfunction solu-
tions of the Sturm-Liouville equation

d2
d x2 u(x) = −λu(x), a 6 x 6 a + T (10.7.3)

subject to the periodic boundary condition u(x) = u(x + T). The corresponding eigen-
values are λ =

( 2πm
T
)2 . This discrete set is called the spectrum of L ≡ d2

d x2 when ap-
plied to functions which satisfy this boundary condition. The orthogonality relation
satis�ed by these eigenfunctions is

a+T∫
a

u*m(x) un(x)dx = δm,n . (10.7.4)

which also tells us that they are normalized to unity.
An eigenfunction expansion of a function f (x) in terms of this basis provides a

Fourier series representation:

f (x) =
∞∑

m=−∞
cm

1√
T
exp

[
i2πmT x

]
= a02 +

∞∑
m=0

[
am cos

(
2πm
T

)
+ bm sin

(
2πm
T

)]
,

(10.7.5)
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with

cm =< um |f >=
1√
T

a+T∫
a

exp
[
−i2πmT x

]
f (x)dx. (10.7.6)

The completeness relation for the Fourier functions is
a+T∫
a

|f (x) |2 dx =
∞∑

m=−∞
| cm |2 (10.7.7)

or,

a20
2 +

∞∑
m=1

[a2m + b2m] =
2
T

a+T∫
a

|f (x) |2 dx. (10.7.8)

The latter expression is known as Parseval’s equation in the theory of Fourier series.
At this point the reader may wish to return to our analysis of the solution of the

stretched string problem since it centres upon the identi�cation of a Fourier sine series
as an eigenfunction expansion.

Suppose that the range of x is the entire real line so that (10.7.3) is replaced by

d2
d x2 u(x) = −λu(x), −∞ < x < ∞ (10.7.9)

and the periodic boundary condition is replaced by

|u(±∞)| < ∞. (10.7.10)

As we have seen, the eigenfunctions are now

uk(x) = e−ikx , −∞ < k < ∞

and the corresponding eigenvalues are λ = k2 . Notice that L ≡ d2
d x2 now has a contin-

uous spectrum. The eigenfunctions’ orthogonality relation is
∞∫

−∞

eikx e−ik
′x dx = 2πδ(k − k′). (10.7.11)

Thus, normalizing the eigenfunctions, we arrive at the form given in (10.7.2):

uk(x) =
1√
2π

e−ikx , −∞ < k < ∞.

An eigenfunction expansion of a function f (x) de�ned on −∞ < x < ∞ in terms of
this basis is given by the continuous sum

f (x) =
∞∫

−∞

F(k) uk(x)dk (10.7.12)
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where

F(k) =< uk |f >=
∞∫

−∞

u*k(x′)f (x′)dx′. (10.7.13)

Substituting for uk(x), we see that F(k) is the Fourier transform of f (x),

F(k) = 1√
2π

∞∫
−∞

eikx
′
f (x′)dx′ ≡ F{f (x)}, (10.7.14)

and (10.7.12) is a Fourier integral representation of f (x) :

f (x) = 1
2π

∞∫
−∞

e−ikx F(k)dk ≡ F−1{F(k)}. (10.7.15)

The completeness relation in this case reads
∞∫

−∞

|f (x) |2 dx =
∞∫

−∞

|F(k) |2 dk (10.7.16)

which is a result known as Plancherel’s Theorem in the theory of Fourier transforms.
The closure relation is

∞∫
−∞

uk(x) u*k(x′)dk =
1
2π

∞∫
−∞

e−ik(x−x
′) dk = δ(x − x′). (10.7.17)

We shall now consider a concrete problem involving a continuous eigenvalue spec-
trum. Four large conducting plates are arranged with the electrostatic potentials
shown in the diagram below.

The size of the plates is much larger than the separation 2a and so they can be
treated as though they extend to in�nity in the x- and z-directions. We wish to �nd the
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electrostatic potential in the region between the plates. That means we wish to solve
Laplace’s equation

∂2 ψ
∂ x2 + ∂

2 ψ
∂ y2

+ ∂
2 ψ
∂ z2 = 0 (10.7.18)

subject to boundary conditions at the x- and y-boundaries but not at the z-boundaries.
In fact, the symmetry of the problem tells us that there is no z-dependence at all.

Evidently, the conditions at the y-boundaries are

ψ(x, ±a) = V for x > 0 and ψ(x, ±a) = −V for x < 0 (10.7.19)

which implies, among other things, that ψ(x, y) is an even function of y.
Formulating the conditions at the x-boundaries requires a little more thought. We

note that the conditions in (10.7.19) are odd with respect to x → −x :

ψ(−x, ±a) = −ψ(x, ±a).

This must also be true for all other values of y, that is ψ(−x, y) = −ψ(x, y) for −a 6 y 6
a. Therefore, we must have the following condition at x = 0 :

ψ(0, y) = 0 for all y in − a 6 y 6 a. (10.7.20)

The other x-boundaries are at in�nity where we can require

lim
x→±∞

|ψ(x, y)| < ∞. (10.7.21)

Since the conditions at the x-boundaries are homogeneous,wewill begin our solu-
tion of Laplace’s equation by eliminating the derivative with respect to x . This means
expanding ψ(x, y) in terms of the eigenfunctions of L = d2

d x2 that satisfy the boundary
conditions X(0) = 0 and |X(±∞)| < ∞. The boundedness requirement means that we
have to rule out the possibility that λ < 0 since that corresponds to the exponential
solutions exp(±

√
−λx) of the equation

d2 X
d x2 = −λX.

The condition at x = 0 further eliminates the possibility of λ = 0 and of the cosine
solution when λ > 0. This leaves us with the eigensolutions Xk(x) = sin kx, 0 6 k < ∞
and eigenvalues λ = k2 .

Since the only restriction placed on k is that it be real and positive-de�nite, we
have obtained a continuous eigenvalue spectrum and the eigenfunctions Xk(x) com-
prise a non- denumerably in�nite set. Of course we know that when normalized to

become
{√

2
π sin kx

}
this set of eigenfunctions provides the complete, orthonormal

basis for Fourier sine transform representations. Therefore, we can represent ψ(x, y)
by the uniformly convergent eigenfunction expansion

ψ(x, y) =
√

2
π

∞∫
0

Ψ(k, y) sin kxdk (10.7.22)
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where the expansion coe�cients Ψ(k, y) comprise the Fourier sine transform of
ψ(x, y):

Ψ(k, y) = FS{ψ(x, y)}. (10.7.23)

Substituting the representation (10.7.22) intoLaplace’s equationand interchanging the
order of di�erentiation and integration gives us√

2
π

∞∫
0

[
− k2 Ψ(k, y) + ∂

2 Ψ
∂ y2

]
sin kxdk = 0. (10.7.24)

In other words, the PDE has been reduced to its Fourier sine transform

∂2 Ψ
∂ y2

− k2 Ψ(k, y) = 0. (10.7.25)

Solving this equation and using the fact that Ψ(k, y) is an even function of y (because
ψ(x, y) is even) we obtain

Ψ(k, y) = C(k) cosh ky.

To �nd the remaining unknown C(k) we impose the boundary condition ψ(x, a) = V;
that is, we require that

Ψ(k, a) = FS{V} =
√

2
π
V
k .

Thus,

C(k) =
√

2
π
V
k

1
cosh ka

and our �nal solution is

ψ(x, y) = 2V
π

∞∫
0

cosh ky
cosh ka

sin kx
k dk. (10.7.26)

This demonstrates that using integral transforms is completely equivalent to per-
forming an eigenfunction expansion when the eigenfunctions correspond to a con-
tinuous eigenvalue spectrum.

10.8 Normal Mode (or Initial Value) Problems

Having started our discussion of boundary value problems with a vibrating string, we
shall conclude with a vibrating membrane (or drum head). But �rst, we shall pursue
some theoretical considerations that are relevant to any system that is set in motion
via an action that is expressible by means of non-homogeneous initial conditions.

The equation of motion of such a system will typically be one of

∇2 ψ(r, t) = 1D
∂ψ
∂t or ∇2 ψ(r, t) = 1

c2
∂2 ψ
∂ t2

(10.8.1)
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and the problem will be to solve it within a region V bounded by a surface S subject
to time independent boundary conditions on S and to initial conditions that specify
ψ and in the case of the wave equation ∂ψ

∂t throughout V at t = 0.
The most e�cacious way of proceeding is to set

ψ(r, t) =ψ1 (r)+ψ2 (r, t) (10.8.2)

where
1. ∇2 ψ1(r) = 0 and ψ1(r) satis�es the same boundary conditions on S as does

ψ(r, t)
2. ∇2 ψ2(r, t) = 1

D
∂ ψ2
∂t or ∇2 ψ2(r, t) = 1

c2
∂2 ψ2
∂ t2 and ψ2(r, t) satis�es homogeneous

boundary conditions on S and the same initial conditions as does ψ(r, t).

We have seen how one goes about solving forψ1(r) in either Cartesian, cylindrical
or spherical coordinates. Therefore, we can focus on the initial value problem associ-
ated with ψ2(r, t).

Wealready know fromSection 10.3 how to separate the timedependence. It results
in separated solutions of the form

ψ2(r, t) = e
−D k2 t u(r) or ψ2(r, t) =

{
cos kct
sin kct

}
u(r) (10.8.3)

dependingonwhichPDEweare solving.Moreover, inboth cases, the time-independent
function u(r) is required to be a solution of

∇2 u(r)+ k2 u(r) = 0 (10.8.4)

which when accompanied by homogeneous boundary conditions on S is a multi-
dimensional Sturm-Liouville eigenvalue problem. Denoting its eigenfunctions and
eigenvalues by un(r) and k2n respectively, we can assert that the former comprise a
complete, orthogonal set of functions. In other words,∫

V

u*n(r) um (r)dV = 0 if n ≠ m (10.8.5)

and, any function f (r) that is square integrable over V can be represented by the (con-
vergent) series

f (r) =
∑
n
cn u(r) (10.8.6)

where

cn =

∫
V
u*n(r)f (r)dV∫

V
| un (r) |2 dV

. (10.8.7)
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Thismeans that there is an in�nite set of solutions of the di�usion andwave equa-
tionswhich satisfy homogeneous boundary conditions on S. Each solutionhas a char-
acteristic time dependence and collectively, they are called the normal modes of
the system in question. Forming superpositions of them, we can express any other
solution of the di�usion or wave equation as

ψ2(r, t) =
∑
n
cn e−D k

2
n t un (r) or

∑
n
[an cos kn ct + bn sin kn ct] un(r) (10.8.8)

respectively. A complete determination of the solution is then made by imposing the
initial conditions via an application of (10.8.7):

cn =

∫
V
u*n(r)ψ2 (r, 0)dV∫
V
|un(r)|2dV

, or (10.8.9)

an =

∫
V
u*n(r)ψ2 (r, 0)dV∫
V
| un (r) |2 dV

and (10.8.10)

bn =
1
knc

∫
V u

*(r) ∂ψ2
∂t

∣∣∣
t=0
dV∫

V |un(r)|2dV
. (10.8.11)

As advertised at the beginning of this Section, we shall illustrate the use of this
machinery by trying it out on a vibrating membrane. The transverse vibrations of a
horizontal membrane of rectangular shape that is stretched equally with a tension τ
in all directions will satisfy the two- dimensional wave equation

∂2 ψ
∂ x2 + ∂

2 ψ
∂ y2

= 1
c2
∂2 ψ
∂ t2

, c2 = τ
µ (10.8.12)

where µ is the mass per unit area and ψ(x, y; t) is the vertical displacement of the
membrane at any point (x, y) and time t. We shall set up our coordinate axes along
two of the edges of the membrane. Then, assuming that it is �xed along all four of its
edges and that it has sides of length a and b, the boundary conditions for this problem
are

ψ(0, y; t) = ψ(a, y; t) = 0
ψ(x, 0; t) = ψ(x, b; t) = 0 for all t. (10.8.13)

As we have just seen, the solution can be expressed as

ψ(x, y; t) =
∑
ν
[aν cos kν ct + bν sin kν ct] uν(x, y) (10.8.14)



Normal Mode (or Initial Value) Problems | 311

with

∂2 uν
∂ x2 + ∂

2 uν
∂ y2

+ k2ν uν(x, y) = 0 (10.8.15)

and
uν(0, y) = uν(a, y) = uν(x, 0) = uν(x, b) = 0.

Setting uν(x, y) = X(x)Y(y) the Helmholtz equation in (10.8.15) separates into the
eigenvalue equations

d2 X
d x2 = − λ1 X(x) and d

2 Y
d y2

= − λ2 Y(y) (10.8.16)

subject to
X(0) = X(a) = 0 and Y(0) = Y(b) = 0,

where λ1 + λ2 = k2ν . These are identical to the eigenvalue equation in the stretched
string problem and so we know that the eigenvalues are

λ1 =
m2 π2
a2 ,m = 1, 2, . . . and λ2 =

n2 π2

b2
, n = 1, 2, . . . (10.8.17)

and the corresponding eigenfunctions are

uν(x, y) = um,n(x, y) = Xm(x) Yn(y) = sin mπxa sin nπyb . (10.8.18)

Further, since k2ν = λ1 + λ2 = π2
(
m2

a2

)
, the corresponding time dependence is given by

Tm,n(t) = am,n cosωm,n t + bm,n sinωm,n t (10.8.19)

with ωm,n = πc
√

m2

a2 + n2
b2 ,m and n = 1, 2, . . .. Thus, each pair of integers (m, n) de-

�nes a distinctnormalmode of vibration of themembrane and the complete solution
of the two-dimensional wave equation with homogeneous conditions at rectangular
boundaries is the superposition

ψ(x, y; t) =
∞∑
m=1

∞∑
n=1

[am,n cosωm,n t + bm,n sinωm,n t] sin
mπx
a sin nπyb . (10.8.20)

This is a double Fourier sine series and so equations (10.8.10) and (10.8.11) for the
coe�cients reproduce the familiar Euler formulae. Speci�cally, if we impose initial
conditions

ψ(x, y; 0) = u0(x, y) and ∂ψ
∂t

∣∣∣
t=0

= v0(x, y).

we have

am,n =
4
ab

a∫
0

b∫
0

u0(x, y) sinmπ
x
a sin

nπy
b dxdy (10.8.21)
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and

bm,n =
4

ab ωm,n

a∫
0

b∫
0

v0(x, y) sin
mπx
a sin nπyb dxdy. (10.8.22)

It is interesting to explore the properties of the individual normal modes. Because

sin mπxa = 0 at x = a
m , 2am , . . . , (m − 1) am

and
sin nπyb = 0 at y = bn ,

2b
n , . . . , (n − 1)bn ,

the (m, n) normal mode,

ψm,n(x, y; t) = sin mπxa sin nπyb [am,n cosωm,n t + bm,n sinωm,n t],

has (m − 1) nodal lines parallel to the y-axis and (n − 1) nodal lines parallel to the
x-axis. Every point on each of these lines remains at rest for all t.

Two modes can possess the same frequency if ab is a rational number. When that
happens we say that the frequency is degenerate because it is associated with more
than one eigenfunction. A simple example is a�orded by a square membrane since
then every pair of transposed integers de�nes a pair of normal modes with the same
frequency. For instance, the (2, 1) and (1, 2) modes both have frequency

√
5πc
a . More-

over, any linear combination of the (2, 1) and (1, 2) modes,

ψ(x, y; t) =
(
A sin 2πx

a sin πya + B sin πxa sin 2πy
a

)
cos
√
5cπ
a t,

represents a harmonicmotionwith the same frequency. These solutions are calledhy-
brid modes and are vectors in the space spanned by the normal modes. The hybrid
modes have nodal curves whose location depends on the relative value of the coe�-
cients A and B.
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11 Special Functions
11.1 Introduction

The “special functions” of mathematical physics are simply functions that occur
so frequently in the solution of physical problems that they have been studied exhaus-
tively resulting in an unusually complete knowledge of their properties. We made the
acquaintance of a number of these functions in the last Chapter. Nowwhat we need to
do is learn enough about them that acquaintancewaxes into friendship or at least into
that level of familiarity needed to feel comfortable when they arise in the solution of
boundary value problems. And, to promote that sense of comfort, we shall solve prob-
lems drawn from several �elds of physics. More often than not, the problems will be
classi�ed not by their physical origin but by their spatial symmetry.

We shall commence with a study of spherical harmonics.

11.2 Spherical Harmonics: Problems Possessing Spherical
Symmetry

11.2.1 Introduction

As we learned in Section 10.4, spherical harmonics are eigenfunctions of the angular
part of the Laplacian di�erential operator∇2 when it is expressed in spherical coordi-
nates. Thus, they arise in descriptions of electromagnetic phenomena and of classical
and quantummechanical wave motion. This also means that they are eigenfunctions
of the orbital angular momentum operator in quantum mechanics and so they �g-
ure in the description of molecules, atoms and nuclei and even in some models of
sub-nuclear or quark matter. All of which is to say, spherical harmonics warrant our
attention.

We start by reviewing a few lines from Section 10.4. Substitution of a separated
solution u(r, θ, φ) orψ(r, θ, φ) = R(r)Y(θ, φ) into theHelmholtz equation or Laplace’s
equation resulted in the following equation for Y:

1
sin θ

∂
∂θ

(
sin θ ∂Y∂θ

)
+ 1
sin2 θ

∂2 Y
∂φ2 = − λ1 Y(θ, φ). (11.2.1)

Accompanied by suitable boundary conditions, this is an eigenvalue equation and the
eigenfunctions are found by performing a second separation of variables.

Speci�cally, we set Y(θ, φ) = Θ(θ)Φ(φ) and obtain

d2 Φ
dφ2 = − λ2 Φ(φ), (11.2.2)
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and

1
sin θ

d
dθ

(
sin θ dΘdθ

)
+
(
λ1 − λ2

sin2 θ

)
Θ = 0 (11.2.3)

where 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π.
Since we want single-valued solutions we impose the boundary condition Φ(φ +

2π) = Φ(φ). This implies that

λ2 = m2 and Φ = Φm(φ) =
1√
2
eimφ , m = 0, ±1, ±2, . . . (11.2.4)

where we have included a normalization factor.
We now turn our attention to equation (11.2.3) which can be rendered more fa-

miliar by a transformation of the independent variable. In terms of the new variable
x = cos θ, (11.2.3) becomes

(1 − x2)d
2 P
d x2 − 2x

dP
dx +

(
λ − m2

1 − x2

)
P = 0 (11.2.5)

where P(x) = Θ(cos−1 x) and −1 ≤ x ≤ 1. Note that we have suppressed the subscript
on λ1 . This is a variant of Legendre’s equation called the associated Legendre equa-
tion. Like the original Legendre DE, which corresponds to setting m = 0 in (11.2.5), it
has regular singular points at x = ±1. Therefore, the boundary condition that wemust
impose on its solutions is that they be bounded, |P(±1)| < ∞. We shall now use the an-
alytical tools of Chapter 9 to �nd the eigenfunctions that result from that imposition.

11.2.2 Associated Legendre Polynomials

Our �rst tentative move will be to expand P(x) in Frobenius series about the regular
singular points x = ±1. Our object is to determine its leading behaviour there.

Substituting P(x) =
∞∑
k=0
ck(x−1 )s+k , c0 ≠ 0 into (11.2.5) and equating the coe�cient

of the lowest power of (x − 1) to zero, we obtain the indicial equation

4s(s − 1) + 4s − m2 = 0 with roots s = ±m2 .

To remove a source of ambiguity, we shall restrict m ≥ 0 for the time being.
The root s = −m2 can be ruled out immediately because P(x) has to be bounded at

x = 1. Therefore, we must be able to write P(x) = (1 − x )
m
2 f (x) where f (x) is bounded

and non-vanishing at x = 1.
Next, we substitute P(x) =

∞∑
k=0
ck(x+1 )s+k , c0 ≠ 0 into (11.2.5) and again determine

the indicial equation. The result is the same as before and so smust again be set equal
to m

2 . This means that P(x) = (1 + x )
m
2 g(x) where g(x) is bounded and non-vanishing

at x = −1.
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Combining these two results, we conclude that P(x) can be expressed in the fac-
tored form

P(x) = (1 − x2 )
m
2 u(x) (11.2.6)

where u(x) must be bounded and non-vanishing at x = ±1. A di�erential equation for
u(x) can be found by substituting (11.2.6) into the associated Legendre equation. The
result is

(1 − x2)d
2 u
d x2 − 2(m + 1)x dudx + (λ − m − m2)u = 0. (11.2.7)

Since x = 0 is an ordinary point, the solutions of this DEwill have the Taylor series
representation u(x) =

∞∑
k=0
ck xk . Substitution into (11.2.7) and equation of coe�cients

of successive powers of x to zero results in the recurrence relation

ck+2 =
k(k − 1) + 2(m + 1)k − λ + m(m + 1)

(k + 1)(k + 2) ck , k ≥ 0. (11.2.8)

This relates the coe�cients of all even powers in u(x) back to c0 and of all odd powers
back to c1 . Thus, as we learned to expect in Chapter 9, we have obtained two linearly
independent solutions.

Applying standard convergence tests (the ratio test for example), one �nds that
the series diverge at x = ±1. However, there is a remedy at hand and it is one we have
invoked before.

If we choose λ so that ck+2 = 0 for some k, one of the series will terminate to
becomeapolynomialof degree k. Therefore, the requirement that |u(±1)| < ∞ implies
that

k(k − 1) + 2(m + 1)k − λ + m(m + 1) = 0,

or
λ = (m + k)(m + k + 1) for some k.

This has a familiar ring to it and to reinforce the familiarity we set m + k = l . The
eigenvalues λ are then speci�ed as

λ = l(l + 1), l ≥ m,m = 0, 1, 2, . . . . (11.2.9)

The corresponding solutions for u(x) are polynomials of degree l − m.
Normally, the next step would be to use the recurrence relation (11.2.8) to deter-

mine an explicit expression for u(x). However, it is less messy as well as more instruc-
tive tomake the determination in a somewhat di�erent way. As we know from Chapter
9, Legendre polynomials satisfy the equation

(1 − x2)d
2 Pl
d x2 − 2x

d Pl
dx + l(l + 1) Pl = 0. (11.2.10)
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Di�erentiating m times we obtain

(1 − x2) d
2

d x2

(
dm Pl
d xm

)
− 2(m + 1)x ddx

(
dm Pl
d xm

)
+ [l(l + 1) − m − m2]

(
dm Pl
d xm

)
= 0

which is identical to the DE for u(x). This enables us to make the identi�cation u(x) =
dm
d xm Pl(x) and conclude that the eigenfunction solutions of the associated Leg-
endre equation are

Pml (x) = (1 − x2 )
m
2 dm
d xm Pl(x), l = 0, 1, 2, . . . and 0 ≤ m ≤ l (11.2.11)

corresponding to the eigenvalues λ = l(l + 1). These functions are called associated
Legendre polynomials (but are polynomials only when m is even). We shall begin
an exploration of their properties by focussing on the subset we have met before, the
( m = 0) Legendre polynomials.

11.2.3 Properties of Legendre Polynomials

The explicit polynomial expression for Pl(x) that we found in Section 9.6 reads

Pl(x) =
1
2l

[l/2]∑
k=0

(−1 )k (2l − 2k)!
k!(l − 2k)!(l − k)! x

l−2k (11.2.12)

where [l/2] = l
2 if l is even and [l/2] = l−1

2 if l is odd . This can be recast in a form that
has a variety of uses, both practical and theoretical, by noticing �rst that

Pl(x) =
1
2l

dl
d xl

[l/2]∑
k=0

(−1 )k 1
k!(l − k)! x

2l−2k


and then that

(x2 −1 )l =
[l/2]∑
k=0

(−1 )k l!
k!(l − k)! x

2l−2k .

Combined, these two identities give us Rodrigues’ formula for Pl(x),

Pl(x) =
1
2l l!

dl
d xl

(x2 −1 )l . (11.2.13)

This formula was derived by Olinde Rodrigues (1795-1851) and appears in his doc-
toral thesis. After graduation from Université de Paris in 1815, Rodrigues became a
banker, a not uncommon fate for mathematicians then as now.

One can generate the lowest order polynomials fairly easily from Rodrigues’ for-
mula and thus con�rm what we found in Section 7.6:

P0(x) = 1, P1(x) = x, P2(x) =
1
2(3 x

2 −1), P2(x) =
1
2(5 x

3 −3x), . . . .
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Yet anotherway of generating the polynomials andmore importantly, of deducing
many of their properties is to make use of the so-called generating function

G(x, t) ≡ 1√
1 − 2xt + t2

=
∞∑
l=0

tl Pl(x), |t| < 1, |x| ≤ 1. (11.2.14)

The proof of this identity can be established by a “brute-force” method that begins
with the expansion

(1 − 2xt + t2 )−
1
2 = [1 + t(t − 2x) ]−

1
2 =

∞∑
m=0

(− 1
2 )(−

3
2 ) . . . (

1
2 − m)

m! tm(t − 2x )m ,

uses the binomial theorem to expand (t − 2x )m , and then performs an “inspired”
change of summation index to obtain

G(x, t) =
∞∑
l=0

[l/2]∑
k=0

(
−12

)l−k 1 · 3 · . . . (2l − 2k − 3)(2l − 2k − 1)
k!(l − 2k)! tl(−2x )l−2k

which is recognizable, after some simpli�ation, as the left hand side of (11.2.14). We
shall establish it by a more elegant approach that employs integral representations of
Pl(x).

A contour integral representation follows immediately from Rodrigues’ formula
and the Cauchy di�erentiation formula:

Pl(z) =
1
2l

1
2πi

∫
C

(ζ 2 −1 )l

(ζ − z )l+1
dζ (11.2.15)

where C is any simple closed contour enclosing thepoint ζ = z. This is calledSchlä�i’s
integral representation.

Ludwig Schlä�i (1814-1895) was a Swiss geometer and complex analyst.
We shall choose C to be a circle about z with radius |

√
z2 −1| in which case any

point on C is de�ned by

ζ = z +
√
z2 −1 eiθ , 0 ≤ θ ≤ 2π.

It does not matter which branch of
√
z2 −1 is used here so long as we are consistent.

A little algebraic manipulation then gives us

ζ 2 −1 = 2(ζ − z)(z +
√
z2 −1 cos θ) and dζ = i(ζ − z)dθ.

Therefore, substituting into (11.2.15), we obtain Laplace’s integral representation,

Pl(z) =
1
π

π∫
0

(z +
√
z2 −1 cos θ )l dθ. (11.2.16)
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This is the representation we need for the generating function identity. Substituting
(11.2.16) into the right hand side of (11.2.14) and interchanging the order of summation
and integration, we have

∞∑
l=0

tl Pl(x) =
1
π

π∫
0

∞∑
l=0

tl(x +
√
x2 −1 cos θ )l dθ

= 1
π

π∫
0

dθ
1 − tx − t

√
x2 −1 cos θ

= 1√
1 − 2tx + t2

= G(x, t),

where the evaluation of the integral over θ is done by residue calculus (or by refer-
ence to a set of integral tables). This is just (11.2.14) written in reverse order and so our
derivation is complete.

The generating function readily yields the values assumed by Pl(x) at a number
of special points. For example, at x = 1, we have

∞∑
l=0

tl Pl(1) = G(1, t) =
1

1 − t =
∞∑
l=0

tl , |t| < 1.

Therefore,

Pl(1) = 1 for all l ≥ 0. (11.2.17)

At x = 0, we have
∞∑
l=0

tl Pl(0) = (1 + t2 )−
1
2 = 1 − 1

2 t
2 +
(
−12

)(
−32

)
t4
2 + . . . .

Therefore,

Pl(0) =


0 if l is odd

(−1 )
l
2 l!

2l
( l
2
)2 if l is even . (11.2.18)

At x = −1, we have
∞∑
l=0

tl Pl(−1) =
1

1 + t =
∞∑
l=0

(−t )l

and so,

Pl(−1) = (−1 )l for all l ≥ 0. (11.2.19)
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More generally,

Pl(−x) = (−1 )l Pl(x) (11.2.20)

which follows from

G(−x, −t) = 1√
1 − 2(−x)(−t) + (−t )2

= G(x, t)

or
∞∑
l=0

Pl(−x)(−t )l =
∞∑
l=0

Pl(x) tl .

The generating function is also the source of a number of useful identities con-
necting Legendre polynomials of di�erent orders. These are found by di�erentiating
G(x, t).

Di�erentiating with respect to t, we obtain

∂G
∂t = x − t

(1 − 2xt + t2 )
3
2
= x − t
(1 − 2tx + t2)

G(x, t) =
∞∑
l=0

l tl−1 Pl(x).

After cross-multiplying and then substituting for G(x, t) , this yields

(x − t)
∞∑
l=0

tl Pl(x) = (1 − 2xt + t2)
∞∑
l=0

l tl−1 Pl(x)

or
∞∑
l=0

l tl−1 Pl(x) −
∞∑
l=0

(2l + 1)x tl Pl(x) +
∞∑
l=0

(l + 1) tl+1 Pl(x) = 0.

Equating coe�cients of like powers of t, we �nd that this implies

(2l + 1)x Pl(x) = (l + 1) Pl+1(x) + l Pl−1(x), l = 1, 2, 3, . . . . (11.2.21)

This is called a recursion relation.An immediate application of it is to determine
all Legendre polynomials from a knowledge of P0(x) = 1 and P1(x) = x.

If we di�erentiate G(x, t) with respect to x rather than t, we obtain

∂G
∂x = t

(1 − 2xt + t2 )
3
2
= t
1 − 2xt + t2

G(x, t) =
∞∑
l=0

tl P′l(x), P′l(x) ≡
d Pl
dx .

Cross-multiplication followed by substitution for G(x, t) makes this read
∞∑
l=0

tl+1 Pl(x) = (1 − 2xt + t2)
∞∑
l=0

tl P′l(x).

Equating coe�cients of like powers of t, we �nd the second recursion relation:

Pl(x) = P′l+1(x) − 2x P′l(x) + P′l−1(x), l = 1, 2, 3, . . . . (11.2.22)
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Many other recursion relations can be derived from linear combinations of these
two basic ones including, for example,

(2l + 1) Pl(x) = P′l+1(x) − P′l−1(x)
l Pl(x) = x P′l(x) − P′l−1(x)

P′l+1(x) = x P′l(x) + (l + 1) Pl(x)
(x2 −1) P′l(x) = lx Pl(x) − l Pl−1(x). (11.2.23)

Wenow turnour attention to thoseproperties of Legendrepolynomialswhichbear
directly on their relevance in the solution of boundary value problems. These are or-
thogonality, normalization and completeness. Since the polynomials are solutions of
the Sturm-Liouville eigenvalue problem

d
dx

[
(1 − x2)d Pldx

]
= −l(l + 1) Pl(x) with | Pl(±1)| < ∞, (11.2.24)

they are mutually orthogonal with respect to the weight function ρ(x) = 1:

1∫
−1

Pl(x) Pm(x)dx = 0 if l ≠ m. (11.2.25)

Verifying this provides an instructive example of the utility of Rodrigue’s formula.
Taking l < m, we have

1∫
−1

Pl(x) Pm(x)dx =
1

2l+m
1
l!m!

1∫
−1

[
dl
d xl

(x2 −1 )l
][

dm
d xm (x

2 −1 )m
]
dx. (11.2.26)

Integrating by parts, we obtain

1∫
−1

dl
d xl

(x2 −1)l d
m

d xm (x
2 −1)mdx

= dl−1
d xl−1

(x2 −1 )l d
m

d xm (x
2 −1 )m

∣∣∣∣x=1
x=−1

−
1∫

−1

dl
d xl

(x2 −1 )l d
m+1

d xm+1 (x
2 −1 )m dx.

The integrated term vanishes because dl−1
d xl−1 (x

2 −1 )l has simple zeros at the end-points
x = ±1. We now repeat the integration by parts l−1 times. In each of these integrations
the integrated term vanishes and we are left with

1∫
−1

dl
d xl

(x2 −1 )l d
m

d xm (x
2 −1 )m dx = (−1 )l

1∫
−1

(x2 −1) d
l+m

d xl+m
(x2 −1 )m dx. (11.2.27)
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The function (x2 −1 )m is a polynomial of degree 2m. Thus, if l > m, we are di�erenti-
ating it more than 2m times and so the result is zero. Therefore,

1∫
−1

Pl(x) Pm(x)dx = 0, l ≠ m.

If l does equal m, this integral becomes the normalization integral

Nl =
1∫

−1

[Pl(x) ]2 dx =
1
22l

1
(l! )2

(−1 )l
1∫

−1

(x2 −1 )l d
2l

d x2l
(x2 −1 )l dx

where we have used (11.2.26) and (11.2.27) with m = l. We know that

d2l
d x2l

(x2 −1 )l = (2l)!

and so,

Nl = (−1 )l (2l)!
22l(l! )2

1∫
−1

(x2 −1 )l dx.

The latter integral can be evaluated by repeated integration by parts. One �nds
1∫

−1

(x2 −1 )l dx = (−1 )l 2l+1 l!
1 · 3 · 5 · · · (2l + 1) .

Thus,
1∫

−1

[Pl(x) ]2 dx =
2

2l + 1 . (11.2.28)

The normalization integral can also be derived from the generating function.
Speci�cally, we can square G(x, t),

[G(x, t) ]2 = 1
1 − 2xt + t2

=
[ ∞∑
l=0

tl Pl(x)
]2

=
∞∑
l=0

∞∑
m=0

tl+m Pl(x) Pm(x),

and then integrate from −1 to 1 to obtain
1∫

−1

dx
1 − 2xt + t2

=
∞∑
l=0

∞∑
m=0

tl+m
1∫

−1

Pl(x) Pm(x)dx =
∞∑
l=0

t2l
1∫

−1

[Pl(x) ]2 dx (11.2.29)

where we have used the orthogonality of the Legendre polynomials to eliminate all
but the terms with m = l on the right hand side of the equation. Introducing a new
variable of integration y = 1−2tx + t2 the left hand side of the equation is found to be

1∫
−1

dx
1 − 2tx + t2

= 1
2t

(1+t )2∫
(1−t )2

dy
y = 1

t ln
(
1 + t
1 − t

)
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which has the power series expansion

1
t ln

(
1 + t
1 − t

)
= 2

∞∑
l=0

t2l
2l + 1 . (11.2.30)

Equating coe�cients of like powers of t in (11.2.29) and (11.2.30), we recover

Nl =
1∫

−1

[Pl(x) ]2 dx =
2

2l + 1 .

Orthogonality and normalization are conveniently combined in the single equa-
tion

1∫
−1

Pl(x) Pm(x)dx =
2

2l + 1 δl,m . (11.2.31)

As eigenfunctions of a Sturm-Liouville problem, Legendre polynomials form a
complete set: any function f (x) that is square-integrable with respect to the weight
ρ(x) = 1 on the interval −1 ≤ x ≤ 1 can be represented on that interval by the expan-
sion

f (x) =
∞∑
l=0

cl Pl(x) where cl =
2l + 1
2

1∫
−1

Pl(x′)f (x′)dx′. (11.2.32)

This is sometimes called a Fourier-Legendre series. The completeness relation for
Legendre polynomials is

∞∑
l=0

2
2l + 1 c

2
l =

1∫
−1

[f (x) ]2 dx (11.2.33)

and the closure relation is
∞∑
l=0

2l + 1
2 Pl(x) Pl(x′) = δ(x − x′). (11.2.34)

In theory at least, the coe�cients of like powers in an expansion over an in�-
nite set of polynomials can always be summed so that the expansion is converted to a
power series. This raises the question of how power series �t within what is in fact an
algebraic picture. The answer is straightforward but instructive. A Taylor series about
x = 0 is an expansion over the monomials 1, x, x2, x3, . . . and the algebraic counter-
part of Taylor’s Theorem is a theorem due to Weierstrass that this set is complete with
respect to any space of square integrable functions. However, they do not form an or-
thogonal set. Rather, once a weight function and interval of de�nition is given, one
has to form orthogonal linear combinations of the monomials. There are well-de�ned
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methods for doing so, the most general being the Gram-Schmidt orthogonalization
procedure which constructs successively polynomials of degree l that are orthogonal
to the polynomials of degree 0, 1, 2, . . . l −1. The outcome is a set of orthogonal poly-
nomials that is unique to the choice of interval and weight function used. We will dis-
cuss this in more detail in a subsequent section. For now it su�ces to know that the
orthogonalization process in the case of the interval −1 ≤ x ≤ 1 and weight ρ(x) = 1
results in the Legendre polynomials.

11.2.4 Problems Possessing Azimuthal Symmetry

Returning to the discussion in Section 11.2.1 of what happens with separation of vari-
ables in problems with spherical symmetry, we now know that the angular depen-
dence will be governed by the complete set of functions

Pml (cos θ)
{

cosmφ
sinmφ

}
l = 0, 1, 2, . . . and 0 ≤ m ≤ l (11.2.35)

where we have used an explicitly real form for Φm(φ).
Many applications involve symmetry about the z-axis. This means that there will

be no dependence on the azimuthal angle φ and so it is often referred to as azimuthal
symmetry. A glance at (11.2.35) tells us that no φ -dependence necessarily impliesm =
0 and hence, a θ - dependence expressible in terms of Legendre polynomials rather
than associated Legendre polynomials. In the case of Laplace’s equation, for example,
a solution with azimuthal symmetry will have the Fourier-Legendre expansion

ψ(r, θ) =
∞∑
l=0

Rl(r) Pl(cos θ) (11.2.36)

where, as we saw in Section 10.4, Rl(r) is a solution of

d2 Rl
d r2 + 2

r
d Rl
dr −

l(l + 1)
r2 Rl = 0. (11.2.37)

The general solution of this equation is

Rl(r) = Al rl + Bl r−l−1 . (11.2.38)

As a concrete example, suppose thatwehave twoconductinghemispherical shells
of radius b, insulated from each other by a thin strip along their circle of contact and
maintained at potentials +V and −V , respectively. We seek the potential everywhere
inside the composite sphere.

This is an example of an interior problem: the lower limit of the range for r is zero
and, since we require a solution that is bounded there, we can set Bl = 0 for all l. (The
corresponding exterior problem would be to �nd the potential everywhere outside
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the sphere. In that case, the requirement of a solution that is zero at in�nity results in
Al = 0 for all l and the Bl have to be determined from the potential at the surface of
the sphere.) Thus, it only remains to impose the boundary condition

ψ(b, θ) =
{

+V , 0 ≤ θ < π
2

−V , π
2 < θ ≤ π

on the Fourier-Legendre series

ψ(r, θ) =
∞∑
l=0

Al rl Pl(cos θ).

Using (11.2.32), we �nd that this implies

Al =
1
bl

2l + 1
2

π∫
0

ψ(b, θ) Pl(cos θ) sin θdθ

and, since ψ(b, θ) is an odd function of cos θ while Pl(cos θ) has parity (−1 )l , this
becomes

Al =


1
bl

2l + 1
2 2V

1∫
0

Pl(cos θ)d(cos θ) if l is odd

0 if l is even

Recalling (from (11.2.23)) that

(2l + 1) Pl(x) = P′l+1(x) − P′l−1(x),

we �nd
1∫

0

Pl(cos θ)d(cos θ) =
1

2l + 1
[
Pl+1(x) − Pl−1(x)

]x=1
x=0 .

But, Pl(1) = 1 for all l and Pl(0) = (−1 )
l
2 l!

2l ( l2 )2
if l is even and is zero otherwise. Thus,

1∫
0

Pl(cos θ)d(cos θ) =
(−1 )

l+1
2 (l + 1)!

2l+1
( l+1

2
)2 l (l odd).
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Therefore, the electrostatic potential at any point inside the sphere is

ψ(r, θ) = V
∞∑

l=1,3,5,...

(2l + 1)(−1 )
l−1
2 (l + 1)!

2l+1
( l+1

2
)2 l

( r
b

)l
Pl(cos θ).

As a further example we shall consider the problem of a conducting sphere in a
uniform electric �eld E0. Whatwe seek is the new, perturbed electrostatic potentialψ.

Because there are no charges present,∇2 ψ = 0. And, choosing our z-axis to be in
the direction of E0, we have azimuthal symmetry. Thus,

ψ(r, θ) =
∞∑
l=0

[Al rl + Bl r−l−1] Pl(cos θ).

Taking the origin to be at the centre of the sphere, the e�ect of the perturbing
sphere should go to zero as r →∞. Therefore, we require

lim
r→∞

ψ(r, θ) = − E0 z = − E0 r cos θ = − E0 r P1(cos θ).

It then follows that Al = 0 for all l ≥ 2 (as one would expect for an exterior problem)
and A1 = − E0.

The conducting sphere must be at a constant value of potential and so, denoting
the sphere’s radius by a, we have the boundary condition

ψ(a, θ) = a constant = A0 +B0a +
(B1
a2
)
P1(cos θ) +

∞∑
l=2

Bl
Pl(cos θ)
al+1

.
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In order that this hold for all θ , each coe�cient of a Pl(cos θ) with l ≠ 0 must vanish.
Thus, Bl = 0 for l ≥ 2 and B1 = E0 a3 which gives us

ψ(r, θ) = A0 +B0r − E0 r
(
1 − a

3

r3

)
P1(cos θ).

Since it is E=∇ψ rather than ψ itself that has physical signi�cance, the constant
A0 can be dropped. In addition, we know from Gauss’ Law that B0 is determined by
the net charge Q on the sphere: B0 = Q

4π ε0 . Therefore, our �nal answer is

ψ(r, θ) = 1
4π ε0

Q
r − E0 r

(
1 − a

3

r3

)
cos θ.

In e�ect, the sphere has perturbed the external �eld by adding both a monopole
term, 1

4π ε0
Q
r , and a dipole term, E0 a

3

r2 cos θ, corresponding to an induced dipole mo-
ment

p = a3 E0 .

11.2.5 Properties of the Associated Legendre Polynomials

From (11.2.11) and the Rodrigues’ formula for Pl(x), we canwrite down the correspond-
ing formula for Pml (x) immediately:

Pml (x) =
(1 − x2 )

m
2

2l l!
dl+m
d xl+m

(x2 −1 )l , m = 0, 1, 2, . . . , l, l = 0, 1, 2, . . . . (11.2.39)

This identity yields well-de�ned functions even if m is negative, provided that |m| ≤
l. However, they are not independent of their positive m counterparts since one can
show that

P−ml (x) = (−1 )m (l − m)!
(l + m)! P

m
l (x), 0 ≤ m ≤ l. (11.2.40)

From the recursion formulas for Pl(x) one can readily obtain formulas for Pml (x).
Of particular use are them-raising andm-lowering relations,

mx Pml (x) + (1 − x2)
d Pml
dx = (1 − x2 )

1
2 Pm+1l (x)

mx Pml (x) − (1 − x2)
d Pml
dx = (l + m)(l − m + 1)(1 − x2 )

1
2 Pm−1l (x), (11.2.41)

and the l-raising and l-lowering relations,

(l + 1)x Pml (x) − (1 − x2)
d Pml
dx = (l − m + 1) Pml+1(x)

lx Pml (x) + (1 − x2)
d Pml
dx = (l + m) Pml−1(x). (11.2.42)
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As for parity, we know already that Pl(−x) = (−1 )l Pl(x). Therefore, since

dm

d(−x )m
= (−1 )m dm

d xm ,

Pml (−x) = (−1 )l+m Pml (x). (11.2.43)

And, in regard to special values, it is obvious that Pml (±1) = 0.
Ofmost interest to us are the properties the associated Legendre polynomials have

by dint of being eigenfunction solutions of a Sturm-Liouville problem. As we have
seen, the equation

d
dx

[
(1 − x2)dPdx

]
+
[
λ − m2

1 − x2

]
P = 0

together with the boundary condition |P(±1)| < ∞ has the eigensolutions P(x) =
Pml (x), 0 ≤ m ≤ l, corresponding to eigenvalues λ = l(l + 1), l = 0, 1, 2, . . . . Thus, the
set Pml (x), l = m,m + 1,m + 2, . . . for �xed m is complete and orthogonal with respect
to the weight function ρ(x) = 1 on the interval −1 ≤ x ≤ 1.

The statement of orthogonality is
1∫

−1

Pml (x) Pmk (x)dx = 0 for all l ≠ k. (11.2.44)

The associated Legendre polynomials satisfy a second orthogonality relation. It
arises because

d
dx

[
(1 − x2)d

2 Pml
dx

]
+ l(l + 1) Pml (x) =

m2

1 − x2 P
m
l (x), | Pml (±1)| < ∞

is also an eigenvalue problem with eigenvalues, for �xed l, λ = −m2, 0 ≤ m ≤ l, and
weight function ρ(x) = 1

1−x2 . Thus,

1∫
−1

Pml (x) Pnl (x)
1 − x2 dx = 0 for all m ≠ n. (11.2.45)

Orthogonality needs to be accompanied by knowledge of the corresponding nor-
malization integral. For the physically relevant case, this means that we need to eval-
uate

Nl,m =
1∫

−1

[Pml (x) ]2 dx =
1∫

−1

(1 − x2 )m d
m Pl
d xm

dm Pl
d xm dx. (11.2.46)

Integrating by parts, we have

Nl,m = (1 − x2 )m d
m Pl
d xm

dm−1 Pl
d xm−1

∣∣∣∣1
−1
−

1∫
−1

d
dx

[
(1 − x2 )m d

m Pl
d xm

]
dm−1 Pl
d xm−1 dx.
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The integrated term is zero and the derivative in the integral is

d
dx

[
(1 − x2 )m d

m Pl
d xm

]
= −2mx(1 − x2 )m−1 d

m Pl
d xm + (1 − x2 )m d

m+1 Pl
d xm+1

which we can simplify by using Legendre’s equation. Di�erentiating (11.2.10) m − 1
times we have

(1 − x2)d
m+1 Pl
d xm+1 − 2mx

dm Pl
d xm = −[l(l + 1) − m(m − 1)]d

m−1 Pl
d xm−1 .

Thus,

Nl,m = [l(l + 1) − m(m − 1)]
1∫

−1

(1 − x2 )m−1
[
dm−1 Pl
d xm−1

]2
dx. (11.2.47)

The numerical factor in front of the integral can be rearranged to read (l+m)(l−m+1)
while the integral itself is recognizable as

Nl,m−1 =
1∫

−1

[Pm−1l (x) ]2 dx.

In other words,
Nl,m = (l + m)(l − m + 1)Nl,m−1

and if we apply the same procedure m times, this becomes

Nl,m = (l + m)(l − m + 1)(l + m − 1)(l − m + 2)Nl,m−2
= . . . =
= (l + m)(l + m + 1) . . . (l + 1)l . . . (l − m + 2)(l − m + 1)Nl,0

= (l + m)!
(l − m)!

1∫
−1

[Pl(x) ]2 dx. (11.2.48)

But the latter integral is just the normalization integral for the Legendre polyno-
mials and is given in (11.2.31). Therefore, our �nal result, combining the statement of
orthogonality and normalization, is

1∫
−1

Pml (x) Pmk (x)dx =
2

2l + 1
(l + m)!
(l − m)! δl,k . (11.2.49)

The statement of completeness is

1∫
−1

[f (x) ]2 dx =
∞∑
l=m

2
2l + 1

(l + m)!
(l − m)! [c

m
l ]2 (11.2.50)
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where

cml = 2l + 1
2

(l − m)!
(l + m)!

1∫
−1

Pml (x)f (x)dx,

m is a �xed positive integer, and f (x) is any function that is square integrable over the
interval −1 ≤ x ≤ 1. Seen in isolation, this result does not appear to add a signi�cant
new tool to our box of problem solving techniques. After all, no one would choose to
expand functions in terms of associated Legendre functions rather than themuch sim-
pler Legendre polynomials unless, of course, some other aspect of the problem gives
rise to a compelling reason. This is exactly what happens in problems with spherical
but not azimuthal symmetry and it is of such importance thatwewill devote a separate
sub-section to it.

11.2.6 Completeness and the Spherical Harmonics

Separation of variables using spherical coordinates has taught us that any problem
with spherical symmetry has a solution whose angular dependence can be expressed
in terms of the solutions of the eigenvalue problem

1
sin θ

∂
∂θ

(
sin θ ∂Y∂θ

)
+ 1
sin2 θ

∂2Y
∂φ2 = −λY(θ, φ)

where Y(θ, φ) is required to be single-valued and �nite over (the sphere) 0 ≤ φ ≤ 2π,
−1 ≤ cos θ ≤ 1. These solutions are

Y(θ, φ) = Pml (cos θ) e±imθ , m = 0, 1, 2, . . . , l (11.2.51)

corresponding to eigenvalues λ = l(l + 1), l = 0, 1, 2, . . . . Rather than carry the plus-
minus sign in the exponent, we shall allow m to assume both positive and negative
values. A further convenience is provided by inclusion of normalizing factors and a
phase that is useful in quantummechanical applications. Making all of these modi�-
cations , we obtain

Yml (θ, φ) = (−1 )m
√

2l + 1
4π

(l − m)!
(l + m)! P

m
l (cos θ) eimφ , l = 0, 1, 2, . . . ,

m = −l, −l + 1, . . . , 0, . . . , l − 1, l. (11.2.52)

This set of functions is called spherical harmonics.
Notice that

(Yml (θ, φ) )* = (−1 )m Y−ml (θ, φ), (11.2.53)

and
2π∫
0

π∫
0

(Yml (θ, φ) )* Ynk (θ, φ) sin θdθdφ = δl,k δm,n . (11.2.54)
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m = 0 m = 1 m = 2
l = 0 1√

4π

l = 1
√

3
4π cos θ

√
3
8π sin θ eiφ

l = 2
√

5
4π
( 3
2
)

− 1
4

√
30
π cos θ sin θ eiφ 1

8

√
30
π sin2 θ e2iφ

Since for each value of l there are 2l + 1 allowed values of m, each eigenvalue
λ = l(l + 1) corresponds to 2l + 1 eigenfunctions Yml (θ, φ) and so we say that it is
(2l + 1)− fold degenerate.

As eigenfunctions, the spherical harmonics are completewith respect to the space
of square-integrable functions de�ned on the surface of a sphere. Thus, any function
f (θ.φ) that is square integrable over the sphere can be represented by the convergent
series

f (θ, φ) =
∞∑
l=0

l∑
m=−l

cl,m Yml (θ, φ) (11.2.55)

where the coe�cients are given by

cl,m =
2π∫
0

π∫
0

(Yml (θ, φ) )* f (θ, φ) sin θdθdφ. (11.2.56)

The closure relation for spherical harmonics is
∞∑
l=0

l∑
m=−l

Yml (θ, φ)(Yml (θ′, φ′) )* =
δ(θ − θ′)δ(φ − φ′)

sin θ . (11.2.57)

We conclude the formal discussion of spherical harmonics by stating a fortuitous
theorem that separates a dependence on the angle between two directions into a de-
pendence on the directions themselves. Suppose that we have two coordinate vectors
r and r′ with spherical coordinates (r, θ, φ) and (r′, θ′, φ′), respectively. Trigonometry
determines the cosine of the angle α between the two vectors to be

cos α = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). (11.2.58)

Remarkably, when cos α becomes the argument of a Legendre polynomial, the de-
pendence on θ and φ separates totally from that on θ′ and φ′. In fact, what happens
is

Pl(cos α) =
4π

2l + 1

l∑
m=−l

(Yml (θ′, φ′))*Yml (θ, φ). (11.2.59)

This identity is known as the addition theorem. In the special case of α = 0, it
produces the sum rule

l∑
m=−l

| Yml (θ, φ) |2 =
2l + 1
4π . (11.2.60)
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A farmore important application, however, is in the expression of the inverse distance
1
|r−r′| between two points in terms of spherical harmonics. This arises in a wide range
of potential problems, from electromagnetic and gravitational theory to quantumme-
chanics. A further application of some importance involves the rotation of coordinate
axes.

11.2.7 Applications: Problems Without Azimuthal Symmetry

We begin by pursuing the observation about the inverse distance between two points.
The electrostatic potential at r due to a point charge q at r′ is

ψ(r) = 1
4πϵ0

q
|r − r′| .

If instead of a point charge we have a distribution with charge density ρ(r′) con�ned
to a region r′ < R, the electrostatic potential at r, r > R is

ψ(r) = 1
4π ϵ0

∫
V

ρ(r′)
|r − r′| d

3 r′. (11.2.61)

In either case, knowledge of the inverse distance 1
|r−r′| is critical.

The generating function for Legendre polynomials is

1√
1 − 2xt + t2

=
∞∑
l=0

tl Pl(x), |t| < 1

and the inverse distance can be cast into exactly this form:

1
|r − r′|=

1√
(r − r′)2

= 1√
r2 − 2rr′ cos α+r′2

= 1

r
√
1 − 2 r′r cos α+

( r′
r
)2 .
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Thus, identifying cos α with x and r′
r with t, we have

1
|r − r′|=

∞∑
l=0

r ′ l

rl+1 Pl
( cos α), r′ < r. (11.2.62)

Invoking the addition theorem, this becomes the fully separated expression

1
|r − r′|=

∞∑
l=0

l∑
m=−l

4π
2l + 1 r

′ l ( Yml (θ′, φ′) )* 1
rl+1 Y

m
l (θ, φ) (11.2.63)

which, when substituted into equation (11.2.61), produces a representation of the po-
tential due to a distributed charge that has an immediate physical interpretation. The
representation is

ψ(r) = 1
ϵ0

∞∑
l=0

l∑
m=−l

1
2l + 1

Qml
rl+1 Y

m
l (θ, φ) (11.2.64)

where

Qml =
∫
V

(Yml (θ′, φ′))*r′lρ(r′) d3 r′. (11.2.65)

Evidently, the Qml are spherical components of the multipole moments of the
charge distribution. Therefore, the representation of ψ(r) in terms of them is called a
multipole expansion. Notice that each term has a distinctive angular distribution
and an inverse dependence on r that falls o� more rapidly with increasing l. The
lowest order multipole moments are the monopole,

Q0
0 =

1√
4π

∫
V

ρ(r′) d3 r′ =
1√
4π
q = 1√

4π
× (the total charge present),

the dipole,

Q±11 = ∓
√

3
8π (

p1∓i p2), Q0
1 =
√

3
4π

p3 where p=
∫
V

r′ρ(r′) d3 r′,

and the quadrupole,

Q±22 = 1
12

√
15
2π (Q11∓2i Q12 −Q22), Q±12 = ∓13

√
15
4π (Q13∓i Q23),

Q0
2 =

1
2

√
5
4π Q33 where Qij =

∫
V

(3 x′i x′j −r′2 δij)ρ(r′) d3 r′.

Thus, with respect to a Cartesian basis, our multipole expansion is

ψ(r) = 1
4π ϵ0

qr +p·rr3 +12

3∑
i,j=1

Qij
xi xj
r5 + . . .

 . (11.2.66)
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Evidently an expansion of a potential in terms of spherical harmonics is e�ectively
the same as an expansion of the source charge distribution in terms of its multipole
components. To reinforce our intuitive appreciation of this, we shall determine the
potential due to speci�c multipole con�gurations of discrete charges.

We start with a dipole constructed from a charge q located at z = a
2 and charge −q

at z = − a2 . The resulting potential at a point r is

ψ(r) = q
4π ϵ0

[
1

|r − a
2 k|

− 1
|r+ a2 k|

]
= q
4π ϵ0

1
r

[{
1 − 2 a2r cos θ+

( a
2r

)2}− 1
2

−
{
1 + 2 a2r cos θ+

( a
2r

)2}− 1
2
]

or,

ψ(r) = q
4π ϵ0

1
r

[ ∞∑
l=0

( a
2r

)l
Pl ( cos θ) −

∞∑
l=0

(−a
2r

)l
Pl ( cos θ)

]

= 2q
4π ϵ0

1
r

[( a
2r

)
P1 ( cos θ)+

( a
2r

)3
P3 ( cos θ) + . . .

]
.

Thus, at a distant point, r � a, the potential is

ψ(r) ' qa
4π ϵ0

P1 ( cos θ)
r2 = 1

4π ϵ0
qar cos θ

r3 = 1
4π ϵ0

p·r
r3

where p= qak is the dipole moment that we learned to associate with such a charge
distribution in introductory electricity and magnetism.

We shall now move the dipole o� the z-axis so that it can be combined with a
second dipole to form an electric quadrupole. To be as general as possible, we will
use an arbitrary azimuthal orientation and locate charge q at r′=

(
a√
2
, π4 , φ

′
)

and −q
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at r′′=
(

a√
2
, 3π4 , φ

′
)
. Again, we have

ψ(r) = q
4π ϵ0

[
1

|r − r′| −
1

|r − r′′|

]
but this time we have to use the addition theorem in the form

1
|r − r′|=

∞∑
l=0

l∑
m=−l

4π
2l + 1

r ′ l

rl+1
( Yml (θ′, φ′))* Yml (θ, φ), r > r′

to expand the two inversedistances. Then, since cos 3π
4 = − cos π4 , wehave Pml (cos 3π

4 ) =
Pml (− cos π4 ) = (−1 )l+m Pml (cos π4 ) and hence,

ψ(r) = q
4π ϵ0

∞∑
l=0

l∑
m=−l

4π
2l + 1

al

2l/2 rl+1
[1 − ( − 1 )l+m ]( Yml (π4 , φ

′) )* Yml (θ, φ).

The factor εl,m = 1 − (−1 )l+m vanishes for even values of l +m. Therefore, we �nd

ψ(r) = qϵ0

[
1

3
√
2
a
r2 Y

0
1 (
π
4 , φ

′) Y0
1 (θ, φ)+

1
5
a2
r3 Re

[
(Y1

2 (
π
4 , φ

′) )* Y1
2 (θ, φ)

]
+ O

(
a3
r4

)]
or, for r � a

ψ(r) '
√
2qa

4π ϵ0
1
r2 P1 ( cos

π
4 ) P1 ( cos θ)=

qa
4π ϵ0

cos θ
r2

As we would expect, this is the same as the result obtained for a dipole on the z -axis.
A dependence on the azimuthal angles enters the picture only when the relative size
of r and a justi�es inclusion of the a2

r3 term. However, as we shall now see this becomes
the leading term when we combine two dipoles to form a quadrupole.

The quadrupole is constructed by placing a second dipole a distance a from the
�rst and with its charges oriented so that the dipoles are anti-parallel. So, if the �rst
is at an azimuthal angle φ′, the second is at φ′ + π. Therefore, since

eim(φ
′+π) = eimπ eimφ

′
= (−1 )m eimφ

′
,

the potential due to the two dipoles is

ψ(r) = q
4π ϵ0

∞∑
l=0

l∑
m=−l

4π
2l + 1

al

2l/2 rl+1
[1−(−1 )l+m ][1−(−1 )m ]( Yml (π4 , φ

′) )* Yml (θ, φ).

The numerical factor χl,m = [1−(−1 )l+m][1−(−1 )m] results in all the lowest order terms
vanishing with the �rst non-zero term corresponding to l = 2,m = ±1 and the next to
l = 4,m = ±3 and ±1. Thus, for r � a

ψ(r) ' q
4π ϵ0

4π
5

a2
2 r3 8Re

[
( Y1

2 (
π
4 , φ

′) )* Y1
2 (θ, φ)

]
= 3q
4π ε0

a2
r3 sin θ cos θ cos (φ − φ′).
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An electric octupole can similarly be constructed from two quadrupoles and one �nds
that a further cancellation occurs leaving the l = 3 term as the leading one in the
spherical harmonic expansion of its potential. Generalizing, we can assert that the
potential due to an electric 2l -pole falls o� like r−l and has an angular dependence
determined by Yml (θ, φ) for r � a.

We now turn our attention to solving problems involving Laplace’s equation and
non-homogeneous boundary conditions. Suppose that we have a spherical shell of
radius R which is maintained at a potential V0 cos 2φ. Let us �nd the potential at any
point inside the sphere.

This is an interior problem and so the solution must have the characteristic r
-dependence that ensures boundedness at the origin. However, unlike the interior
problem of Section 11.2.5, this one manifestly lacks azimuthal symmetry. Therefore,
rather than use a simple Fourier- Legendre representation of the potential, we now
must work with the spherical harmonic expansion

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Alm rl Yml (θ, φ).

(This problem is more amenable to use of the equivalent explicitly real expansion

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=0

rl Pml ( cos θ)( alm cosmφ+ bml sinmφ).

However, the object of the exercise is to gain experience working with spherical har-
monics.)

Using (11.2.56) and the boundary condition ψ(R, θ, φ) = V0 cos 2φ, we have

Alm = V0

Rl

2π∫
0

π∫
0

(Yml (θ, φ) )* cos 2φ sin θdθdφ

or,

Alm = V0

Rl

√
2l + 1)
4π

(l − |m|)!
(l + |m|)!

2π∫
0

π∫
0

P|m|l (cos θ) e−imφ cos 2φ sin θdθdφ.

The integration over φ gives us
2π∫
o

e−imφ cos 2φdφ = 1
2

2π∫
0

e−imφ(e2iφ + e−2iφ)dφ =
{

0 if m ≠ ±2
π if m = ±2

This means, of course, that in addition to the restriction on m, we must restrict l to
l ≥ 2 . Proceeding with the θ integration, we have

2π∫
0

P2l (cos θ) sin θdθ =
1∫

−1

P2l (x)dx =
1∫

−1

(1 − x2)d
2 Pl
d x2 dx
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where we have made the substitution x = cos θ. Integrating twice by parts, we �nd

1∫
−1

(1 − x2)d
2 Pl
d x2 dx = 2x Pl(x)

∣∣1
−1 −2

1∫
−1

Pl(x)dx = 2[1 + (−1 )l] − 2
1∫

−1

Pl(x) P0(x)dx.

The last integral is zero because l ≥ 2 and the Legendre polynomials form an orthogo-
nal set. Therefore,

π∫
0

P2l (cos θ) sin θdθ =
{

0 if l is odd
4 if l is even

Collecting all this information, we conclude that

ψ(r, θ, φ) =
∞∑

l=2,4,...

4π V0

Rl

√
(2l + 1)
4π

(l − 2)!
(l + 2)! r

l[Y2
l (θ, φ) + Y−2l (θ, φ)]

=
∞∑

l=2,4,...

2V0(2l + 1)
(l − 2)!
(l + 2)!

( r
R

)l
P2l (cos θ) cos 2φ.

As a further application, consider two hemispherical shells of radius b separated
by a thin ring of insulation and maintained at potentials V and −V as shown in the
diagram above. The boundary condition at the surface of the sphere is

ψ(b, θ, φ) =
{

+V if 0 ≤ φ < π
−V if π < φ ≤ 2π

which is certainly not azimuthally symmetric. Therefore, if we wish to �nd the poten-
tial at anypoint inside the sphere,wewill have to resort a second time to the expansion

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Alm rl Yml (θ, φ).
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Using (11.2.56) plus our boundary condition at r = b, we determine the coe�cients
Alm to be

Alm = 1
bl

1∫
−1

2π∫
0

(Yml (θ, φ) )* ψ(b, θ, φ)d(cos θ)dφ

= V
bl

√
2l + 1
4π

(l − m)!
(l + m)!

1∫
−1

Pml (cos θ)d(cos θ)

 π∫
0

e−imφ dφ −
2π∫
π

e−imφ dφ


The factor in square brackets is

π∫
0

e−imφ dφ −
2π∫
π

e−imφ dφ = 2i
m [(−1 )m −1].

Thus, m can only assume odd integer values. Recalling the parity (−1 )l+m of associ-
ated Legendre functions, we realize that this means that l must also be restricted to
odd values. To evaluate the integral over cos θ we can either resort to integral tables
or we can evaluate term by term starting from l = 1,m = 1 and try to deduce an ex-
pression for the general term by interpolation. The �rst option sounds simple until we
discover that this is an uncommon integral and when listed, it is expressed in terms
of hypergeometric series. The second option sounds tedious at best and at worst an
opportunity to commit egregious arithmetical errors. And so, we search for a third op-
tion.

Comparing the diagram for this problem with that for the hemispherical shells in
Section 11.2.5, we realize that this is the same problem but with either the sphere or
the coordinate axes rotated through 90◦. Therefore, we can write down the solution.
It is

ψ(r, θ, φ) = V
∞∑

l=1,3,5,...

(2l + 1)(−1 )
l−1
2 (l + 1)!

2l+1
( l+1

2
)2 l

( r
b

)l
Pl(cos α),

but the angle α that appears here is not the polar angle but rather the angle between
r and the y-axis. Nevertheless, this is a major breakthrough because we can use the
addition theorem to relate Pl(cos α) to spherical harmonics in the angular coordinates
of r and of the y-axis. In fact, from (11.2.59) we have

Pl(cos α) =
4π

2l + 1

l∑
m=−l

(
Yml
(π
2 ,
π
2

))*
Yml (θ, φ).

Since cos π2 = 0, this becomes
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Pl(cos α) =
l∑

m=−l

(l − |m|)!
(l + m)! P

|m|
l (0) e−im

π
2 P|m|l (cos θ) eimφ

= 2
l∑

m=0

(l − m)!
(l + m)! P

m
l (0) Pml (cos θ) sinmφ.

The special value Pml (0) can be worked out and one �nds

Pml (0) =
2m
√
π

Γ
( l−m

2 + 1
)
Γ
( −l−m+1

2
) .

In our case, both l and m are odd. Therefore, the �rst gamma function in the denom-

inator can be replaced by
(
l − m
2

)
! = (l − m)!!

2
l−m
2

and the second by
√
π(−1 )

l+m
2 2

l+m
2

(l + m − 1)!! .

Collecting all this information and substituting into the expression for the potential,
we conclude that

ψ(r) = V
∞∑

l=odd

l∑
m=odd

(2l + 1)(l + 1)!
2l
( l+1

2 !
)2 l (−1 )

m+1
2

(l − m − 1)!!
(l + m)!!

( r
b

)l
Pl(cos θ) sinmφ

where (−1)!! and (0)!! are both understood to be 1.

11.3 Bessel Functions: Problems Possessing Cylindrical
Symmetry

11.3.1 Properties of Bessel and Neumann Functions

As we saw in Section 10.4, separation of variables applied to the Helmholtz and
Laplace’s equation when cylindrical coordinates are used results in a radial equation
that can be transformed into Bessel’s DE

d2 R
d ρ2

+ 1
ρ
dR
dρ +

(
1 − m

2

ρ2

)
R = 0, m = 0, 1, 2, . . . (11.3.1)

by the simple expedient of replacing the radial variable r by ρ = αrwhere α2 = k2 − λ2,
k2 is the Helmholtz equation parameter and λ2 is the separation constant associated
with the z-dependence. The parameter m2 is the separation constant associated with
the θ-dependence and was determined by imposition of the homogeneous boundary
condition that we have solutions that are single-valued functions of θ . The general
solution of (11.3.1) is the linear combination

R(r) = c1 Jm(αr) + c2 Nm(αr) (11.3.2)
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where Jm(x) andNm(x) are the Bessel andNeumann functions of orderm, respectively.
We solved for them explicitly in Chapter 9 and found the series representations (9.7.11)
and (9.7.33). What we need to do now is relate those of their properties that are most
germane to the solution of boundary value problems.

The Bessel functions are well behaved both at the origin and as x → ∞. In fact,
they “look” like lightly damped sine or cosine functions. Like sines and cosines, they
are oscillatory functions with in�nitely many zeros. However, the Bessel function ze-
ros are not equally spaced. With the sole exception of J0(x) all of the Jm(x) are zero at
x = 0. Moreover, using the �rst term in the power series (9.7.11), we see that

Jm(x) '
1

Γ(m + 1)

( x
2

)m
as x → 0. (11.3.3)

The Neumann functions are not well behaved at x = 0. N0(z) has a logarithmic
branch point there and Nm(z),m > 0, has a pole of order m. Thus,

N0(x) '
2
π ln x as x → 0, (11.3.4)

and

Nm(x) ' −
(m − 1)!

π

(
2
x

)m
as x → 0. (11.3.5)

The asymptotic or large x behaviour of the Bessel and Neumann functions can
be deduced from integral representations and the method of steepest descents; (see
Section 6.3). One �nds for x � m

Jm(x) ∼
√

2
πx cos

(
x − mπ2 − π4

)
(11.3.6)

and

Nm(x) ∼
√

2
πx sin

(
x − mπ2 − π4

)
. (11.3.7)

The complementarity of these two expressions re�ects the judiciousness of the choice
made for the de�nition of the Neumann functions.

Notice that the linear combinations

H(1)
m (x) = Jm(x) + i Nm(x) and H(2)

m (x) = Jm(x) − i Nm(x) (11.3.8)

have the asymptotic forms

H(1)
m (x) ∼

√
2
πx exp

[
i
(
x − mπ2 − π4

)]
(11.3.9)

and

H(2)
m (x) ∼

√
2
πx exp

[
−i
(
x − mπ2 − π4

)]
. (11.3.10)
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These are called Hankel functions or Bessel functions of the third kind.
Hankel functions are named for the complex analyst Hermann Hankel (1839-1873).

He worked with a who’s who of nineteenth century German mathematicians including
Kronecker, Möbius, Riemann and Weierstrass.

Recurrence relations for the Bessel functions can be derived directly from their
power series representation (9.7.11). Dividing it by xm and then di�erentiating, we �nd

d
dx

(
Jm(x)
xm

)
=

∞∑
k=1

(−1 )k

(k − 1)!(k + m)!
x2k−1

22k+m−1
. (11.3.11)

This can be related to Jm+1(x) by replacing k by k + 1 :

d
dx

(
Jm(x)
xm

)
=

∞∑
k=0

(−1 )k+1

k!(k + m + 1)!
x2k+1

22k+m+1
= − Jm+1(x)xm

which is valid for all m ≥ 0. A particularly useful special case occurs for m = 0:

d
dx J0(x) = − J1(x). (11.3.12)

Notice that repeated application of (11.3.11) , starting with them = 0 case, allows us to
relate each Jm(x) back to J0(x). In fact, we can write down a Rodrigues-like formula,

Jm(x) = xm
(
−1x

d
dx

)m
J0(x), (11.3.13)

which means that the di�erential operator − 1
x
d
dx is to be applied m times to J0(x) and

the result is then multiplied by xm .
Similarly,multiplying thepower series for Jm(x) by xm anddi�erentiating,wehave

d
dx [x

m Jm(x)] =
∞∑
k=0

(−1 )k

k!(k + m − 1)!
x2k+2m−1

22k+m−1
= xm Jm−1(x) (11.3.14)

which is valid for m ≥ 1.
Adding Jm+1(x) = − xm

d
dx

(
Jm(x)
xm

)
to Jm−1(x) =

1
xm

d
dx [x

m Jm(x)], we establish

the recurrence relation

Jm+1(x) + Jm−1(x) =
2m
x Jm(x). (11.3.15)

Subtracting them gives us

Jm+1(x) − Jm−1(x) = −2
d Jm
dx . (11.3.16)

One can show that Bessel functions of integral order have a generating function
of the form

exp
[
z
2

(
t − 1

t

)]
=

∞∑
m=−∞

Jm(z) tm , t ≠ 0 (11.3.17)
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where we have switched to a complex independent variable for reasons that will be-
come obvious when we look at applications. The proof is straightforward. From the
Taylor series representation of the exponential, we have

exp
[
z
2

(
t − 1

t

)]
=

∞∑
j=0

1
j!

( z
2

)j
tj ·

∞∑
k=0

(−1 )k
k!

( z
2

)k (1
t

)k

=
∞∑
j=0

∞∑
k=0

(−1 )k
j!k!

( z
2

)j+k
tj−k .

All that remains is to replace the sum over j by one overm = j−k since that transforms
our power series into

exp
[
z
2

(
t − 1

t

)]
=

∞∑
m=−∞

∞∑
k=0

(−1 )k

k!(k + m)!

( z
2

)2k+m
tm =

∞∑
m=−∞

Jm(z) tm .

Notice that the generating function series is a Laurent rather than a Taylor series
and that Laurent’s theorem gives us an immediate contour integral representation of
Jm(z):

Jm(z) =
1
2πi

∫
C

t−m−1 e
z
2 (t− 1

t ) dt (11.3.18)

where C is a closed contour about the origin. Changing the integration variable to u =
zt
2 this becomes

Jm(z) =
1
2πi

( z
2

)m ∫
C

u−m−1 exp
(
u − z

2

4u

)
du (11.3.19)

which we recognize as the integral representation (9.9.33) of Chapter 9.
A Fourier integral representation is obtained by setting t = eiθ . The generating

function becomes

eiz sin θ =
∞∑

m=−∞
eimθ Jm(z) (11.3.20)

with Fourier coe�cients

Jm(z) =
1
2π

π∫
−π

eiz sin θ e−imθ dθ. (11.3.21)

Because Bessel’s equation is of the Sturm-Liouville form, the radial equation
(11.3.1)

d2 R
d ρ2

+ 1
ρ
dR
dρ +

(
1 − m

2

ρ2

)
R = 0, ρ = αr =

√
k2 − λ2r (11.3.22)
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or
d
dr

(
r dRdr

)
− m

2

r R(r) = − α
2 rR(r)

becomes an eigenvalue equation with eigenvalue α2 as soon as we impose homoge-
neous boundary conditions on the general solution R(r) = c1 Jm(αr) + c2 Nm(αr). Let
us suppose that the range of r is 0 ≤ r ≤ a. Typically, one boundary condition will be
that R(r) be bounded at the origin: |R(0)| < ∞. This immediately eliminates the Neu-
mann functions from consideration and we conclude that R(r) ∝ Jm(αr). The second
condition will most likely be

either R(a) = 0 or dR
dr

∣∣∣∣
r=a

= 0

which implies that
either Jm(αa) = 0 or J′m(αa) = 0.

Denoting the nth zero of Jm(x) by xm,n and the nth zero of J′m(x) by ym,n , we see that
the eigenvalues are

either α2m,n =
x2m,n
a2 or α2m,n =

y2m,n
a2

and the corresponding (unnormalized) eigenfunctions are

Rn(r) = Jm(αm,n r), n = 1, 2, 3, . . . . (11.3.23)

These must comprise an orthogonal set with their orthogonality (with respect to
weight function w(r) = r) expressed by

a∫
0

Rn(r) Rp(r)rdr =
a∫

0

Jm(αm,n r) Jm(αm,p r)rdr = 0 for n ≠ p. (11.3.24)

The zeros of Jm(x) and J′m(x) are tabulated in standard references suchasAbramow-
icz and Stegun. For future convenience, we provide below a limited table containing
the �rst four zeros of the �rst �ve Bessel functions.

n = 1 n = 2 n = 3 n = 4

m = 0 2.404 5.520 8.654 11.792

m = 1 3.832 7.016 10.173 13.323

m = 2 5.135 8.417 11.620 14.796

m = 3 6.379 9.760 13.017 16.224

m = 4 7.586 11.064 14.373 17.616
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The determination of the norm of Jm(αm,n r) requires evaluation of the integral

Nm,n =
a∫

0

[Jm(αm,n r) ]2 rdr =
1
α2m,n

αm,n a∫
0

[Jm(x) ]2 xdx =
1
α2m,n

Im,n

where we have set x = αm,n r. Integrating once by parts, we have

Im,n =
1
2[Jm(x)]

2
∣∣∣∣x=αm,n a
x=0

−
αm,na∫
0

Jm(x) J′m(x) x2 dx.

But, from Bessel’s equation we have

x2 Jm(x) = m2 Jm(x) − x J′m(x) − x2 J′′m(x).

Therefore,

Im,n =
1
2[Jm(x)]

2
∣∣∣∣x=αm,n a
x=0

−
αm,na∫
0

J′m(x)[m2 Jm(x) − x J′m(x) − x2 J′′m(x)]dx,

or

Im,n =
{
x2
2 [Jm(x) ]2 −

m2

2 [Jm(x) ]2 +
x2
2 [J′m(x) ]2

}∣∣∣∣x=αm,n a
x=0

.

Thus, if Jm(αm,n a) = 0,

Nm,n =
a2
2 [J′m(αm,n a) ]2 =

a2
2 [Jm+1(αm,n a) ]2 (11.3.25)

where we have made use of the recurrence relation

d Jm
dx = − Jm+1(x) +

m
x Jm(x).

On the other hand, if J′m(αm,n a) = 0,

Nm,n =
a2
2

(
1 − m2

α2m,n a2

)
[Jm(αm,n a) ]2 . (11.3.26)

Thus, combining the orthogonality and normalization results, we have either

a∫
0

Jm(αm,n r) Jm(αm,p r)rdr =
a2
2 [Jm+1(αm,n a) ]2 δn,p (11.3.27)

or
a∫

0

Jm(αm,n r) Jm(αm,p r)rdr =
a2
2

(
1 − m2

α2m,n a2

)
[Jm(αm,n a) ]2 δn,p . (11.3.28)
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The further consequence of being solutions of a Sturm-Liouville problem is
the Jm(αm,n r), n = 1, 2, . . . , are a basis for the space of functions that are square-
integrable with respect to the weight function w(r) = r on the interval 0 ≤ r ≤ a. Thus,
any such function f (r) can be represented by the (mean convergent) series

f (r) =
∞∑
n=1

cm,n Jm,n(αm,n r)

where

cm,n =
2

a2[Jm+1(αm,n a) ]2

a∫
0

Jm(αm,n r)f (r)rdr, (11.3.29)

or

cm,n =
2(

a2 − m2

α2m,n

)
[Jm(αm,n a) ]2

a∫
0

Jm(αm,n r)f (r)rdr, (11.3.30)

depending on whether αm,n = xm,n
a or αm,n = ym,n

a , n = 1, 2, . . . .

11.3.2 Applications

Free Vibrations of a Circular Drum Head:
The transverse vibrations of a (two-dimensional) drumheadare describedby thewave
equation

∇2 ψ = 1
c2
∂2 ψ
∂ t2

where c =
√

T
µ , T = tension/length, µ = mass/area.

As we saw in Sections 10.4 and 10.8, the solution of this equation can be expressed as

ψ(r, t) =
∑
n
[ an cos kn ct+ bn sin kn ct] un (r)

with

∇2 un + k2n un = 0 and un(r) = 0 for r on the edge of the drum head,

where the latter condition follows from an assumption that the drum head is �xed
along its edges. If it is a circular drum head, we should use cylindrical coordinates
for r. The solutions of the Helmholtz equation in these coordinates were obtained in
Section 10.4. Since we have no z-dependence, the separation constant λ2 in that dis-
cussion must be zero and so, α2 = k2 . Thus, the solutions of the separated angular
and radial equations are

Θm(θ) = Am cosmθ + Bm sinmθ and Rm(r) = Cm Jm(kr) + Dm Nm(kr), m = 0, 1, 2, . . .
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where we have imposed the boundary condition in θ but not those in r.
We shall take the radius of the drum head to be a and its centre to be located at

r = 0. We then have as boundary conditions |u(0, θ)| < ∞ and u(a, θ) = 0. The �rst
of these implies that Dm = 0 for all m. The second implies that Jm(ka) = 0 which has
solutions km,n = xm,n

a where xm,n is the nth zero of Jm(x). This means that we obtain as
eigenfunctions of the Helmholtz equation the normal modes

um,n(r, θ) =
{
Jm(km,n r) cosmθ
Jm(km,n r) sinmθ

m = 0, 1, 2, . . . n = 1, 2, , . . . .

The frequencies ωm,n = km,n c = xm,n c
a ,m = 0, 1, 2, . . . , n = 1, 2, . . . , are the

natural frequencies of the drum head. Each frequency has two normal modes, one
with cosmθ and the other with sinmθ, and so is twofold degenerate. The exceptions
are the frequencies with m = 0 each of which has a single mode possessing radial
symmetry. From the values of xm,n given above, we see that the lowest modes in order
of frequency are

m, n normal mode frequency
(0, 1) J0(k0,1 r) 2.404 ca
(1, 1) J1(k1,1 r) cos θ, J1(k1,1 r) sin θ 3.832 ca
(2, 1) J2(k2,1 r) cos 2θ, J2(k2,1 r) sin 2θ 5.135 ca
(0, 2) J0(k0,2 r) 5.520 ca
(3, 1) J3(k3,1 r) cos 3θ, J3(k3,1 r) sin 3θ 6.379 ca
(1, 2) J1(k1,2 r) cos θ, J1(k1,2 r) sin θ 7.016 ca
(4, 1) J4(k4,1 r) cos 4θ, J4(k4,1 r) sin 4θ 7.586 ca
(2, 2) J2(k2,2 r) cos 2θ, J2(k2,2 r) sin 2θ 8.417 ca
(0, 3) J0(k0,3 r) 8.654 ca
(5, 1) J5(k5,1 r) cos 5θ, J5(k5,1 r) sin 5θ 8.779 ca
To impose initial conditions on the transverse displacement and velocity of the

drum head, we form the superposition of normal modes

ψ(r, θ, t) =
∞∑
n=1

∞∑
m=0

Jm(km,n r)[(am,n cosmθ + bm,n sinmθ) cosωm,n t

+ (cm,n cosmθ + dm,n sinmθ) sinωm,n t].

At t = 0 this gives us

u0(r, θ) ≡ ψ(r, θ, 0) =
∞∑
n=1

∞∑
m=0

Jm(km,n r)[am,n cosmθ + bm,n sinmθ]

and

v0(r, θ) ≡
∂ψ
∂t

∣∣∣∣
t=0

=
∞∑
n=1

∞∑
m=0

Jm(km,n r)ωm,n[cm,n cosmθ + dm,n sinmθ].
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These are Fourier-Bessel series in r as well as Fourier series in θ. Thus, invoking
(11.3.29) for Fourier-Bessel coe�cients and the Euler formulae for Fourier coe�cients,
we �nd

am,n =
2

π a2[Jm+1(xm,n) ]2

{
1
1
2

} a∫
0

2π∫
0

u0(r, θ) cosmθ Jm(km,n r)rdrdθ for
{
m ≠ 0
m = 0

}

bm,n =
2

π a2[Jm+1(xm,n) ]2

a∫
0

2π∫
0

u0(r, θ) sinmθ Jm(km,n r)rdrdθ

cm,n =
2

π a2 ωm,n[Jm+1(xm,n) ]2

{
1
1
2

} a∫
0

2π∫
0

v0(r, θ) cosmθ Jm(km,n r)rdrdθ for
{
m ≠ 0
m = 0

}

dm,n =
2

π a2 ωm,n[Jm+1(xm,n) ]2

a∫
0

2π∫
0

v0(r, θ) sinmθ Jm(km,n r)rdrdθ.

Heat Conduction in a Cylinder of Finite Length:

For our next application, we shall consider a metal cylinder of radius R and length
L whose surface is maintained at a constant temperature T1 . Initially the cylinder is
at a uniform temperature T0 . We want to �nd out how the temperature changes as a
function of time and position.

We locate the cylinder so that its central axis lies along the z-axis and its ends
correspond to z = 0 and z = L. The temperatureψ(r, t) at any pointwithin the cylinder
and at any time t will be a solution of the heat conduction equation

∇2 ψ = 1
D
∂ψ
∂t where D = κ

cρ ,

κ is the thermal conductivity, c is the speci�c heat and ρ is the density of the cylinder.
Since ψ(r, t) = T1 = a constant is a solution of this equation, we can set
ψ(r, t) =T1+ψ1(r, t) where ψ1(r, t) is a solution of the PDE that satis�es homo-
geneous boundary conditions at the surface of the cylinder. Separating variables,
ψ1(r, t) can be expressed as

ψ1(r, t) =
∑
γ

uγ (r) e−D k
2
γ t where ∇2 uγ + k2γ uγ = 0

and uγ(r) is subject to homogeneous boundary conditions in all three coordinates. As
ever, the requirement of single-valuedness implies that the angular dependence of the
uγ is given by a linear combination of cosmθ and sinmθ. Then, since | uγ(0, θ, z)| <
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∞ and uγ(R, θ, z) = 0, the radial dependence of the uγ is determined by the Bessel
functions Jm(αm,n r), αm,n =

xm,n
R . Thus, the uγ have the series representation

uγ(r, θ, z) =
∞∑
n=1

∞∑
m=0

Jm(αm,n r)[am,n cosmθ + bm,n sinmθ]

× [cγ ,m,n e
√
α2m,n − k2γ z + dγ ,m,n e−

√
α2m,n − k2γ z].

Now we impose the requirement that uγ(r, θ, 0) = uγ(r, θ, L) = 0. It then follows that

cγ ,m,n = − dγ ,m,n and
√
α2m,n − k2γ = iβ, βL = pπ, p = 1, 2, . . .

so that the �nal term in square brackets in uγ becomes proportional to sin pπz
L . Thus,

k2γ = k2m,n,p = α2m,n + β2 =
x2m,n
R2

+
p2 π2

L2

and the eigenfunctions (normal modes) corresponding to these eigenvalues are

um,n,p(r, θ, z) = Jm(αm,n r) sin
pπz
L [am,n,p cosmθ + bm,n,p sinmθ].

To complete the solution we now must impose the initial condition on

ψ(r, θ, z, t) = T1 +
∞∑
p=1

∞∑
n=1

∞∑
m=0

Jm(αm,n r) sin
pπz
L [am,n,p cosmθ + bm,n,p sinmθ] e−D k

2
m,n,p t .

Setting t = 0, we have

T0 − T1 =
∞∑
p=1

∞∑
n=1

∞∑
m=0

Jm(αm,n r) sin
pπz
L [am,n,p cosmθ + bm,n,p sinmθ].

Since the left hand side is constant, m must be restricted to zero. Thus, we lose one
summation and are left with the double series

T0 − T1 =
∞∑
p=1

∞∑
n=1

a0,n,p J0(α0,n r) sin
pπz
L

which is a Fourier Bessel and Fourier sine series. Using the formulae for the coe�-
cients of both such series, we �nd

a0,n,p =
4(T0 − T1)

L R2[J1(x0,n) ]2

R∫
0

L∫
0

J0(α0,n r) sin
pπz
L dzrdr.

Since x J0(x) = d
dx [x J1(x)], we have

a∫
0
J0(x)xdx = a J1(a). Therefore,

R∫
0

J0(α0,n r)rdr =
1
α20,n

α0,n R∫
0

J0(x)xdx =
R
α0,n

J1(α0,n R) =
R2
x0,n

J1(x0,n).
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Further, the integral
L∫
0
sin pπz

L dz =
L
pπ [1 − (−1 )

p] and so we obtain

a0,n,p =
4(T0 − T1)

pπ x0,n J1(x0,n)
[1 − (−1 )p].

Our �nal solution for the temperature is thus

ψ(r, θ, z) = T1 +
8(T0 − T1)

π

∞∑
p=1,3,5,...

∞∑
n=1

1
p x0,n J1(x0,n)

J0(α0,n r) sin
pπz
L e−D k

2
0,n,p t

where k20,n = α20,n +
p2 π2
L2 = x20,n

R2 + p2 π2
L2 .

At the centre of the cylinder, r = 0 and z = L
2 . Therefore, since J0(0) = 1 and

sin pπ
2 = (−1 )

p+1
2 for p = an odd integer, we �nd a temperature

Tc ≡ ψ
(
0, θ, L2

)
= T1 +

8(T0 − T1)
π

∞∑
p=odd

∞∑
n=1

1
p x0,n J1(x0,n)

(−1 )
p−1
2 e−D k

2
0,n,p t .

For most metals, this series converges rapidly. For example, let us consider a steel
cylinder of radius R = 0.1 m, length L = 1 m and D = 0.126× 10−4 m2

sec . The tables of
Bessel functions provide

x0,1 ' 2.40, x0,2 ' 5.52, J1(2.40) ' 0.52 and J1(5.52) ' −0.34.

This means that successive values of k20,n,p are

k20,1,1 = 576, k20,1,3 = 665., k20,1,5 = 823., k20,2,1 = 3.06 × 103, k20,1,3 = 3.14 × 103

and, at time t = 3mins, the corresponding exponents in successive terms of the series
are

−1.31, −1.51, −1.87, −6.93, −7.11.

This means in turn that exp
[
−(k20,2,1 − k20,1,1)Dt

]
= e−5.61 ×0.004 and so the n = 2

terms can be ignored . Therefore, after 3 minutes, the central temperature will have
decreased to

Tc = T1 +
8(T0 − T1)

π
1

(2.40)(0.52)

[
e−1.30 −13 e

−1.51 +15 e
−1.87 −17 e

−2.40 + − . . .
]

' T1 +
8(T0 − T1)

π
(0.223)

(2.40)(0.52)
' T1 +(0.455)(T0 − T1).

So, if the initial temperature is 500◦C and the surface temperature is 20◦C, the centre
will have cooled to Tc = 238◦C in just 3 minutes.
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Particle in a Cylindrical Box:
The Schrödinger equation for a particle of massm con�ned to a box but otherwise not
interacting with a �eld or with other particles is

− ~2
2m ∇

2 ψ = Eψ

with ψ = 0 at the walls of the box. Setting E = ~2 k2
2m and cancelling out common

factors, we convert the PDE toHelmholtz’ equation. Therefore, if the box is cylindrical,
with radius R and length L, we have precisely the same eigenvalue problem that we
solved in the heat conduction problem. So, without further e�ort, we can assert that

the energies available to the particle are Em,n,p =
~2
2m

[
x2m,n
R2

+
p2 π2

L2

]
corresponding

to the (unnormalized) wave functions

ψm,n,p(r, θ, z) = Jm
(
xm,n

r
R

)
sin pπzL

{
cosmθ
sinmθ

}

Acoustic Radiation:
As a�nal application,we shall consider soundwaves in a gas containedwithin a cylin-
drical box orwave guide. Oneway of describing them is in terms of condensations and
rarefactions or density �uctuations of the gas relative to a uniform background. The
�uctuations, ψ(r, t) ≡ ρ(r,t)− ρ0

ρ0 , where ρ0 is the uniform background density, can be
shown to satisfy the three-dimensional wave equation. Moreover, since there can be
nomotion normal to the (rigid) walls of the container, we know that the component of
the gradient of the density that is normal to each wall must vanish at that wall. Thus,
our problem is to solve

∇2 ψ = 1
c2
∂2 ψ
∂ t2

subject to n ·∇ψ(r, t)
∣∣
at the walls = 0

where c is the speed of sound in the gas and is determined by c2 = P0 γ
ρ0 , P0 is the

background pressure and γ is the ratio of heat capacities CP
CV .

Separating the time dependence, we again have

ψ(r, t) =
∑
γ

uγ (r)[ aγ cos kγ ct+ bγ sin kγ ct]

where the normal modes uγ(r ) are determined by the eigenvalue problem

∇2uγ + k2γuγ = 0 with n ·∇uγ(r)
∣∣∣
at the walls

= 0.

Assuming a cylindrical container of radius R and �nite length L and proceeding
as in the preceding applications, our new boundary condition translates into the re-
quirements

d
dr Jm(ar)

∣∣∣∣
r=R

= 0 and d
dz

[
cγe
√
a2−k2γ + dγe

√
a2−k2γ

]∣∣∣∣
z=0,L

= 0
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rather than those requiring the undi�erentiated functions to vanish. Therefore, in this
case the eigenfunctions (normal modes) are

umnp(r, θ, z) = Jm
(
ymn

r
R

)
cos pπzL

{
cosmθ
sinmθ

}

with eigenvalues k2mnp = y2mn
R2 + p2 π2

L2 where ymn is the nth zero of J′m(x). Initial values
ψ(r , 0 ) and ∂ψ

∂t

∣∣∣
t=0

can now be �t to superpositions of these modes.
Of more interest is the propagation of acoustic waves along a very long cylindrical

wave guide of radius R. Suppose that we generate the waves with a harmonic time
dependence and frequency ω : ψ(r, θ, z, t) = u(r, θ, z) e−iωt . Substituting this into
the wave equation, we obtain the Helmholtz equation∇2 u + k2 u = 0 again but with
k2 already determined via k2 = ω2

c2 . Therefore, the solutions are

umn(r, θ, z) = Jm(αmn r)[amn cosmθ + bmn sinmθ][cmn e
√
α2mn − k2z + dmn e−

√
α2mn − k2z].

In order that these represent waves propagating down the wave guide in the pos-
itive z-direction, we require dmn = 0 and

√
α2mn −ω

2

c2 = i κmn , κmn real, so that

ψmn(r, θ, z, t) = vmn(r, θ) e
i(κmn z−ωt) where vmn(r, θ) = Jm

( ymn
R r

){ cosmθ
sinmθ

}
.

The modes that are allowed to propagate down the guide are those for which κmn is
indeed real. Since κ2mn = ω2

c2 −
y2mn
R2 , we see that κ2mn becomes negative for frequencies be-

low the cut-o� frequency ωmn(min) = c
R ymn and the (m, n) mode is not propagated.

In fact, if one attempts to propagate the (m, n) mode at a frequency ω < ωmn(min),
one will have κ2mn =

ω2 − ω2
mn(min)
c2 = − β2mn < 0 resulting in a wave number κmn = ±i βmn

that is pure imaginary and a wave

ψmn(r, θ, z, t) = vmn(r, θ) e
− βmn z−iωt

that is exponentially damped or attenuated. Notice that the m = 0, n = 1 mode is
always propagated. This is because y01 = 0 (J′0(x) = − J1(x)) and since J0(0) = 1,

ψ01(r, θ, z, t) ∝ e
i(kz−ωt)

which is aplanewavepropagating in the+ z-directionwithwavenumber κ01 = k = ω
c .

11.3.3 Modi�ed Bessel Functions

The di�erential equation

d2 y
d x2 + 1

x
dy
dx −

(
1 + m

2

x2

)
y = 0 (11.3.31)
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is the same as Bessel’s DE but with x replaced by ix. Thus, its solutions are

y(x) =
{

Jm(ix)
Nm(ix)

}
.

However, in physical applications it is convenient to have the solutions expressed in
a form that is explicitly real for real values of x. Therefore, we de�ne the modi�ed
Bessel functions

Im(x) = e−im
π
2 Jm(ix) = (−i )m Jm(ix) =

∞∑
k=0

1
k!(k + m)!

( x
2

)2k
, (11.3.32)

and

Km(x) =
π
2 i

m+1 H(1)
m (ix). (11.3.33)

The choice of Km(x) as the second linearly independent solution is made to ensure
that the two functions exhibit complementary asymptotic behaviour. Speci�cally, for
x � 1,

Im(x) ∼
√

1
2πx e

x and Km(x) ∼
√

π
2x e

−x . (11.3.34)

For small values of x, x � 1, themodi�edBessel functionshave the limiting forms

Im(x) '
{

1
m!
( x
2
)m for m > 0

1 for m = 0
, and (11.3.35)

Km(x) '
{

(m−1)!
2
( x
2
)−m for m > 0

−(ln x
2 + γ) for m = 0

. (11.3.36)

Note that the Im(x) is well behaved at the origin but diverges at in�nity while the re-
verse is true for Km(x). Like the hyperbolic functions, neither Im(x) nor Km(x) hasmul-
tiple zeros.

Not surprisingly, the recurrence relations satis�ed by the modi�ed Bessel func-
tions are similar to those satis�ed by Jm(x). The most important ones are

Im+1(x) + Im−1(x) = 2 I′m(x), (11.3.37)

d
dx [x

m Im(x)] = xm Im−1(x) and d
dx

[
Im(x)
xm

]
= Im+1(x)xm (11.3.38)

Im−1(x) − Im+1(x) =
2m
x Im(x), (11.3.39)
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for Im(x) and

Km+1(x) + Km−1(x) = −2 K′m(x), (11.3.40)

d
dx [x

m Km(x)] = − xm Km−1(x) and d
dx

[
Km(x)
xm

]
= −Km+1(x)xm (11.3.41)

Km−1(x) − Km+1(x) = −
2m
x Km(x), (11.3.42)

for Km(x).
Because the modi�ed Bessel functions do not have multiple zeros, they cannot

satisfy homogeneous boundary conditions of the type found in Sturm-Liouville prob-
lems and so do not comprise complete orthogonal sets. Thus, when they �gure in the
solution of a boundary value problem, they are always coupled with functions that
do form complete orthogonal sets. As we shall see in the next sub-section, potential
problems with cylindrical symmetry provide a graphic illustration of this point.

11.3.4 Electrostatic Potential in and around Cylinders

Consider a cylinder of radius R and height L. One surface, either the top or the curved
lateral wall of the cylinder, is maintained at a non-zero and perhaps variable electro-
static potential V . Wewant to �nd the potential ψ(r, θ, z) at any point inside the cylin-
der. Since there are no charges present, the potential must satisfy Laplace’s equation,
∇2 ψ = 0. Using cylindrical coordinates and then separating variables in Section 8.4,
we found that the solutions of this equation could be expressed as one of two possible
superpositions: either

ψ(r, θ, z) =
∑
α,m

{
Jm(αr)
Nm(αr)

}{
cosh αz
sinh αz

}{
cosmθ
sinmθ

}
, α2 > 0

or

ψ(r, θ, z) =
∑
α,m

{
Im(|α|r)
Km(|α|r)

}{
cos |α|z
sin |α|z

}{
cosmθ
sinmθ

}
, α2 < 0

where, as usual, each set of braces is understood to be a linear combination of the
functions they contain. As we noted then, both superpositions have the r and z de-
pendence coupled in such a way that one or the other but not both is oscillatory in
behaviour. Therefore, the choice between the two options ismade for us by the bound-
ary conditions in the problem: to satisfy homogeneous conditions at both boundaries
associated with a particular variable, we require a function with multiple zeros and
thus an oscillatory dependence on that variable.
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So, let us start with the boundary conditions

ψ(r, θ, 0) = ψ(r, θ, L) = 0 and ψ(R, θ, z) = V(θ, z).

To satisfy the homogeneous boundary conditions at the z boundaries, wemust choose
the second superposition, discard the cos |α|z possibility and set α2 = − n

2 π2
L2 , n =

1, 2, . . . . Next, the (implied) boundary condition |ψ(0, θ, z)| < ∞ requires that we
discard the Km(|α|r) possibility and so we arrive rather quickly at the following ex-
pression for the potential inside the “can”:

ψ(r, θ, z) =
∞∑
m=0

∞∑
n=1

Im
(nπr
L

)
sin nπzL [amn cosmθ + bmn sinmθ].

This double Fourier series can now be made to �t the remaining boundary condition
ψ(R, θ, z) = V(θ, z) and thus determine the coe�cients amn , bmn:

amn =
2

πL Im
( nπR

L
) { 1

1
2

} L∫
0

2π∫
0

V(θ, z) sin nπzL cosmθdθdz for
{
m ≠ 0
m = 0

}
,

bmn =
2

πL Im
( nπR

L
) L∫

0

2π∫
0

V(θ, z) sin nπzL sinmθdθdz.

Suppose, for example, that we halve the cylinder vertically and insert the usual very

thin strip of perfect insulator to permit a potential V(θ, z) =
{

V0 for 0 < θ < π
−V0 for π < θ < 2π

where V0 is a constant. Since it is an odd function of θ, amn = 0 for all m and

bmn =
4V0

πL Im
( nπR

L
) L∫

0

π∫
0

sin nπzL sinmθdθdz.
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Since
L∫
0
sin nπz

L dz =
L
nπ [1 − (−1 )

n] and
π∫
0
sinmθdθ = 1

m [1 − (−1 )
m], we have

bm,n =


1
mn

16V0

π2Im( nπRL )
for m and n odd

0 for m and n even
.

Thus,

ψ(r, θ, z) = 16V0
π2

∞∑
m=1,3,...

∞∑
n=1,3,...

1
mn

Im
( nπr

L
)

Im
( nπR

L
) sinmθ sin nπzL .

If, on the other hand, we had startedwith the boundary conditions ψ(R, θ, z) = 0,
ψ(r, θ, 0) = 0 and ψ(r, θ, L) = V(r, θ), we would have been obliged to go with the �rst
superposition, discarded the Nm(αr) possibility (to ensure boundedness at the origin)
and the cosh αz possibility (to meet the condition at z = 0) , and set α = αmn = xmn

R
where xmn is the nth zero of Jm(x). Thus, our expression for the potential inside the
“can” would become

ψ(r, θ, z) =
∞∑
m=0

∞∑
n=1

Jm(αmn r) sinh αmn z[amn cosmθ + bmn sinmθ]

where

amn =
2 cosech αmn L

π R2[Jm+1(αmn R) ]2

{
1
1
2

} 2π∫
0

R∫
0

V(r, θ) Jm(αmn r) cosmθrdrdθ for
{
m ≠ 0
m = 0

}

and

bmn =
2 cosech αmn L

π R2[Jm+1(αmn R) ]2

2π∫
0

R∫
0

V(r, θ) Jm(αmn r) sinmθrdrdθ.

As an example, let us take V(r, θ) = V0 = a constant. We would then have bmn = 0
for all m and amn = 0 for all m ≠ 0. Thus,

ψ(r, θ, z) =
∞∑
n=1

a0,n J0(α0,n r) sinh α0,n z

with

a0n =
2V0 cosech α0n L
R2[J1(α0n R) ]2

R∫
0

J0(α0n r)rdr.

As we learned in sub-section 11.3.2,
R∫
0
J0(α0n r)rdr = R

α0n J1(α0n R). Therefore, our �nal

expression for the potential under these boundary conditions is

ψ(r, θ, z) = 2V0

∞∑
n=1

J0
(
x0n r

R
)

x0n J1(x0n)
sinh

(
x0n z

R
)

sinh
(
x0n L

R
) .
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As a �nal example, we shall allow our cylinder to extend in�nitely far in both the
positive and negative z directions. The boundary conditions at the z boundaries must
become |ψ(r, θ, z)| < ∞ which immediately implies that α = ik, −∞ < k < ∞. The
appropriate superposition to represent ψ must then be

ψ(r, θ, z) =
∞∑
m=0


∞∫

−∞

[Am(k) Im(|k|r) + Bm(k) Km(|k|r)] eikz dk


{

cosmθ
sinmθ

}

where the summation over α has become a continuous sum or integral over k.
Suppose that we are interested in �nding the potential outside the cylinder, given

that it is maintained at a value V(θ, z) on the curved surface. The boundary condi-
tions in r must then be ψ(R, θ, z) = V(θ, z) plus the requirement that the potential be
bounded as r → ∞, |ψ(∞, θ, z)| < ∞. But we know from the asymptotic behaviour of
the modi�ed Bessel functions given in (11.3.34) that this latter requirement eliminates
the I′m s from consideration. Thus,

ψ(r, θ, z) =
∞∑
m=0

∞∫
−∞

Km(|k|r) eikz[am(k) cosmθ + bm(k) sinmθ]dk

where

am(k) =
1

2 π2 Km(|k|R)

{
1
1
2

} 2π∫
0

∞∫
−∞

V(θ, z) e−ikz cosmθdθdz for
{
m ≠ 0
m = 0

}

and ,

bm(k) =
1

2 π2 Km(|k|R)

2π∫
0

∞∫
−∞

V(θ, z) e−ikz sinmθdθdz.

Taking the relatively simple functional form V(θ, z) = V0 e−c|z|, V0 and c con-
stants, results in a restriction to m = 0 and yields

a0(k) = V0
2π Km(|k|R)

∞∫
−∞

e−c|z| e−ikz dz = V0
π Km(|k|R)

c
c2 + k2

.

Thus, in this case, our solution for the potential outside the cylinder becomes

ψ(r, θ, z) = V0
π

∞∫
−∞

Km(|k|r)
Km(|k|R)

c
c2 + k2

eikz dk.

11.3.5 Fourier-Bessel Transforms

As we have seen repeatedly, including the preceding example, when homogeneous
boundary conditions are imposed at the limits of an in�nite or semi-in�nite range the
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eigenvalue spectrum that results is continuous rather than discrete and the superpo-
sition of eigensolutions requires an integration or, more precisely, an integral trans-
formation. A further example is provided by Laplace’s equation in cylindrical coordi-
nates with the homogeneous boundary conditions that ψ be bounded both at r = 0
and as r → ∞. Bessel’s DE becomes a Sturm-Liouville eigenvalue equation again but
this time the eigenfunction solutions are the set Jm(αr) , 0 < α < ∞. To arrive at this
conclusion, we simply have to note that neither of the modi�ed Bessel functions nor
the Neumann function can be bounded at both limits while the Bessel function of the
�rst kind obviously can.

To conform with more conventional notation we shall set α = k, 0 < k < ∞. We
then have, from the properties of Sturm-Liouville eigenfunctions, orthogonality and
completeness with respect to the weight function ρ(r) = r. As it happens, the Bessel
functions are appropriately normalized already for this range of r and so the statement
of orthogonality is

∞∫
0

Jm(kr) Jm(k′r)rdr =
1
k δ(k − k

′) (11.3.43)

while the closure relation is
∞∫
0

Jm(kr) Jm(kr′)kdk =
1
r δ(r − r

′). (11.3.44)

The proof of the orthogonality statement follows from an application of equation
(10.5.25) and the generalized Green’s identity (10.5.18) to these eigenfunctions of the
Bessel di�erential operator. The result is

r
[
Jm(kr)

∂ Jm(k′r)
∂r − Jm(k′r)

∂ Jm(kr)
∂r

]∣∣∣∣∞
0
= [k2 −(k′ )2]

∞∫
0

Jm(kr) Jm(k′r)rdr.

If we now use the recurrence relation (11.3.16) and the asymptotic form (11.3.6), we can
express the left hand side of this equation as

lim
r→∞

1
π

[
k + k′√
kk′

sin(k − k′)r − k − k
′

√
kk′

(−1 )m cos(k + k′)r
]
.

Thus, dividing through by [k2 −(k′ )2], we have
∞∫
0

Jm(kr) Jm(k′r)rdr = lim
r→∞

1
π

[
1√
kk′

sin(k − k′)r
k − k′ + (−1 )m√

kk′
cos(k + k′)r
k + k′

]
.

The �rst term on the right hand side, in that limit, is a representation of 1√
kk′
δ(k−k′) =

1
k δ(k − k

′) while the second has a limit of zero. Thus, we get the result in equation
(11.3.43).
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The statement of completeness is that any function f (r) that is square-integrable
with respect to the weight function ρ(r) = r can be represented by the (mean) conver-
gent integral

f (r) =
∞∫
0

F(k) Jm(kr)kdk (11.3.45)

where

F(k) =
∞∫
0

f (r) Jm(kr)rdr. (11.3.46)

The functions f (r) and F(k) are Fourier-Bessel Transforms of each other.
An application for these transforms is the solution of Laplace’s equation in the

space between two in�nite planes located at z = 0 and z = L with ψ speci�ed on the
planes themselves and with the assumption that |ψ| → 0 as x and y or r → ∞ . In
a problem like this we have the option of using either Cartesian or cylindrical coor-
dinates. If we choose the former, ψ will be represented by a double Fourier integral
transform involving the x and y variables. If the latter, we will have a Fourier-Bessel
transform for the r-dependence and a Fourier series for the θ-dependence. We shall
illustrate with a speci�c example.

The electrostatic potential on a plane at z = 0 is given by the function

V(r, θ) =
{

0 for r < 1
V0√
r2 −1

for r > 1 .

We seek the potential everywhere above the plane given that it goes to zero uniformly
as z →∞and as r →∞. Evidently, cylindrical coordinates are appropriate and so we
represent the solution with the superposition

ψ(r, θ, z) =
∞∑
m=0

{
cosmθ
sinmθ

} ∞∫
0

Jm(kr)
{

ekz

e−kz

}
kdk. (11.3.47)

The boundary conditions in this problem provide considerable simpli�cation: be-
cause |ψ| → 0 as z →∞we discard the ekz possibility and because ψ is independent
of θ when z = 0 we restrict m to be zero. Thus,

ψ(r, θ, z) =
∞∫
0

A0(k) e−kz J0(kr)kdk. (11.3.48)

Therefore, since ψ(r, θ, 0) = V(r, θ) =
∞∫
0
A0(k) J0(kr)kdk, we have

A0(k) =
∞∫
1

V0√
r2 −1

J0(kr)rdr =
V0
k cos k
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where we have used integral 6.554#3 from Gradshteyn and Ryzhik. Substituting this
back into (11.3.48), we obtain the solution

ψ(r, θ, z) = V0

∞∫
0

cos k e−kz J0(kr)dk.

UsingGradshteyn andRyzhik onemore time, formula 6.611#1 in this case,we can eval-
uate this explicitly and �nd

ψ(r, θ, z) = V0 Re
[

1√
(z2 + r2 −1) + 2iz

]
, z ≥ 0, r > 1.

11.4 Spherical Bessel Functions: Spherical Waves

11.4.1 Properties of Spherical Bessel Functions

In Section 10.4 we discovered that separation of variables applied to the Helmholtz
equation ∇2 u(r)+ k2 u(r) = 0 when spherical coordinates are used results in a radial
equation

d2 R
d r2 + 2

r
dR
dr +

[
k2 −

l(l + 1)
r2

]
R = 0 (11.4.1)

with general solution

R(r) =
{

jl(kr)
nl(kr)

}
. (11.4.2)

The functions jl(kr) and nl(kr) are called spherical Bessel and Neumann functions
and are de�ned by

jl(x) =
√

π
2x Jl+ 1

2
(x) and nl(x) =

√
π
2x Nl+ 1

2
(x) = (−1 )l+1

√
π
2x J−l− 1

2
(x). (11.4.3)

From the power series representation of Jm(x) we have

Jl+ 1
2
(x) =

∞∑
k=0

(−1 )k

k!Γ(k + l + 3
2 )

( x
2

)2k+l+ 1
2 .

Thus, using

Γ(12 + n + 1) = (2n + 1)(2n − 1) . . . 1
2n+1

Γ(12) =
(2n + 1)!
22n+1 n!

√
π,

we �nd

jl(x) = 2l
∞∑
k=0

(−1 )k(k + l)!
k!(2k + 2l + 1)! x

2k+l . (11.4.4)
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Similarly, starting from the power series representation of J−l− 1
2
(x), one �nds

nl(x) =
(−1 )l

2l
∞∑
k=0

(−1 )k Γ(k − l + 1)
k!Γ(2k − 2l + 1) x

2k−l−1 . (11.4.5)

These two power series are instantly recognizable in the special case of l = 0:

j0(x) =
∞∑
k=0

(−1 )k

(2k + 1)! x
2k = sin x

x , (11.4.6)

and

n0(x) = (−1)
∞∑
k=0

(−1 )k

(2k)! x
2k−1 = −cos xx (11.4.7)

where we have used Γ(2n + 1) = (2n)! and Γ(n + 1) = n!. These two identities o�er a
valuable aid to one’s intuitive appreciation of j0(x) and n0(x).

From the recurrence relations satis�ed by Jl+ 1
2
(x) and J−l− 1

2
(x), one can derive cor-

responding relations for jl(x) and nl(x). One �nds that they both satisfy

jl−1(x) + jl+1(x) =
2l + 1
x jl(x), (11.4.8)

and

l jl−1(x) − (l + 1) jl+1(x) = (2l + 1)d jl(x)dx . (11.4.9)

Multiplying the �rst of these by l and then subtracting the second from it, we �nd

jl+1(x) = − x
l d
dx

(
jl(x)
xl

)
. (11.4.10)

We can generate successive j′l s and n′l s by applying this relation repeatedly to j0(x)
and n0(x), respectively. Thus, we write formally

jl(x) = x
l
(
−1x

d
dx

)l
j0(x) = (−1 )l xl

(
1
x
d
dx

)l (sin x
x

)
, l = 1, 2, . . . (11.4.11)

and

nl(x) = xl
(
−1x

d
dx

)l
n0(x) = (−1 )l+1 xl

(
1
x
d
dx

)l (cos x
x

)
, l = 1, 2, . . . . (11.4.12)

Evidently all spherical Bessel and Neumann functions can be expressed in terms of
sines and cosines. For example,

j1(x) =
sin x
x2 − cos x

x , n1(x) = −
cos x
x2 − sin x

x
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j2(x) =
(
3
x3 −

1
x

)
sin x − 3

x2 cos x, n2(x) = −
(
3
x3 −

1
x

)
cos x − 3

x2 sin x.

The sphericalHankel functions are de�nedby analogywith ordinaryHankel func-
tions:

h(1)l (x) = jl(x) + i nl(x) = (−x )l
(
1
x
d
dx

)l ( eix
ix

)
, (11.4.13)

h(2)l (x) = jl(x) − i nl(x) = (−x )l
(
1
x
d
dx

)l ( e−ix
−ix

)
. (11.4.14)

The small x behaviour of these functions is easily obtained from their power series
representations:

jl(x) '
2l l!

(2l + 1)! x
l = xl

(2l + 1)!! =
xl

(2l + 1) . . . 5 · 3 · 1 , for x � 1, (11.4.15)

nl(x) ' −
(2l)!
2l l!

1
xl+1

, for x � 1. (11.4.16)

To obtain the asymptotic behaviour, we could start from the behaviour reported
for the Bessel and Neumann functions in Section 11.3.1. A more direct approach how-
ever is to use equations (11.4.13) and (11.4.14) for the Hankel functions. For very large
x, x � 1 or l, the largest contributions in these formulas results from applying all
derivatives to eix rather than the inverse powers of x. Thus, we �nd

h(1)l (x) ∼ (−1 )l(i )l e
ix

ix = 1
x e

i[x−(l+1) π2 ] for x � 1, l, (11.4.17)

h(2)l (x) ∼ 1
x e

−i[x−(l+1) π2 ] for x � 1, l. (11.4.18)

Combining these to construct jl(x) and nl(x) we obtain

jl(x) ∼
1
x cos

(
x − (l + 1)π2

)
= 1
x sin

(
x − l π2

)
for x � 1, l, (11.4.19)

nl(x) ∼
1
x sin

(
x − (l + 1)π2

)
= −1x cos

(
x − l π2

)
for x � 1, l. (11.4.20)

The spherical Bessel and Neumann functions jl(kr) and nl(kr) are solutions of

d
dr

(
r2 d Rldr

)
− l(l + 1) Rl(r) = − k2 r2 Rl(r) (11.4.21)

which is of the Sturm-Liouville form. If we impose homogeneous boundary conditions
such as

| Rl(0)| < ∞ and Rl(a) = 0, (11.4.22)
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it becomes an eigenvalue equation with eigenvalue λ = k2 and weight function ρ(r) =
r2 . The �rst boundary condition requires us to discard the possibility of nl(kr) �guring
in the solution. The second condition requires jl(ka) = 0 or

ka = kl,n a = zl,n ≡ {the nth zero of jl(x)} = xl+ 1
2 ,n
≡ {the nth zero of Jl+ 1

2
(x)}.

Thus, the eigenfunctions that correspond to these boundary conditions are jl(kl,n r).
Eigenfunctions associated with di�erent eigenvalues are orthogonal with respect

to the weight function ρ(r) = r2:
a∫

0

jl(kl,n r) jl(kl,m r) r
2 dr = 0 for n ≠ m. (11.4.23)

The normalization of the eigenfunctions follows from that for ordinary Bessel
functions:

a∫
0

[jl(kl,n r) ]
2 r2 dr = π

2 kl,n

a∫
0

[Jl+ 1
2
(kl,n r) ]2 rdr =

π
2 kl,n

a2
2 [J′l+ 1

2
(kl,n a) ]2

= a
3

2 [j′l(kl,n a) ]
2 . (11.4.24)

If we now use the recurrence relation j′l(x) = l
x jl(x)− jl+1(x), we can give this result the

alternative expression
a∫

0

[jl(kl,n r) ]
2 r2 dr = a

3

2 [jl+1(kl,n a) ]
2 . (11.4.25)

The eigenfunctions form a complete as well as an orthogonal set. Thus, any func-
tion that is square integrable with respect to r2 on the interval 0 ≤ r ≤ a can be repre-
sented by the (mean) convergent series

f (r) =
∞∑
n=1

cn jl(kl,n r) (11.4.26)

where

cn =
2

a3[jl+1(kl,n a) ]
2

a∫
0

jl(kl,n r)f (r) r
2 dr. (11.4.27)

As with ordinary Bessel functions, when a →∞and the homogeneous boundary
conditions become | Rl(0)| < ∞ and lim

r→∞
| Rl(r)| < ∞, the eigenfunction solutions of

(11.4.21) are jl(kr) where k is now a continuous variable with range 0 ≤ k < ∞. The
orthogonality/normalization statement becomes

∞∫
0

jl(kr) jl(k
′r) r2 dr = π

2 k2
δ(k − k′), (11.4.28)



362 | Special Functions

the closure relation is
∞∫
0

jl(kr) jl(kr
′) k2 dk =

π
2 r2 δ(r − r

′), (11.4.29)

and any function f (r) that is square integrable with respect to r2 on 0 ≤ r < ∞ can be
represented by the Fourier Bessel transform

f (r) =
√

2
π

∞∫
0

jl(kr)F(k) k
2 dk (11.4.30)

where

F(k) =
√

2
π

∞∫
0

jl(kr)f (r) r
2 dr. (11.4.31)

11.4.2 Applications: Spherical Waves

Particle in a Spherical Box
The independent particle “shell model” of the atomic nucleus postulates that each
nucleon in a medium to large nucleus experiences an e�ective central potential due
to the sum of all of the pair-wise interactions it has with the other nucleons. In the
simplest version, the central potential is taken to be V(r) = −V0 for 0 ≤ r < R and, to
insure that the nucleons cannot escape, in�nite at r = R where R is the radius of the
nucleus in question. Under these circumstances, the time-independent Schrödinger
equation for each nucleon is just the Helmholtz equation

∇2 ψ + k2 ψ = 0 where k2 =
2m
~2
√
E − V0

and its solutions are subject to the boundary conditions lim
r→0
|ψ(r, θ, φ)| < ∞ and

ψ(R, θ, φ) = 0. From the foregoing analysis, we see immediately that the (unnormal-
ized) energy eigenfunctions are ψlmn(r, θ, φ) = jl(kl,n r) Y

m
l (θ, φ) and the correspond-

ing energy levels are Eln = ~2

2m k
2
l,n −V0 where kl,n = zl,n

R . Notice that the levels are
(2l+1) -fold degenerate. Allowing for the spin of the nucleons, they are in fact 2(2l+1)-
fold degenerate. It is this degeneracy that produces the so-called “magic numbers” of
nucleons associated with increased nuclear stability andwas the basis for developing
and elaborating on this simple model.

Acoustic Radiation
The energy eigenfunctions of the preceding application will, with one modi�cation,
also describe thenormalmodes of soundwaves in a gas that is contained in a spherical
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cavity. The one modi�cation is due to a change in boundary condition at the wall of
the container: we now have n ·∇ψ(r,θ, φ, t)

∣∣
r=R =

∂ψ
∂r

∣∣∣
r=R

= 0 and so kln = wln
R where

wln is the nth zero of j′l(x). Thus, the waves are described by the superposition

ψ(r, θ, φ, t) =
∞∑
n=1

∞∑
l=0

l∑
m=−l

jl(kln r) Y
m
l (θ, φ)[almn cosωln t + blmn sinωln t]

whereωln = c kln . The coe�cients aredeterminedby the initial conditionsψ(r, θ, φ, 0) =
u0(r, θ, φ) and ∂ψ

∂t

∣∣∣
t=0

= v0(r, θ, φ). Speci�cally,

almn =
2

R3[jl+1(kln R) ]
2

R∫
0

π∫
0

2π∫
0

u0(r, θ, φ) jl(kln r)(Y
m
l (θ, φ) )* r2 dr sin θdθdφ,

blmn =
2

ωln R3[jl+1(kln R) ]
2

R∫
0

π∫
0

2π∫
0

v0(r, θ, φ) jl(kln r)(Y
m
l (θ, φ) )* r2 dr sin θdθdφ.

To describe travelling rather than standing waves we use spherical Hankel func-
tions in place of the spherical Bessel functions. Thus, an lth partial wave in a super-
position will be either

ψlm(r, t) = h
(1)
l (kr) Yml (θ, φ) e−iωt or ψlm(r, t) = h

(2)
l (kr) Yml (θ, φ) e−iωt

depending on whether we want the wave to look asymptotically like an outgoing or
an incomingwave. To understand this point, we need look no further than equations
(11.4.17) and (11.4.18) which give the large argument behaviour of h(1)l (x) and h(2)l (x).
With the choice of e−iωt to describe the time dependence of waves generated with fre-
quency ω, the h(1)l (kr) combination will have the limit

ψlm(r, t) ∼ ( − i )l+1 e
i(kr−ωt)

kr Yml (θ, φ) as r →∞

which represents an outgoing spherical wave. The h(2)l (kr) combination on the other
hand has the limit

ψlm(r, t) ∼ i
l+1 e−i(kr+ωt)

kr Yml (θ, φ) as r →∞

which corresponds to an incoming spherical wave. (If we had chosen an e+iωt time
dependence, the incoming and outgoing roles would be reversed.)

Suppose that we have a monochromatic (�xed ω) source that generates at r = a
sound waves of the form

ψ(r, θ, φ, t) = F(θ, φ) e−iωt
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where F(θ, φ) is a known function determined by the nature of the source. For r > a,
the radiation is a superposition of outgoing waves with the same frequency,

ψ(r, θ, φ, t) = e−iωt
∞∑
l=0

l∑
m=−l

alm h(1)l (kr) Yml (θ, φ), k = ωc .

The coe�cients alm can be determined from the boundary condition at r = a:

F(θ, φ) =
∞∑
l=0

l∑
m=−l

alm h(1)l (ka) Yml (θ, φ),

and so

alm = 1
h(1)l (ka)

2π∫
0

π∫
0

(Yml (θ, φ) )* F(θ, φ) sin θdθdφ.

As an example let us assume that the waves are produced by a “split-sphere” an-
tenna for which

F(θ, φ) ≡ F(θ) =
{

f0 0 < θ < π
2

− f0 π
2 < θ < π

.

The waves will share the azimuthal symmetry of the antenna and so we need only
retain the m = 0 terms in the superpositions. Thus,

ψ(r, θ, φ, t) = ψ(r, θ, t) = e−iωt
∞∑
l=0

al h(1)l (kr) Pl(cos θ)

with

F(θ) =
∞∑
l=0

al h(1)l (ka) Pl(cos θ)

and

al =
2l + 1
2

1
h(1)l (ka)

fo
π
2∫

0

Pl(cos θ) sin θdθ − f0

π∫
π
2

Pl(cos θ) sin θdθ

 .
We have evaluated the term in square brackets in an earlier example. It yields zero for
even values of l and

al = (−1 )
l−1
2

f0
h(1)l (ka)

(2l + 1)(l + 1)(l − 1)!
2l+1

[( l+1
2
)
!
]2

for odd values of l. Therefore, our �nal solution is

ψ(r, θ, φ, t) = f0 e
−iωt

∞∑
l=1,3,...

(−1 )
l−1
2
(2l + 1)(l + 1)(l − 1)!

2l+1
[( l+1

2
)
!
]2 h(1)l (kr)

h(1)l (ka)
Pl(cos θ).
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When we are far from the source, we can replace h(1)l (kr) by its asymptotic form.
The wave then becomes

ψ(r, θ, φ, t) ∼ f (θ, φ) e
i(kr−ωt)

r

where

f (θ, φ) = 1
k

∞∑
l=0

l∑
m=−l

alm(−i )l+1 Yml (θ, φ).

For the special case of waves produced by a split-sphere antenna, we have

f (θ, φ) = − f0k

∞∑
l=1,3,5,...

(2l + 1)(l + 1)(l − 1)!
2l+1

[( l+1
2
)
!
]2 1

h(1)l (ka)
Pl(cos θ).

The relevance of the function f (θ, φ) becomes clear when we realize that the en-
ergy density at a point r associated with a monochromatic wave ψ(r, t) is propor-
tional to |ψ(r, t)|2. Thus, the energy �ux in the (θ, φ) direction is proportional to
c|ψ(r, θ, φ, t) |2 which means when we are far from the source

the energy �ux ∝ c |f (θ, φ) |
2

r2 .

To obtain the rate of energy �ow through solid angle dΩ = sin θdθdφ in the direction
(θ, φ) at r, we multiply the �ux by the subtending area r2 dΩ. The two factors of r2

cancel and we �nd that the wave energy per unit time (or power) per unit solid angle
is

dP
dΩ ∝ c|f (θ, φ) |

2 .

As we will see, the physical signi�cance which this relation attaches to f (θ, φ) be-
comes particularly important in the analysis of scattering of waves.

Expansion of a Plane Wave in Spherical Waves
For aplanewave ei(k·r−ωt) propagating in the z direction, kwill beparallel to the z−axis
and so the spatial part of the wave will be u(r) = eik·r = eikr cos θ . The spatial part must
also be a solution of the Helmholtz equation, ∇2 u + k2 u = 0, and so must have a
representation in spherical coordinates of the form

u(r) =
∞∑
l=0

l∑
m=−l

{
jl (kr)
nl (kr)

}
Yml (θ, φ).

However, because it has no φ dependence and because it is �nite at the origin, this
simpli�es to

u(r) = eikr cos θ =
∞∑
l=0

cl jl (kr) Pl ( cos θ)
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which is a Fourier-Legendre series with coe�cients given by

cl jl(kr) =
2l + 1
2

π∫
0

eikr cos θ Pl(cos θ) sin θdθ.

To simplify the evaluation of the coe�cients, we introduce the variables x = cos θ and
y = kr . We then have

eixy =
∞∑
l=0

cl jl(y) Pl(x) with cl jl(y) =
2l + 1
2

1∫
−1

eixy Pl(x)dx.

We shall go through two rather di�erent evaluations of the coe�cients since both
o�er insights into the tricks of manipulating special functions.

The �rst evaluation makes use of recurrence relations. Since

Pl(x) =
1

2l + 1[P
′
l+1(x) − P′l+1(x)],

we �nd

cl jl(y) =
1
2

1∫
−1

eixy[P′l+1(x) − P′l−1(x)]dx

= iy2

1∫
−1

eiyx[Pl−1(x) − Pl+1(x)]dx

= iy
[

1
2l − 1 cl−1 jl−1(y) −

1
2l + 3 cl+1 jl+1(y)

]
.

However, we already know a unique relationship that links these three spherical
Bessel functions, the recurrence relation

jl(y) =
y

2l + 1[jl+1(y) + jl−1(y)].

Therefore, consistency requires that

cl = i
(
2l + 1
2l − 1

)
cl−1 = −i

(
2l + 1
2l + 3

)
cl+1 .

Applied l times, this relation gives us cl = il(2l + 1) c0 and

eixy = c0
∞∑
l=0

il(2l + 1) jl(y) Pl(x).

The �nal step sets y = 0. Then, since j0(0) = 1 and jl(0) = 0 for l > 0, we deduce that
c0 = 1 and the spherical wave expansion of a plane wave is

eikz = eikr cos θ =
∞∑
l=0

il(2l + 1) jl(kr) Pl(cos θ).
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This, like the expansion of themonochromaticwave in the preceding example, is often
referred to as a partial wave expansion.

The second approach to evaluating the expansion coe�cients makes use of Ro-
drigues’ formulas. Starting with the formula for Pl(x), we have

cl jl(y) =
2l + 1
2

1
2l l!

1∫
−1

eixy dl
d xl

(x2 −1 )l dx

= 2l + 1
2l+1 l!

(−iy )l
1∫

−1

eixy(x2 −1 )l dx ≡ 2l + 1
2l+1 l!

(−iy )l Il

where we have performed l integrations by parts. The integral Il can be subjected to
further integrations by parts. Substituting d

dx
eixy
iy for eixy , we have

Il =
1∫

−1

(
d
dx

eixy
iy

)
(x2 −1 )l dx

= (−2l)
1∫

−1

eixy
iy x(x

2 −1 )l−1 dx

= (2l)1y
d
dy

1∫
−1

eixy(x2 −1 )l dx.

Performing a second integration by parts, this becomes

Il = (2l)2(l − 1)1y
d
dy

1
y
d
dy

1∫
−1

eixy(x2 −1 )l dx

from which we deduce that l integrations will yield

Il = 2l l!
(
1
y
d
dy

)l 1∫
−1

eixy dx = 2l+1 l!
(
1
y
d
dy

)l (sin y
y

)
.

But we know that

jl(y) = (−y )l
(
1
y
d
dy

)l (sin y
y

)
.

Therefore, returning to our Fourier-Legendre coe�cients we have

cl jl(y) =
2l + 1
2l+1 l!

(−iy )l 2l+1 l!
jl(y)
(−y )l

= (2l + 1) il jl(y),

or
cl = (2l + 1) il .
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Thus, we again �nd that the partial wave expansion of a plane wave is

eikz = eikr cos θ =
∞∑
l=0

(2l + 1) il jl(kr) Pl(cos θ).

Notice that we have derived an interesting integral relationship linking spherical
Bessel functions and Legendre polynomials

jl(y) =
1
2 il

1∫
−1

eixy Pl(x)dx.

Since this looks like an integral transform, one expects that there must be an inverse
relation aswell. To �nd it, one requires the orthogonality and normalization condition

∞∫
−∞

jl(x) jm(x)dx =
π

2l + 1 δl,m .

Then, treating the expansion of eixy as a Fourier-Bessel series, we �nd

Pl(x) =
1
π il

∞∫
−∞

eixy jl(y)dy.

Scattering of Waves by a Sphere
We shall nowmake use of the partial wave expansions of the two preceding examples
to analyse what happens when a plane wave impinges on a spherical object. We will
centre the object at the origin and take its radius to be R. The plane wave is assumed
to be propagating in the z direction with unit amplitude and so it is described by

ψinc(r, t) = e
i(k·r−ωt) = ei(kr cos θ−ωt) .

Collision with the obstacle will result downstream in an outgoing spherical scat-
tered wave superimposed on the incident plane wave. Since the incident wave is
monochromatic, we can assume quite reasonably that the scattered wave will be
monochromatic too and with the same frequency. Thus, the downstreamwave will be
of the form

ψ(r, t) = ei(kr cos θ−ωt) +ψsc (r, t)

where ψsc is the superposition

ψsc(r, t) = e
−iωt

∞∑
l=0

l∑
m=−l

alm h(1)l (kr) Yml (θ, φ).
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Far from the obstacle, r →∞and the scatteredwave assumes the asymptotic form

ψsc(r, t) ∼ f (θ, φ)
ei(kr−ωt)
r with f (θ, φ) = 1

k

∞∑
l=0

l∑
m=−l

(−i )l+1 alm Yml (θ, φ).

In this context, the function f (θ, φ) is called the scattering amplitude and because of
its connection to the power per unit solid angle associated with the scattered wave,
it can be determined from what we call the di�erential cross-section for scattering
into solid angle dΩ in direction (θ, φ):

dσ ≡ power of scattered wave in solid angle dΩ
power of incident wave in unit area = c|f (θ, φ) |2

c| ei(kz−ωt) |2
,

or
dσ
dΩ = |f (θ, φ) |2 .

The problem as we have set it up thus far has azimuthal symmetry about the z-
axis and so, unless the boundary condition at r = a breaks this symmetry, the solution
should be independent of φ. This will certainly be the case if the boundary condition
is homogeneous as happens for sound waves scattering from a rigid sphere and for
“hard sphere scattering” in quantummechanics which have the boundary conditions
∂ψ
∂r

∣∣∣
r=R

= 0 and ψ(R, θ, φ) = 0, respectively. Therefore, for such problems, we can
write

ψsc(r, t) = e
−iωt

∞∑
l=0

al h(1)l (kr) Pl ( cos θ)

and

ψ(r, t) = ei(kr cos θ−ωt) +ψsc (r, t) = e
−iωt

∞∑
l=0

[(2l + 1) il jl (kr)+ al h
(1)
l (kr)] Pl ( cos θ)

where, in the last equation,wehaveused the partialwave expansion of the planewave
derived in the preceding application. Imposing the boundary condition appropriate to
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sound waves on this superposition, we �nd
∞∑
l=0

[(2l + 1)il j′l(kR) + alh
(1)′
l (kR)] Pl(cos θ) = 0

and hence,

al = −(2l + 1) il
j′l(kR)
h(1)′l (kR)

.

This completely determines the scattered wave and, using its asymptotic form for
r � a, the scattering amplitude as well. Speci�cally, we have

f (θ, φ) ≡ f (θ) = 1
k

∞∑
l=0

al(−i )l+1 Pl(cos θ) =
i
k

∞∑
l=0

(2l + 1) j
′
l(kR)
h′l(kR)

Pl(cos θ).

This can be simpli�ed by introducing a parameter δl(k) that is de�ned by the equation

tan δl(k) ≡
j′l(kR)
n′l(kR)

.

The reason for this somewhatunusual looking choice becomes apparent from twocon-
siderations. First, the factor

i j
′
l(kR)
h′l(kR)

= i j′l(kR)
j′l(kR) + i n′l(kR)

= 1
n′l (kR)
j′l (kR)

− i
= 1
cotan δl(k) − i

= ei δl(k) sin δl(k)

and so the scattering amplitude becomes

f (θ) = 1
k

∞∑
l=0

(2l + 1) ei δl(k) sin δl(k) Pl(cos θ).

Second, when we express the asymptotic form of the wave in terms of δl we �nd

ψ(r, t) = ei(kr cos θ−ωt) +ψsc (r, t)

∼ e−iωt
∞∑
l=0

(2l + 1)
[
il
cos

(
kr − (l + 1) π2

)
kr + e

i δl (k) sin δl (k)
k

eikr
r

]
Pl ( cos θ)

= e
−iωt

2ik

∞∑
l=0

(2l + 1)
[
eikr
r +( − 1 )l+1 e

−ikr

r +( e2i δl (k) − 1) e
ikr

r

]
Pl ( cos θ)

= e
−iωt

2ik

∞∑
l=0

(2l + 1)
[
e2i δl (k) e

ikr

r +( − 1 )l+1 e
−ikr

r

]
Pl ( cos θ)

which tells us that the e�ect of the sphere has been to shift the phase of the outgoing
wave by an amount 2 δl(k). Thus, δl(k) has an intuitively satisfying interpretation and
one that is the source of its name: δl(k) is called the lth partial wave phase shift.
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Notice that the total scattering cross section which is obtained by integrating dσ
dΩ

over all solid angles has a particularly simple expression in terms of phase shifts. The
integration gives

σ = (2π)
π∫

0

|f (θ) |2 sin θdθ = 4π
k2

∞∑
l=0

sin2 δl(k) =
∞∑
l=0

σl where σl =
4π
k2

sin2 δl(k).

These measures of the scattering can be easily estimated only in the “large wave-
length limit”, kR � 1 or λ � R. From the small argument behaviour of the spherical
Bessel and Neumann functions we have

tan δl(k) '
l

l + 1
(2l l! )2

(2l)!(2l + 1)! (kR )
2l+1 for l ≥ 1,

and
tan δ0(k) =

j′0(kR)
n′0(kR)

= j1(kR)
n1(kR)

' −(kR )
3

3 .

Therefore, δl(k) is itself� 1, and so

ei δl(k) sin δl(k) ' δl(k) ' tan δl(k).

Moreover, δl(k) decreases rapidly with increasing l > 1 so we need to retain only the
�rst few partial waves. Thus,

f (θ) ' 1
k

[
−(kR )

3

3 P0(cos θ) + 3
(kR )3
6 P1(cos θ) + . . .

]
' − k

2 R3
3 [1 − 3

2 cos θ]

and
σ ' 5π

9 k4 R6 .

This formalism for the analysis of scattering problems is very general. The only
thing that changes from problem to problem is the boundary condition at the obstacle
and the consequent de�nition of the phase shift. For example, if instead of ∂ψ

∂r

∣∣∣
r=R

= 0
we had used the boundary condition for quantummechanical hard sphere scattering,
ψ(R, θ, φ) = 0, we would replace our de�nition of δl(k) above with the identity

tan δl(k) ≡
jl(kR)
nl(kR)

but everything else would be unchanged.

11.5 The Classical Orthogonal Polynomials

11.5.1 The Polynomials and Their Properties

We have completed a study of the special functions that arise from the solution of the
Laplace and Helmholtz equations in spherical and cylindrical coordinates. However,
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this is not an inclusive set: there are further special functions that arise, for example,
in quantummechanics. One such is the set of Hermite polynomials which we encoun-
tered in Chapter 9 as the solutions of a DE that we attributed to a one-dimensional
harmonic oscillator. Others include the Laquerre polynomials (which feature in the
theory of the hydrogen atom and of the three-dimensional harmonic oscillator), the
Tchebichef polynomials and the Gegenbauer polynomials. Together with the Legen-
dre polynomials, they are examples of what have come to be known as the classical
orthogonal polynomials.

A common feature of these functions is that each class of polynomials is orthogo-
nal on an interval a ≤ x ≤ b with respect to a weight function ρ(x). This could be used
to de�ne the polynomials since they could be generated from a Schmidt orthogonal-
ization process applied to the monomials 1, x, x2, x3, . . .. However, there is a more
elegant approach based on a second common feature: each class can be computed
from a Rodrigues’ formula.

We de�ne a generalized Rodrigues’ formula by means of the identity

Cn(x) =
1
Kn

1
ρ(x)

dn
d xn [ρ(x) s

n(x)] (11.5.1)

where
– Kn is a standardizing constant that is chosen by convention
– ρ(x) is a real, positive (weight) function that is integrable on the interval a ≤ x ≤ b
– s(x) is a polynomial of degree ≤ 2 with real roots and satis�es the boundary con-

ditions

ρ(a)s(a) = ρ(b)s(b) = 0. (11.5.2)

In addition, we require that C1(x) be a �rst-degree polynomial.
We know of course that Legendre polynomials satisfy these constraints with

a = −1, b = 1, ρ(x) = 1, Kn = 2n n!, s(x) = x2 −1 and C1 = x.

The question is, do all Cn(x) that satisfy these requirements comprise a set of poly-
nomials of degree n that are orthogonal with respect to weight function ρ(x) on the
interval a ≤ x ≤ b ? As we will now prove, the answer is yes.

We start by noting that setting n = 1 in (11.5.1) gives us

C1(x)ρ(x) K1 =
d
dx [ρ(x)s(x)] or s(x)dρdx = ρ(x)

(
C1(x) −

ds
dx

)
. (11.5.3)

Next, we calculate d
dx [ρ(x) s

n(x) pk] where pk(x) is an arbitrary polynomial of degree
k:

d
dx [ρ(x) s

n(x) pk(x)] =
dρ
dx s

n pk +ρn sn−1
ds
dx

pk +ρ sn
d pk
dx

= ρ
(
K1 C1 −

ds
dx

)
sn−1 pk +nρ sn−1

ds
dx

pk +ρ sn(x)
d pk
dx
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= ρ(x) sn−1(x)
[(
K1 C1(x) + (n − 1)

ds
dx

)
pk(x) + s(x)

d pk
dx

]
wherewe have used (11.5.3) to obtain the second line of the calculation. Since s(x) is of
degree ≤ 2, dsdx is of degree ≤ 1, and d pk

dx is of degree k − 1, the term in square brackets
on the right hand side is a polynomial of degree ≤ k+1. Denoting the latter by qk+1(x),
we write

d
dx [ρ(x) s

n(x) pk(x)] = ρ(x) sn−1(x) qk−1(x)

from which we see that di�erentiating m times will give us

dm
d xm [ρ(x) s

n(x) pk(x)] = ρ(x) sn−m(x) qk+m(x) (11.5.4)

where qn+m(x) is a polynomial of degree ≤ n + m.
Notice that insertion of p0(x) = 1 into (11.5.4) gives us

dm
d xm [ρ(x) s

n(x)] = ρ(x) sn−m(x) qm(x)

and, because of the boundary conditions satis�ed by ρ(x)s(x), thismeans that all such
derivatives with m < n vanish at x = a and x = b.

Moreover, ifm = n, we have the derivative that appears in the Rodrigues’ formula
which allows us to assert that

Cn(x) = qn(x) ≡ a polynomial of degree ≤ n
= qn−1(x) + an xn where an is a coe�cient to be determined. (11.5.5)

The next step involves the evaluation of the integral
b∫
a
pm(x) Cn(x)ρ(x)dx where

pm(x) is a polynomial of degree m < n. Invoking Rodrigues’ formula for Cn(x) and
integrating by parts n times, we �nd

b∫
a

pm(x) Cn(x)ρ(x)dx =
1
Kn

b∫
a

pm(x) d
n

d xn [ρ(x) s
n(x)]dx

= (−1 )n

Kn

b∫
a

[ρ(x) sn(x)] d
n

d xn
pm(x) = 0 (11.5.6)

where we have used the vanishing of derivatives of ρ(x) sn(x) at x = a and x = b to
dispose of all integrated terms.

Nowwemakeuse of (11.5.5). Using it to replace one factor of Cn(x) in
b∫
a
C2n(x)ρ(x)dx

we �nd

Nn≡
b∫
a

C2n(x)ρ(x)dx =
b∫
a

qn−1(x) Cn(x)dx+an
b∫
a

xn Cn(x)ρ(x)dx = an
b∫
a

xn Cn(x)ρ(x)dx
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by the preceding result. Since the left hand side cannot be zero, it follows that an
cannot be zero either and hence, that Cn(x) is a polynomial of degree n. Moreover,
using the Rodrigues’ formula, we can evaluate its normalization integral:

Nn = an
b∫
a

xn Cn(x)ρ(x)dx =
an
Kn

b∫
a

xn dn
d xn [s

n(x)ρ(x)]dx = (−1 )n n! an
Kn

b∫
a

sn(x)ρ(x)dx

(11.5.7)

where we have performed n integrations by parts to obtain the �nal line.
Finally, we substitute Cm(x) for pm(x) in (11.5.6) to obtain

b∫
a

Cm(x) Cn(x)ρ(x)dx = 0 for m < n. (11.5.8)

Thus, not only does the generalized Rodrigues’ formula de�ne a sequence of poly-
nomials, the sequence forms an orthogonal set of polynomials with respect to a
weight ρ(x) on the interval a ≤ x ≤ b.

At �rst sight, it might appear that this is a prescription for generating any num-
ber of distinct sets of orthogonal polynomials. In fact, there are only three classes of
polynomial corresponding to the three possibilities for the degree of s(x).

We can always de�ne the polynomial C1(x) to be

C1(x) = −
x
K1

since any other �rst-degree polynomial can be obtained from it by a linear transfor-
mation of the variable x. Substituting this into the Rodrigues’ formula gives us a rela-
tionship between ρ(x) and s(x):

1
ρ(x)

dρ
dx = − 1

s(x)

(
ds
dx + x

)
. (11.5.9)

Suppose that s(x) is of zeroth-degree. Without loss of generality, we can set s(x) =
1 . Equation (11.5.9) becomes

1
ρ(x)

dρ
dx = −x

with solution ρ(x) = const e−
x2
2 . The product s(x)ρ(x) vanishes only at x = ±∞. There-

fore, transforming x by x√
2
→ x and setting the multiplicative constant equal to one,

we conclude that a consistent set of parameters is

s(x) = 1, ρ(x) = e− x
2
, a = −∞ and b = ∞. (11.5.10)

With appropriate standardization, Kn = (−1 )n , the set {Cn(x)} de�ned by these pa-
rameters consists of the Hermite polynomials Hn(x).
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For the case of a �rst-degree s(x), we set s(x) = (x−α). Equation (11.5.9) now yields
the DE

1
ρ(x)

dρ
dx = − x + 1x − α

with solution (having set the multiplicative constant of integration equal to one)

ρ(x) = (x − α )−α−1 e−x .

If −α − 1 ≡ ν > 1, then s(x)ρ(x) vanishes at x = α and x = ∞ and ρ(x) is integrable on
α ≤ x < ∞. Thus, transforming x by means of the substitution x → x + α and ignoring
multiplicative constants, we conclude that the appropriate parameters in this case are

s(x) = x, ρ(x) = xν e−x , ν > −1, a = 0, b = ∞ (11.5.11)

which correspond to C1(x) = 1
K1 (ν + 1 − x) and

1
ρ(x)

dρ
dx = ν−x

x . Used in the generalized
Rodrigues’ formula with Kn = n! , these generate the Laguerre polynomials Lνn(x).

Finally, if s(x) is of second degree, we can assign it the quadratic form

s(x) = (x − α)(β − x), β > α.

Equation (11.5.9) then reads

1
ρ(x)

dρ
dx = (x − α) − (β − x) − x

(x − α)(β − x)

which has the solution (ignoring multiplicative constants)

ρ(x) = (x − α )−
β
β−α (β − x )−

α
β−α .

Evidently s(x)ρ(x) vanishes at x = α and x = β and ρ(x) is integrable on α ≤ x ≤ β
provided that the exponents in ρ(x) are both > 1. This will be the case if we choose
α = −1 and β = 1. Therefore, we can take our parameters to be

s(x) = (1 − x2), ρ(x) = (x + 1 )µ(1 − x )ν , µ, ν > −1, a = −1 and b = 1 (11.5.12)

which result in the rede�nition

C1(x) =
1
K1

[(µ − ν) − (µ + ν + 2)x] and 1
ρ(x)

dρ
dx = µ(1 − x) − ν(1 + x)1 − x2 .

These produce the Jacobi polynomials P(µ,ν)n (x) which have a number of special cases
to which other names have been attached:
– the Gegenbauer polynomials Cµ+

1
2

n (x) which correspond to µ = ν ;
– the Legendre polynomials Pn(x) which correspond to µ = ν = 0;
– the Tchebichef polynomials of the �rst kind Tn(x) which correspond to µ = ν =

1
2 ;

– the Tchebichef polynomials of the second kind Un(x) which correspond to µ =
ν = − 1

2 .
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We state without proof that any three consecutive orthogonal polynomials satisfy a
recurrence relation of the form

Cn+1(x) = (An x + Bn) Cn(x) − Dn Cn−1(x) (11.5.13)

where An , Bn and Dn are constants that depend only on n and the class of polynomials
under consideration. Indeed, one can show that

An =
an+1
an

, Bn =
an+1
an

(
a′n+1
an+1

− a
′
n
an

)
, Dn = Nn

Nn−1
an+1 an−1

a2n
(11.5.14)

where, as before, Nn is the normalization integral, an is the coe�cient of xn , and a′n
is the coe�cient of xn−1, for the polynomial Cn(x).

In addition, one can show that Cn(x) satis�es the Sturm-Liouville DE

d
dx

(
ρ(x)s(x)d Cndx

)
= − λn ρ(x) Cn(x) (11.5.15)

with

λn = −n
[
K1

d C1
dx + 1

2(n − 1)
d2 s
d x2

]
. (11.5.16)

The equation has regular singular points at the roots of ρ(x)s(x) whichmeans at x = a
and x = b. Thus, since the polynomials Cn(x) are �nite there, they must be eigenfunc-
tion solutions of the more general problem

d
dx

(
ρ(x)s(x)dudx

)
= −λρ(x)u(x) with |u(b)| < ∞ and |u(a)| < ∞. (11.5.17)

We list below the salient features of Hermite and Laguerre polynomials which,
along with the Legendre polynomials, are the ones most frequently encountered.

Hermite Polynomials:
Rodrigues’ formula

Hn(x) = (−1 )n ex
2 dn
d xn (e

− x2 ) (11.5.18)

Orthogonality and Normalization
∞∫

−∞

Hm(x)Hn(x) e− x
2
dx = Nn δm,n =

√
π 2n n! δm,n . (11.5.19)

Di�erential equation

d2
d x2 Hn(x) − 2x

d
dx Hn(x) + 2n Hn(x) = 0 (11.5.20)
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Recurrence relation

Hn+1(x) = 2x Hn(x) − 2n Hn−1(x) (11.5.21)

Series

Hn(x) =
[n/2]∑
k=0

(−1 )k n!
(n − 2k)!k! (2x )

n−2k (11.5.22)

Laguerre Polynomials:
Rodrigue’ s formula

Lνn(x) =
1
n! x

−ν ex dn
d xn (e

−x xν+n) (11.5.23)

Orthogonality and Normalization
∞∫
0

Lνm(x) Lνn(x) xν e−x dx = Nn δm,n =
Γ(n + ν + 1)

n! δm,n (11.5.24)

Di�erential equation

x d
2

d x2 L
ν
n(x) + (ν + 1 − x)

d
dx L

ν
n(x) + n Lνn(x) = 0 (11.5.25)

Recurrence relation

(n + 1) Lνn+1(x) = (2n + ν + 1 − x) Lνn(x) − (n + ν) Lνn−1(x) (11.5.26)

Series

Lνn(x) =
n∑
k=0

(−1 )k (n + ν)!
(n − k)!(ν + k)!k! x

k ν > −1 (11.5.27)

11.5.2 Applications

The Quantum Mechanical Simple Harmonic Oscillator
As mentioned earlier, the Hermite polynomials arise in the quantum mechanical de-
scriptionof simpleharmonic oscillators. Thepotential energyof the oscillator isV(z) =
1
2K z

2 corresponding to a restoring force F= −∇V = − d
dzVk= − Kzk. Therefore, if we

take the mass of the oscillating particle to be m, its time-independent Schrödinger
equation is

− ~2
2m

d2 ψ
d z2 + 1

2K z
2 ψ(z) = Eψ(z) (11.5.28)
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where E is the total energy. In addition, the particle’s wave functionmust be bounded
and normalizable and so we require lim

z→±∞
|ψ(z)| = 0.

Introducing the parameters

x = αz with α4 = mK~2 = m
2 ω2

~2 λ = 2E
~

(m
K

) 1
2 = 2E

~ω , (11.5.29)

where ω =
( K
m
) 1

2 is the angular frequency of the corresponding classical oscillator,
this equation becomes

d2 u
d x2 + (λ − x2)u(x) = 0 with u(x) = ψ

( x
α

)
= ψ(z). (11.5.30)

This is the same equation, (9.8.4), that we solved in Section 9.8.2 and found that λ
must be set equal to 2n+1 yielding a set of solutions un(x) ∝ e−

x2
2 Hn(x). Normalizing

so that the wave functions give unit probability of �nding the particle in the interval
−∞ < x < ∞, we �nd

un(x) = π−
1
4 (2n n! )−

1
2 e−

x2
2 Hn(x)

or,

ψn(z) = π
− 1
4 (2n n! )−

1
2 e−

α2 z2
2 Hn(αz). (11.5.31)

The corresponding energies are

En =
(
n + 1

2

)
~ω n = 0, 1, 2, . . . . (11.5.32)

Notice that the minimum or zero point energy is not zero but rather Emin = E0 = 1
2~ω.

This is a quantum phenomenon connected with the uncertainty principle.
The three-dimensional harmonic oscillator has played an important role in un-

derstanding sub-atomic spectroscopy. In Section 11.4.2 we noted that the nuclear shell
model assumes that the individual two-nucleon interactions in a medium to large nu-
cleus sum to produce an e�ective central potential in which each nucleon moves in-
dependently. The next question is what functional form can be assigned to the central
potential that will not only be simple to work with but will be reasonably realistic in
the sense that its predictions agree at least qualitatively with experiment. The guess
of Section 11.4.2, a “hard” or in�nite spherical well, is very simple to work with but
has only limited success. Far and away more successful is the almost as simple guess
that the potential is that of a three-dimensional oscillator: V(r) = −V0 + 1

2K r
2 .

Another application of the oscillator potential is in understanding the bonding
of quarks in sub-nuclear matter. Quarks interact with each other by means of gluon
exchange which produces a force that increases with increasing separation and thus
prevents the production of free quarks. At the level of non-relativistic quantum me-
chanics, an oscillator potential is a very convenient way of representing this e�ect
and hence, of approximating the quark-quark interaction.
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The Nuclear Shell Model
We can absorb the constant part of the potential by rede�ning the zero of energy.

Therefore, the (time-independent) Schrödinger equation that must be solved for a nu-
cleon of mass m in a potential V(r) = 1

2K r
2 is

− ~2
2m ∇

2 ψ + 1
2K r

2 ψ(r ) = E ψ ( r ) . (11.5.33)

If we separate variables using Cartesian coordinates and the fact that r2 = x2 + y2 + z2,
this becomes three one-dimensional harmonic oscillator equations all with the same
“spring constant” K and with energies Ex , Ey , and Ez that sum to E : E = Ex + Ey + Ez .
Thus, the eigenfunction solutions of (11.5.33) that satisfy lim

r→∞
ψ(r) = 0 may be ex-

pressed as

ψN(r) =ψ n1 (x)ψ n2 (y)ψ n3 (z)

= π−
3
4 ( 2N n1 ! n2 ! n3 ! )−

1
2 e−

α2 r2
2 H n1 (αx)H n2 (αy)Hn3 (αz) (11.5.34)

and correspond to the energies

EN = En1 + En2 + En3 =
(
n1 + n2 + n3 +

3
2

)
~ω =

(
N + 3

2

)
~ω (11.5.35)

where

N = n1 + n2 + n3, n1, n2, n3 = 0, 1, 2, . . . (11.5.36)

ω =
√
K
m and α2 = mω~ .

Notice that the degeneracy of the eigenvalues increases fairly rapidlywith increas-
ing N . The ground state energy E0 = 3

2~ω is non-degenerate since N = 0 implies
uniquely n1 = n2 = n3 = 0 . However, the next energy E1 = 5

2~ω is three-fold degen-
erate because it is associated with the three distinct states associated with the triads
n1 = 1, n2 = n3 = 0, n2 = 1, n1 = n3 = 0 and n3 = 1, n1 = n2 = 0. The N = 2 energy
is 6-fold degenerate and since in general there are N + 1 choices for n1, N2 + 1 choices
for n2 and 1 choice for n3, the degeneracy of the N th level is

dN = (N + 1)(N + 2)
2 . (11.5.37)

The existence of degeneracy always indicates that the eigenvalue problem pos-
sesses symmetry of some sort. In the present case, it is spherical symmetry and
whenever we have encountered spherical symmetry before we have used it as a justi-
�cation for using spherical rather than Cartesian coordinates. Doing so here, we set
ψ(r) = R(r) Yml (θ, φ) and substitute into (11.5.33) to �nd

− ~2
2m

1
r
d2
d r2 [rR(r)] +

[
l(l + 1)~2
2m r2 + 1

2K r
2
]
R(r) = ER(r). (11.5.38)
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In quantummechanics, unlike the description of classical waves, the l has a physical
association: it is a measure of the nucleon’s orbital angular momentum. Evidently, it
is a conserved quantity when there is spherical symmetry.

Making the replacement u(r) = rR(r) equation (11.5.38) can be cast in the some-
what simpler form:

d2 u
d r2 −

[
α4 r2 + l(l + 1)r2

]
u(r) = −2mE~2 u(r) where α2 = mω~ .

Solution of this DE requires a number of tricks from Section 9.8 . Our boundary
conditions are boundedness at zero and in�nity. Therefore, the �rst step is to examine
the leading behaviour there and factor it out. As r → 0, the DE assumes the limiting
form

d2 u
d r2 −

l(l + 1)
r2 u ' 0

with solutions rl+1 and r−l . At the other extreme, as r →∞, the DE becomes

d2 u
d r2 − α

4 r2 u ' 0

with approximate solutions e±
α2 r2
2 . Therefore, to assure boundedness, we set

u(r) = rl+1 e−
α2 r2
2 v(r). (11.5.39)

Substituting this into the DE for u(r) gives us

d2 v
d r2 + 2

[
l + 1
r − α2 r

]
dv
dr +

[
2mE
~2 − α2(2l + 3)

]
v = 0 (11.5.40)

which we expect to admit polynomial solutions. However, it is not readily apparent
what kindof polynomials thesemaybe. To save the e�ort of attempting aFrobenius so-
lution, we make one further simpli�cation by introducing the new independent vari-
able x = α2 r2 . Setting y(x) = v(r), we obtain

x d
2 y
d x2 +

(
l + 3

2 − x
)
dy
dx +

1
4

(
2E
~ω − 2l − 3

)
y = 0 (11.5.41)

which we can now compare with the DE’s satis�ed by classical orthogonal polynomi-
als. A case by case comparison is quickly rewarded: this is precisely the form found in
(11.5.25), the DE for Laguerre polynomials. Thus, y(x) = Lνn(x) with n = 1

4
( 2E
~ω − 2l − 3

)
and ν = l + 1

2 . In other words, the quantized energies are

EN = Enl =
(
2n + l + 3

2

)
~ω =

(
N + 3

2

)
~ω, N = 0, 1, 2, . . . (11.5.42)

in agreement with the conclusion (11.5.35) obtained with the use of Cartesian coordi-
nates.
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The wave functions that correspond to these energies are

ψnl(r) =Nnl r
l e−

α2 r2
2 L

l+ 1
2

n ( α2 r2 ) Yml (θ, φ)

where Nnl is a constant determined by normalizing to unity the probability of �nding
the nucleon somewhere in space. In fact, using (11.5.24) we �nd

1 =
∞∫
0

π∫
0

2π∫
0

|ψnl(r) |
2 r2 dr sin θdθdφ = |Nnl |

2

2
1

α2l+3
Γ(n + l + 3/2)

n!

and so,

ψnl(r) =
(

2 α3 n!
Γ(n + l + 3/2)

) 1
2

(αr )l e−
α2 r2

2 L
l+ 1

2
n ( α2 r2 ) Yml (θ, φ). (11.5.43)

Let us now check the degeneracy question. For N = 0 there is only one possibility:
n = 0 and l = 0. For N = 1 there is again one possibility, n = 0 and l = 1, but for non-
zero l there is automatically a degeneracy of 2l+1 corresponding to the allowed values
of m. Thus, we recover the same three-fold degeneracy that we found with Cartesian
coordinates. Similarly, for N = 2we can have n = 0 and l = 2 plus n = 1 and l = 0 for a
six-fold degeneracy and, in general, since l can assume the values N, N − 2, N − 4, . . .
down to 1 or 0,

dN = (N + 1)(N + 2)
2 .

Allowing for a spin-degeneracy of two, this predicts a shell structure for nuclei in
which there are successive energy levels or shells that can be �lled successively with
up to 2, 6 , 12, 20, 30, 42, 56 , . . . like nucleons, neutrons or protons. (The exclusion
principle prohibits more than one identical nucleon in each state). By analogy with
atomic physics, one would expect nuclei to be particularly stable when they have ex-
actly the number of neutrons or protons or both to �ll closed shells. Therefore the
model predicts “magic numbers” of stability equal to 2, 8, 20, 40, 70, 112, . . . nucleons
of either type. The �rst three of these agree rather well with experiment as the relative
stability of He42 and O16

8 attests. However, to match the higher magic numbers that are
observed in nature it is necessary to add what is called a spin-orbit coupling interac-
tion to the central harmonic oscillator potential. This has the e�ect of depressing the
energies of states with total angular momentum j = l+ 1

2 relative to those with j = l− 1
2

with the result that some states get re-assigned to either higher or lower shells. The
development of this model resulted in the award of a Nobel prize to Mayer and Jensen
in 1966.

The Hydrogenic Atom
Another important application of Laguerre polynomials is in the solution of the
Schrödinger equation for the hydrogenic atom. The equation is

− ~2
2m ∇

2 ψ − Z e
2

r ψ = Eψ (11.5.44)
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where Z = 1 for hydrogen, Z = 2 for singly ionized helium, and so on. Because the
Coulomb potential is central, we have spherical symmetry again and can separate
variables by setting

ψ(r) = R(r) Yml (θ, φ) =u(r)r Yml (θ, φ). (11.5.45)

Once again, l is a (conserved) orbital angular momentum. Substituting (11.5.45) into
(11.5.44) we obtain the radial equation

− ~2
2m

1
r2
d
dr

(
r2 dRdr

)
− Z e

2

r R(r) + ~2
2m

l(l + 1)
r2 R(r) = ER(r), (11.5.46)

or

− ~2
2m

d2 u
d r2 −

Z e2
r u(r) + ~2

2m
l(l + 1)
r2 u(r) = Eu(r). (11.5.47)

To render this into a recognizable form, we introduce some parameters similar to
those used with the harmonic oscillator. We de�ne

β2 = −8mE
~2

and λ = 2mZ e2
β~2 (11.5.48)

where, recognizing that bound states correspond to negative values of E, we have put
in a minus sign to ensure that β is real. Then we introduce the new variables

x = βr and y(x) = u(r) = u(x/β)

in terms of which (11.5.47) becomes

d2 y
d x2 −

(
l(l + 1)
x2 − λx +

1
4

)
y(x) = 0. (11.5.49)

The next step is to deduce the large and small x behaviour of y(x) by solving the
asymptotic forms of the DE (11.5.49) . For large x , we have

d2 y
d x2 −

1
4 y(x) ' 0

with solutions y(x) ∼ e± x2 . Similarly, for small x the DE becomes

d2 y
d x2 −

l(l + 1)
x2 y(x) ' 0

with solutions xl+1 and x−l . Since we require solutions that are bounded at both zero
and in�nity, we set

y(x) = xl+1 e−
x
2 v(x) (11.5.50)

and substitute into (11.5.49) to obtain the DE

x d
2 v
d x2 + (2l + 2 − x)dvdx + (λ − l − 1)v(x) = 0. (11.5.51)
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Once again this is the Laguerre DE (11.5.25) with polynomial solutions LνN(x) provided
that 2l + 1 = ν > −1 and λ − l − 1 = N is an integer or zero. The �rst condition is
obviously satis�ed and the second implies that λ = N + l + 1 = n, n = 1, 2, . . . . This
gives us the quantization rule

λ = 2mZ e2
β ~2

=
( m
−2E

) 1
2 Z e2

~ = n,

or

En = −
1
2m

Z2 e4

~2
1
n2 , n = 1, 2, 3, . . . (11.5.52)

or, expressed in terms of the “�ne structure constant” α = e2
~c ,

En = −
1
2m c

2(Z α2) 1n2 , n = 1, 2, 3, . . . .

This agrees with the (Nobel prize winning) result that Neils Bohr obtained from an
application of the somewhat heuristic Bohr-Sommerfeld quantization rules .

From (11.5.48), we have

β ≡ βn = 2mZ e
2

~2
1
n = 2Z

n a0
where a0 = ~2

m e2 ≡ the Bohr radius. (11.5.53)

Then, reconstructing the solution of the Schrödinger equation and using the Laguerre
polynomial normalization given in (11.5.24) , we �nd that the normalized hydrogenic
wave function is

ψnlm(r) =
[(

2Z
n a0

)3 (n − l − 1)!
2n(n + l)!

] 1
2

e−
βn r
2 ( βn r )

l L2l+1n−l−1 ( βn r) Y
m
l (θ, φ). (11.5.54)

Since En depends only on n, there is degeneracy with respect to both m (due to the
spherical symmetry of the problem) and l (due to a higher, “accidental” symmetry of
the wave equation). For each value of n, l can vary from 0 to n−1 and for each of these
l values m can vary from −l to l. Thus, the degree of degeneracy is

dn =
n−1∑
l=0

(2l + 1) = 2n(n − 1)2 + n = n2 . (11.5.55)

Allowing for spin degeneracy, this means that the nth level (shell) of the hydrogenic
atom contains 2 n2 states.
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12 Non-Homogeneous Boundary Value Problems:
Green’s Functions

12.1 Ordinary Di�erential Equations

12.1.1 De�nition of a Green’s Function
Suppose that we wish to solve the non-homogeneous DE

Lu(x) ≡ d
dx

(
p(x)dudx

)
− q(x)u(x) = f (x) (12.1.1)

in the interval a ≤ x ≤ b with f (x) a known function and with non-homogeneous
boundary conditions

α1u(a) + α2
du
dx

∣∣∣
x=a

= α3

β1u(b) + β2
du
dx

∣∣∣
x=b

= β3 (12.1.2)

for given values of the constants α1, α2, α3, β1, β2, and β3 .
We recognize that L is the Sturm Liouville di�erential operator and so we know

that it satis�es the generalized green’s identity. This means that if u(x) and v(x) are
any twice- di�erentiable functions de�ned on a ≤ x ≤ b,

b∫
a

[v(x)Lu(x) − u(x)Lv(x)]dx =
[
p(x)

(
v(x)dudx − u(x)

dv
dx

)]x=b
x=a

. (12.1.3)

Let us apply this to functions of our choosing. First we choose u(x) to be the solution
of our non-homogeneous boundary value problem. Then, we choose v(x) to be the
function G(x; x′) where

LG(x; x′) = δ(x − x′). (12.1.4)

With these choices, the identity (12.1.3) gives us
b∫
a

[G(x; x′)f (x) − u(x)δ(x − x′)]dx =
[
p(x)

(
G(x; x′)dudx − u(x)

dG
dx

)]x=b
x=a

.

The second term on the left hand side is just −u(x′). Therefore, we are going to inter-
change x and x′, x ↔ x′, and then rearrange all the terms to yield an expression for
u(x):

u(x) =
b∫
a

G(x′; x)f (x′)dx′ −
[
p(x′)

(
G(x′; x) ddx′ u(x

′) − u(x′) ddx′ G(x
′; x)

)]x′=b
x′=a

.

(12.1.5)
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This is a very auspicious result for it tells us that if we can determine G(x; x′), we
can simplywrite down the solution of any other non-homogeneous problem involving
L. The determination of G(x; x′) begins with the speci�cation of boundary conditions
to complement our knowledge of its di�erential equation. The “surface term” in (12.1.5)
tells us that we must impose the homogeneous counterparts to the boundary condi-
tions imposed on u(x) since otherwise we will be unable to make a full evaluation of
that term. For example, if the boundary conditions on u(x) are u(a) = α and u(b) = β,
we have to require G(a; x′) = 0 and G(b; x′) = 0 to eliminate the unknown quantities
du
dx

∣∣∣
x=a

and du
dx

∣∣∣
x=b

. Thus, the Green’s function G(x; x′) is the unique solution of

LG(x; x′) = δ(x − x′) (12.1.6)

subject to

α1G(a; x′) + α2
dG
dx

∣∣∣
x=a

= 0

β1G(b; x′) + β2
dG
dx

∣∣∣
x=b

= 0. (12.1.7)

12.1.2 Direct Construction of the Sturm Liouville Green’ s Function

TheGreen’s functionDE (12.1.7) is as close to a homogeneous equation as a non- homo-
geneous one can be. In fact, G(x; x′) satis�es Lu(x) = 0 everywhere except the point
x = x′. Therefore, we should feel reasonably optimistic about our capacity to solve it.
We start by noting some basic attributes of the solution that �ow from the properties
of the DE and the boundary conditions.

Applying the generalized Green’s identity (12.1.3) to u(x) = G(x; x′) and v(x) =
G(x; x′′) we �nd

G(x′; x′′) − G(x′′; x′) =
[
p(x)

(
G(x; x′′) ddx G(x; x

′) − G(x; x′) ddx G(x; x
′′)
)]x=b

x=a
= 0

because G satis�es homogeneous boundary conditions. Thus, we conclude that
G(x; x′) is symmetric under x ↔ x′:

G(x; x′) = G(x′; x). (12.1.8)

As we will see again in Section 12.3.4, the boundary conditions are replaced by an
initial condition

G
(
t; t

′)
= 0 for t <t′

when the independent variable is time t, −∞ < t < ∞. This condition gives expres-
sion to the causality principle: G is the response of a system to an instantaneous
disturbance at t = t

′
and that response cannot precede its cause. Used in an analo-

gous application of the Green’s identity, it changes the symmetry property (12.1.8)
from G

(
x; x

′
)
= G

(
x
′
; x
)
to G

(
t; t

′
)
= G

(
−t

′
; −t
)
.
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Next, we note that integrating the DE from x′ − ε to x′ + ε gives us

p(x) ddx G(x; x
′)
∣∣∣∣x=x′+ε
x=x′−ε

−
x′+ε∫
x′−ε

q(x)G(x; x′)dx = 1.

Equation (12.1.8) tells us that G(x; x′) is symmetric about x = x′,

G(x′ + ε; x′) = G(x′; x′ + ε) = G(x′ − ε; x′),

and therefore that it is continuous there. So is q(x). This means that when we take the
limit as ε → 0, we will have

lim
ε→0

x′+ε∫
x′−ε

q(x)G(x; x′)dx = 0.

Thus, while G(x; x′) is continuous at x = x′, its �rst derivative must have a disconti-
nuity there:

lim
ε→0

d
dx G(x; x

′)
∣∣∣x=x′+ε
x=x′−ε

= 1
p(x′) . (12.1.9)

We shall now use (12.1.8) and (12.1.9) to construct G(x; x′) from non-trivial solu-
tions of the homogeneous DE Lu(x) = 0.

Let u<(x) be such a solution that satis�es one additional constraint, the homoge-
neous boundary condition at x = a,

α1 u<(a) + α2
d u<
dx

∣∣∣∣
x=a

= 0.

Since we also have
α1 G(a; x′) + α2

dG
dx

∣∣∣∣
x=a

= 0

and since these two algebraic equations have to admit a non-trivial solution for at least
one of α1 and α2, the determinant of their coe�cientsmust vanish. In other words, we
require

u<(a)
dg(x; x′)
dx

∣∣∣∣
x=a
−G(a; x′) du<(x)dx

∣∣∣∣
x=a

= 0.

But this is just the Wronskian of two solutions of the same DE and since it vanishes
at a particular point (x = a), it must be identically zero on a ≤ x < x′ and the two
solutions must be linearly dependent there. Therefore, we can write

G(x; x′) = c< u<(x) for a ≤ x < x′ (12.1.10)

where c< is some constant.
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Similarly, if u>(x) is a non-trivial solution of Lu(x) = 0 that satis�es the homoge-
neous boundary condition

β1 u>(b) + β2
d u>
dx

∣∣∣∣
x=b

= 0,

then

G(x; x′) = c> u>(x) for x′ < x ≤ b (12.1.11)

where c> is some other constant.
Nowwe shall impose the continuity of G(x; x′) and the discontinuity of d

dxG(x; x
′)

at x = x′:
c< u<(x′) = c> u>(x′)

and
c<
d u<
dx

∣∣∣∣
x=x′

− c>
d u>
dx

∣∣∣∣
x=x′

= − 1
p(x′) .

Solving for c< and c> , we �nd

c< =
u>(x′)

p(x′)W(x′) and c> =
u<(x′)

p(x′)W(x′)

whereW(x) = u<(x) d u>dx −u>(x)
d u<
dx is theWronskian of u<(x) and u>(x). Thus, our �nal

expression for the Green’s function is

G(x; x′) =


u<(x) u>(x′)
p(x′)W(x′) for a ≤ x < x′

u<(x′) u>(x)
p(x′)W(x′) for x′ < x ≤ b

(12.1.12)

This is called the direct construction formula for determining G(x; x′) and it results
in a closed form expression that contains no summation or integration to perform.
The function p(x′)W(x′) in the denominator is in fact a constant as can be seen from
equation (9.2.6)

W(x) = W(x0) exp

−
x∫

x0

a(ξ )dξ


for the Wronskian of the DE

d2 u
d x2 + a(x)dudx + b(x)u(x) = 0.

Converting
d
dx

(
p(x)dudx

)
− q(x)u(x) = 0

into this other canonical form, we see that

a(ξ ) = 1
p(ξ )

dp
dξ
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and so,

W(x) = W(x0)
p(x0)
p(x) or p(x)W(x) = a constant. (12.1.13)

Equation (12.1.12) provides a simple prescription for determining Sturm Liouville
Green’s functions and thence for determining the solutions of non-homogeneous
Sturm Liouville problems. The latter, obtained by inserting (12.1.12) into (12.1.5), have
a form reminiscent of what we found in Chapter 9 from application of the variation
of constants approach to solving non-homogeneous ODE’s. However, the present
approach represents a major advance on variation of constants because it
– incorporates boundary conditions, and
– can be generalized to apply to PDE’s in any number of dimensions.

There is a possible complication that can arise: theWronskian that appears in the
denominator of (12.1.12) could be zero leaving our Green’s function unde�ned. How-
ever, the lack of mathematical de�nition does not prevent interpretation. If the Wron-
skian of u<(x) and u>(x) is zero, the two functions have to be proportional to each other
and so there must exist a single solution of the homogeneous DE that satis�es both
boundary conditions. Since the function q(x) can be written q(x) = r(x) − λρ(x) for
some �xed λ and ρ(x) ≥ 0, the homogeneous DE can be converted into the eigenvalue
equation

d
dx

(
p(x)dudx

)
− r(x)u(x) = −λρ(x)u(x)

and we see that the vanishing of the Wronskian implies that λ is an eigenvalue of
L ≡ d

dx
(
p(x) ddx

)
− r(x). As we will see in the following example, this in turn implies a

physical interpretation in terms of resonant behaviour.

12.1.3 Application: The Bowed Stretched String

Suppose that we have a stretched string that is subjected to a transverse bowing force.
If the force per unit length at position x and time t is F(x, t), the transverse displace-
ment of the string is a solution of the non-homogeneous wave equation

∂2 ψ
∂ x2 −

1
c2
∂2 ψ
∂ t2

= −F(x, t)T

where T is the tension in the string. Suppose further that the bowing force is harmonic
so that F(x, t) = −Tf (x) e−iωt . The forced response of the string will then be ψ(x, t) =
u(x) e−iωt where

d2 u
d x2 + k2 u(x) = f (x), k = ωc .

If, as we usually do, require the ends of the string to be �xed, this non-homogeneous
ODE will be accompanied by the boundary conditions u(0) = u(L) = 0.
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The Green’s function that we need for this problem is the solution of

d2
d x2 G(x; x

′) + k2 G(x; x′) = δ(x − x′)

subject to G(0; x′) = G(L; x′) = 0. To apply the direct construction formula we require
a solution u<(x) of

d2 u
d x2 + k2 u(x) = 0

that satis�es u<(0) = 0. The general solution of this equation is u(x) =
{

cos kx
sin kx

}
and so a solution that meets our boundary condition is

u<(x) = sin kx, 0 ≤ x.

A solution u>(x) that clearlymeets the condition at the other boundary, namely u>(L) =
0, is

u>(x) = sin k(L − x), x ≤ L.

Calculating their Wronskian, we have

W(x) = u<(x)
d u>
dx −

d u>
dx u>(x) = − sin kx k cos k(L − x) − k cos kx sin k(L − x)

= −k sin k(x + L − x) = −k sin kL.

Therefore, since p(x) ≡ 1 in this case, the desired Green’s function is

G(x; x′) =


−sin kx sin k(L − x

′)
k sin kL for 0 ≤ x < x′

−sin kx
′ sin k(L − x)
k sin kL for x′ < x ≤ L

(12.1.14)

Thus, the solution to our bowed string problem is ψ(x, t) = u(x) e−iωt where

u(x) =
L∫

0

G(x; x′)f (x′)dx′

= −sin k(L − x)k sin kL

x∫
0

sin kx′f (x′)dx′ − sin kx
k sin kL

L∫
x

sin k(L − x′)f (x′)dx′.

We canuse the sameGreen’s function to solve adi�erent typeof non-homogeneous
string problem. Suppose that there is no bowing force, f (x) ≡ 0, but one end of the
string is vibrated with frequency ω and amplitude A. This means that we will have
boundary conditions u(0) = 0 and u(L) = A. Equation (12.1.5) still applies as does the
Green’s function (12.1.14). In fact, inserting the latter along with the new boundary
conditions on u(x), (12.1.5) gives us the solution ψ(x, t) = u(x) e−iωt with

u(x) = D d
dx′ G(x; x

′)
∣∣∣∣
x′=L

= A 1
k sin kL sin kx k cos k(L − L) = A

sin kx
sin kL .
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Notice that theWronskian of u<(x)and u>(x) provides this particular Green’s func-
tionwith simple poles located at the zeros of sin kLwhichmeans at the values k = ω

c =
mπ
L ,m = 1, 2, . . . . As we know and as the last sub-section suggested should happen,

these values correspond to the normal modes of vibration of the string. Thus, when
we stimulate the string at values of ω approaching one of its natural frequencies, the
Green’s function and hence the transverse displacement of the string increases with-
out limit. In other words, we produce a resonant response or resonance.

12.1.4 Eigenfunction Expansions : The Bilinear Formula

The origin of resonant behaviour and even of the Green’s function method itself be-
comesmuchmore transparent when one attempts solution bymeans of an eigenfunc-
tion expansion.

We shall use the modi�cation to the non-homogeneous Sturm-Liouville equation
that was introduced at the end of Section 12.1.2. Speci�cally, we shall write it in the
form

Lu(x) + λρ(x)u(x) = f (x) where L ≡ d
dx

(
p(x) ddx

)
− r(x) (12.1.15)

so that the correspondence with (12.1.1) is brought about by the replacement of q(x)
in that equation by r(x) − λρ(x). Here λ is a constant and ρ(x) is the (positive-de�nite)
weight function that is de�ned by the eigenvalue equation

L um(x) = − λm ρ(x) um(x) (12.1.16)

and the (homogeneous) boundary conditions

α1 um(a) + α2
d um
dx

∣∣∣∣
x=a

= 0 and β1 um(b) + β2
d um
dx

∣∣∣∣
x=b

= 0. (12.1.17)

We know that the eigenfunctions {um(x)} form a complete orthogonal set for the
space of functions that are square integrable with respect to the weight function ρ(x)
over the interval a ≤ x ≤ b. Therefore, assuming the eigenfunctions to be normalized
to 1 over a ≤ x ≤ b, we expand u(x) and f (x)

ρ(x) in terms of them and write

u(x) =
∞∑
m=1

am um(x) where am =
b∫
a

u*m(x′)u(x′)ρ(x′)dx′, (12.1.18)

and

f (x) = ρ(x)
∞∑
m=1

bm um(x) where bm =
b∫
a

u*m(x′)f (x′)dx′. (12.1.19)
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Notice that we are allowing for the possibility that the eigenfunctions are complex.
Substituting these expansions into theDE in (12.1.15),we obtain the algebraic equation

ρ(x)
∞∑
m=1

am(λ − λm) um(x) = ρ(x)
∞∑
m=1

bm um(x).

Because of the orthogonality of the {um(x)}, this implies

am = bm
λ − λm

for each m = 1, 2, 3, . . . .

Substituting back into the series in (12.1.18) and using the de�nition of bm in (12.1.19),
this yields a solution to the non-homogeneous DE, namely

u(x) =
∞∑
m=1

um(x)
λ − λm

b∫
a

u*m(x′)f (x′)dx′.

Both the integral and the series should beuniformly convergent and sowe interchange
their order to obtain

u(x) =
b∫
a

G(x; x′)f (x′)dx′ where G(x; x′) =
∞∑
m=1

um(x) u*m(x′)
λ − λm

. (12.1.20)

This is called the bilinear formula for the Green’s function.
Note that if f (x′) = δ(x′ − x0), (12.1.20) yields the solution u(x) = G(x; x0). This

veri�es that G(x; x′) as de�ned by the bilinear formula is a solution of the Green’s
function DE

LG(x; x′) + λρ(x)G(x; x′) = δ(x − x′).

Moreover, since each eigenfunction um(x) satis�es the homogeneous boundary con-
ditions (12.1.17), so does G(x; x′).

We remarked at the beginning of this sub-section that the origin of resonant be-
haviour becomes particularly transparent when the bilinear formula is used to con-
struct a Green’s function. Indeed, it corresponds to λ = λm for some m and when that
happens G(x; x′) clearly becomes unde�ned and there is no solution to the original
non-homogeneous problem unless, by chance,

b∫
a

u*m(x′)f (x′)dx′ = 0

for that particular value of m.
The normalized eigenfunctions of the bowed string di�erential operator,L ≡ d2

d x2 ,
corresponding to the homogeneous boundary conditions u(0) = u(L) = 0, are

um(x) =
√

2
L sin

mπx
L with λm = m

2 π2

L2
m = 1, 2, . . . .
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Therefore, substituting into (12.1.20) and using λ = k2, we �nd the bilinear form

G(x; x′) = 2
L

∞∑
m=1

sin mπx
L sin mπx′

L

k2 −m
2 π2
L2

(12.1.21)

which exhibits explicitly the poles at k = mπ
L . Evidently, this series is the Fourier sine

series expansion of (12.1.14)

G(x; x′) =


−sin kx sin k(L − x

′)
k sin kL for 0 ≤ x < x′

−sin kx
′ sin k(L − x)
k sin kL for x′ < x ≤ L

12.1.5 Application: the In�nite Stretched String

In many problems that are amenable to use of the bilinear formula, the eigenvalue
spectrum is continuous. To illustrate what happens in such a situation, we shall con-
sider a one-dimensional analogue of acoustic and electromagnetic radiation.

Suppose thatwehavean in�nitely long stretched string that is subjected to a trans-
verse harmonic force per unit length F(x, t) = −Tf (x) e−i ω0 t where T is, as usual, the
tension in the string. Here, “in�nitely long” means long enough that the ends of the
string have a negligible e�ect on the behaviour of points in any neighbourhood of the
middle. The PDE satis�ed by the transverse displacement is the same as for the �nite
string,

∂2 ψ
∂ x2 −

1
c2
∂2 ψ
∂ t2

= −1T F(x, t),

but the boundary conditions are, of course, quite di�erent. We shall assume that the
displacement is everywhere bounded: |ψ(x, t)| < ∞ for all −∞ < x < ∞.

As with the �nite string, we shall seek solutions of the form ψ(x, t) = u(x) e−i ω0 t

which reduces the problem to one of solving the non-homogeneous ODE

d2 u
d x2 + k20 u(x) = f (x) where k0 =

ω0
c

subject to |u(x)| < ∞ for all −∞ < x < ∞. Therefore, the Green’s function for this
problem must be the solution of

d2 G
d x2 + k20 G(x; x′) = δ(x − x′) (12.1.22)

that satis�es the same (homogeneous) boundary conditions. To �nd it bymeans of the
bilinear formula, we must �rst solve the eigenvalue problem

d2
d x2 uλ(x) = −λ uλ(x) with | uλ(x)| < ∞ for all − ∞ < x < ∞. (12.1.23)
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The boundedness condition can only bemet if λ < 0. Therefore,we set λ = − k2 andob-
tain the (normalized) eigenfunctions uk(x) = 1√

2π
e−ikx . This means that the bilinear

formula for our Green’s function is

G(x; x′) = 1
2π

∞∫
−∞

eikx
′
e−ikx

k20 − k2
dk. (12.1.24)

Evidently, this is an inverse Fourier transform and so must be the solution of
(12.1.22) that we would have obtained had we used Fourier transforms. To con�rm
this, we set F{G(x; x′)} ≡ g(k; x′), and transform (12.1.22) to obtain

− k2 g(k; x′) + k20 g(k; x′) =
1√
2π

∞∫
−∞

eikx δ(x − x′)dx = 1√
2π

eikx
′
,

or

g(k; x′) = 1√
2π

eikx
′

k20 − k2
.

Thus, since

G(x; x′) = 1√
2π

∞∫
−∞

e−ikx g(k; x′)dk,

we do indeed recover the bilinear formula (12.1.24).
We have some experience in evaluating Fourier integrals and so (12.1.24) should

lead to a closed form expression for G(x; x′) that can be compared to the expression
obtainable from the direct construction technique. There is a slight complication how-
ever: the integrand has (simple) poles on the real axis at k = ± k0 . This means that we
require an additional piece of information that instructs us how to deform the contour
of integration to avoid them.What that informationmay be becomes apparent as soon
as we investigate the residues at the poles. The residues at k = ± k0 are

∓ 1
4π

e±ik(x
′−x)

k0

respectively. The �rst of these would make a contribution to G(x; x′)e−iω0 t that con-
tains the factor e−i[k0(x−x

′)+ω0 t] while the contribution from the second would contain
ei[k0(x−x

′)−ω0 t]. These are waves travelling to the left and to the right, respectively, from
the source point x = x′. But the role of the Green’s function is to give us the the re-
sponse at a point x due to a disturbance at a point x′. Therefore, if x is to the left of
x′, x < x′, then G(x; x′) should not include the wave travelling to the right. Conse-
quently, the contour should not enclose the pole k = − k0 . On the other hand, if x is
to the right of x′, x > x′, the wave travelling to the left must be excluded and so now
the contour should not enclose k = k0 . Thus, the physical identity of the Green’s
function provides a key piece of information. We shall now complement it with the re-
quirements of Jordan’s Lemma to come up with a unique prescription for the contour
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of integration. If x < x′, we are obliged to close the contour in the upper half plane
and so we avoid the poles by means of small semi-circle closing above k = − k0 and a
second semi-circle closing below k = k0 . If x > x′, the contour is closed in the lower
half-plane and so the poles are avoided by exactly the same means.

The evaluation of the Fourier integral is now straightforward: one �nds

G(x; x′) = 2πi
[
− 1
2π

eik(x
′−x)

k + k0

]
k=k0

= − i
2 k0

ei k0(x
′−x) for x < x′,

and

G(x; x′) = 2πi
[
1
2π

eik(x
′−x)

k − k0

]
k=− k0

= − i
2 k0

e−i k0(x
′−x) for x > x′,

or

G(x; x′) = − i
2 k0

ei k0 |x−x
′| for all − ∞ < x < ∞. (12.1.25)

Therefore, the solution to the in�nite string problem is ψ(x, t) = u(x) e−i ω0 t where

u(x) =
∞∫

−∞

G(x; x′)f (x′)dx′ = − i
2 k0


x∫

−∞

ei k0(x−x
′) f (x′)dx′ +

∞∫
x

ei k0(x
′−x) f (x′)dx′

 .

(12.1.26)

Notice that if we had chosen the time dependence to be ei ω0 t , we would have had
the reverse correspondence between the waves travelling to the left and right. In that
case, the Green’s function to be used is the complex conjugate of the one in (12.1.25)

If the applied force is real, F(x, t) = −Tf (x)
{

cosω0 t
sinω0 t

}
, f *(x) = f (x), we can

express the transverse displacement in an explicitly real form by setting it equal to
the real or imaginary parts, respectively of u(x) e−i ω0 t (the real part yielding an even
function of t and the imaginary part an odd function of t tomatch the parity of cosω0 t
and sinω0 t). In the �rst case, this yields

ψ(x, t) =
∞∫

−∞

Re
{
e−i ω0 t G(x; x′)

}
f (x′)dx′ = 1

2 k0

∞∫
−∞

sin(k0 |x − x′| − ω0 t)f (x′)dx′

(12.1.27)

and in the second,

ψ(x, t) =
∞∫

−∞

Im
{
e−i ω0 t G(x; x′)

}
f (x′)dx′ = − 1

2 k0

∞∫
−∞

cos(|x − x′| − ω0 t)f (x′)dx′.

(12.1.28)
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We shall complete our analysis of the in�nite stretched string by constructing the
Green’s function directly. The relevant homogeneous DE is

d2 u
d x2 + k20 u(x) = 0.

We require a solution u<(x) which meets the boundary condition that as x → −∞

u<(x) e−i ω0 t is a wave travelling to the left. Since the general solution is
{

ei k0 x

e−i k0 x

}
,

this means that u<(x) = e−i k0 x . Next, we seek a solution u>(x) such that as x → +∞
u>(x) e−i ω0 t is a wave travelling to the right. The obvious choice is u>(x) = ei k0 x .

The Wronskian of u<(x) and u>(x) is

W(x) = u<(x)
d u>
dx −

d u>
dx u<(x) = i2 k0 .

Thus, since p(x) ≡ 1, equation (12.1.12) yields

G(x; x′) = − i
2 k0

{
ei k0(x−x

′) for − ∞ < x < x′

ei k0(x
′−x) for x′ < x < ∞

or,
G(x; x′) = − i

2 k0
ei k0 |x−x

′| for all − ∞ < x < ∞.

in full agreement with (12.1.25).

12.2 Partial Di�erential Equations

12.2.1 Green’s Theorem and Its Consequences

In more than one dimension a non-homogeneous boundary value problem generally
involves the solution of a PDE

Lψ(r) = f (r) with L ≡∇·[p(r)∇] + s(r) (12.2.1)

inside a volume V that is bounded by a surface S onwhich eitherψ(r) or n·∇ψ is spec-
i�ed. The partial di�erential operator L in (12.2.1) is self-adjoint and satis�es Green’s
Theoremwhich states that if u(r) and v(r) are any two twice-di�erentiable functions,∫

V

[u(r)Lv(r) − v(r)Lu(r)]dV =
∫
s

p(r)[u(r)∇v(r) − v(r)∇u(r)] · dS. (12.2.2)

The proof of the theorem follows from a consideration of the integrals
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∫
S

[u(r)p(r)∇v(r)] · dS=
∫
V

∇·[u(r)p(r)∇v(r)]dV

=
∫
V

(∇u(r)) · (p(r)∇v(r))dV+
∫
V

u(r)∇·(p(r)∇)v(r)dV

and∫
S

[v(r)p(r)∇u(r)] · dS=
∫
V

∇·[v(r)p(r)∇u(r)]dV

=
∫
V

(∇v(r)) · (p(r)∇u(r))dV+
∫
V

v(r)∇·(p(r)∇)u(r)dV

where we have used the divergence theorem in the �rst line of both equations. Sub-
tracting the second from the �rst of these equations, there is a cancellation that gives
us∫
S

p(r)[u(r)∇v(r) − v(r)∇u(r)] · dS=
∫
V

[u(r)∇·(p(r)∇)v(r) − v(r)∇·(p(r)∇)u(r)]dV .

Adding u(r)s(r)v(r) − v(r)s(r)u(r) to the integrand on the left hand side completes the
derivation of (12.2.2).

Let us introduce a Green’s function G(r;r′) by de�ning it to be a solution of

LG(r;r′) =δ(r − r′) (12.2.3)

inV subject to suitable boundary conditions on S. ApplyingGreen’s Theoremwith u(r)
replaced by ψ(r) (the solution of (12.2.1)) and v(r) by G(r;r′) and using their respective
PDE’s, we �nd∫

V

[ψ(r)LG(r;r′) − G(r;r′)Lψ(r)]dV=
∫
V

[ψ(r)δ(r − r′) − G(r;r′)f (r)]dV

=ψ(r′) −
∫
V

G(r;r′)f (r)dV=
∫
S

p(r)[ψ(r)∇G(r;r′) − G(r;r′)∇ψ(r)] · dS.

Interchanging r and r′ and rearranging terms, the last two lines of this equation be-
come

ψ(r) =
∫
V

G(r′;r)f (r′)dV ′+
∫
S

p(r′)[ψ(r′)∇′G(r′;r) − G(r′;r)∇′ψ(r′)] · dS′ (12.2.4)



Partial Di�erential Equations | 397

which is the multi-dimensional analogue of equation (12.1.5).
We now choose boundary conditions for G(r;r′) that will eliminate unknown

quantities from the surface integral on the right hand side of (10.2.4). Normally, there
are only two cases to consider.

Case 1 (Dirichlet Boundary Conditions): ψ(r) is given on S.
The obvious choice for the Green’s function under this circumstance is the homoge-
neous condition

G(r;r′) = 0 for r on S. (12.2.5)

Equation (12.2.4) then becomes

ψ(r) =
∫
V

G(r′;r)f (r′)dV ′+
∫
S

p(r′)ψ(r′)∇′G(r′;r) · dS′. (12.2.6)

Case 2 (Neumann Boundary Conditions): n·∇ψ(r) is given on S.
The choice here is not quite so obvious. If we apply the divergence theorem to∫

V

LG(r;r′)dV =
∫
V

δ(r − r′)dV = 1,

we �nd ∫
S

p(r)∇G(r;r′) · dS+
∫
V

s(r)G(r;r′)dV = 1.

This means that if s(r) ≡ 0, we cannot require n·∇G(r;r′) = 0 for r on S since that
would produce a contradiction. Therefore, we are obliged to recognize two sub-cases:
if s(r) ≠ 0, we make the obvious choice and impose the homogeneous condition

n·∇G(r;r′) = 0 for r on S (12.2.7)

and if s(r) ≡ 0, we require the next best thing,

n·∇G(r;r′) = 1
Ap

, where Ap =
∫
S

p(r)dS, for r on S. (12.2.8)

In the �rst instance, (12.2.4) becomes

ψ(r) =
∫
V

G(r′;r)f (r′)dV ′ −
∫
S

p(r′)G(r′;r)∇′ψ(r′) · dS′ (12.2.9)
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and in the second,

ψ(r) =〈ψ 〉S +
∫
V

G(r′;r)f (r′)dV ′ −
∫
S

G(r′;r)∇′ψ(r′) · dS′ (12.2.10)

where 〈ψ 〉S = 1
Ap

∫
S
p(r′)ψ(r′)dS′ is the weighted average of ψ(r) over the whole sur-

face S.
Poisson’s equation is an important example of aPDE forwhich s(r) ≡ 0andwhose

Green’s functionmust thereforemeet the non-homogeneousNeumann boundary con-
dition (12.2.8). In that case, 〈ψ 〉S = 1

A
∫
S
ψ(r′)dS′ where A is the area of the surface S.

This means that ψ(r) is determined only to within an additive constant by the bound-
ary condition. On the other hand, we know from electromagnetic theory that the def-
inition of zero potential is arbitrary and exercising that arbitrariness, we can set 〈ψ 〉S
to zero.

Now that we know how to solve for ψ(r) in terms of G(r;r′), it is time to turn
our attention to the construction of Green’s functions in more than one dimension.
We will do so by considering speci�c PDE’s and boundary conditions. But �rst, we
shall deduce a property common to all Green’s functions. What is involved is another
application of Green’s Theorem. Setting u(r) = G(r;r′) and v(r) = G(r;r′′) in equation
(12.2.2), we note that the surface term vanishes and leaves us with the result G(r′;r′′)−
G(r′′;r′) = 0 or,

G(r′;r′′) = G(r′′;r′). (12.2.11)

In other words, G(r;r′) is symmetric under r ↔ r′.

12.2.2 Poisson’s Equation in Two Dimensions and With Rectangular Symmetry

Suppose that we wish to �nd the static de�ection u(x, y) of a rectangular membrane
due to an external force. Using f (x, y) to denote the external force per unit area divided
by the tension, this will require that we solve

∂2 u
∂ x2 + ∂

2 u
∂ y2

= f (x, y) (12.2.12)

subject to (homogeneous) Dirichlet conditions at the �xed edgeswhichwe shall locate
at x = 0, x = a, y = 0 and y = b.

The Green’s function for this problem is the solution of

∂2 G
∂ x2 + ∂

2 G
∂ y2

= δ(x − x′)δ(y − y′) (12.2.13)

that satis�es

G(0, y; x′, y′) = G(a, y; x′, y′) = G(x, 0; x′, y′) = G(x, b; x′, y′) = 0. (12.2.14)
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In general, it is either not possible or not useful to �nd a closed form expression
for a multi-dimensional Green’s function when the boundaries are �nite closed sur-
faces. However, as in the one-dimensional case, there are two construction methods:
the eigenfunction expansion and the direct construction approach. The �rst of these
yields an expression, the bilinear formula, with as many summations or integrations
as there are dimensions (or separable di�erential operators in L) . The second elimi-
nates one of these summations bymakinguse of our ability to directly construct closed
form expressions for one dimensional Green’s functions.

Eigenfunction Expansion Method:
Let uλ(x, y) denote the normalized eigenfunctions of ∇2 that satisfy homogeneous
Dirichlet conditions at x = 0, x = a, y = 0andy = b.

In other words, let

∇2 uλ(x, y) = −λ uλ(x, y) with || uλ(x, y)|| = 1
and uλ(0, y) = uλ(a, y) = uλ(x, 0) = uλ(x, b) = 0. (12.2.15)

Since their closure relation must be∑
λ

uλ(x, y) u*λ(x′, y′) = δ(x − x′)δ(y − y′), (12.2.16)

it is clear that the bilinear formula of Section 12.1.3 applies here too and yields

G(x, y; x′, y′) =
∑
λ

uλ(x, y) u*λ(x′, y′)
−λ . (12.2.17)

Weknowalready (fromSection 10.8) that the eigenvalues for the rectangularmem-
brane are λm,n = m2 π2

a2 + n2 π2
b2 ,m, n = 1, 2, 3, . . . corresponding to the (normalized)

eigenfunctions um,n(x, y) = 2√
ab

sin mπx
a sin nπy

b . Therefore, the bilinear formula rep-
resentation of our green’s function is

G(x, y; x′, y′) = − 4
ab

∞∑
m=1

∞∑
n=1

sin mπx
a sin nπy

b sin mπx′
a sin nπy′

b
m2 π2
a2 + n2 π2

b2
. (12.2.18)

Direct Construction Method:
We start with a partial eigenfunction expansion. Choosing to do so in the y variable,
we write

G(x, y; x′, y′) =
√

2
b

∞∑
n=1

Gn(x; x′, y′) sin
nπy
b (12.2.19)
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and invoke closure for the normalized eigenfunctions
√

2
b sin

nπy
b ,

δ(y − y′) = 2
b

∞∑
n=1

sin nπyb sin nπy
′

b .

Substituting these two expansions into the Green’s function PDE and equating on a
term by term basis, we conclude that Gn(x; x′, y′) factors according to

Gn(x; x′, y′) =
√

2
b sin nπy

′

b
gn(x; x′) where d2 gn

d x2 −
n2 π2

b2
gn(x; x′) = δ(x − x′).

(12.2.20)

This is a one-dimensional Green’s function DE which we can solve by the direct con-
struction method.

Remembering that we have homogeneous boundary conditions, gn(0; x′) =
gn(a; x′) = 0, we proceed by seeking a solution u<(x) of the homogeneous DE

d2 u
d x2 −

n2 π2

b2
u(x) = 0

that satis�es u<(0) = 0. Since the general solution is u(x) =
{

cosh nπx
b

sinh nπx
b

}
, the sim-

plest choice is u<(x) = sinh nπx
b .

Next, we need a solution u>(x) of the homogeneous DE that satis�es u>(a) = 0.
Again, the simplest choice is pretty obvious: u>(x) = sinh nπ

b (x − a).
The Wronskian of u<(x)and u>(x) is

W(x) = u<(x) u′>(x) − u>(x) u′<(x) =
nπ
b sinh nπab .

Therefore, using (12.1.12) we have

gn(x; x′) =


− bnπ

sinh nπx
b sinh nπ

b (a − x
′)

sinh nπa
b

, 0 ≤ x < x′

− bnπ
sinh nπ

b (a − x) sinh
nπx′
b

sinh nπa
b

, x′ < x ≤ a
(12.2.21)

Substituting back into the expansion (12.2.19) for G(x, y; x′, y′) we conclude that

G(x, y; x′, y′) =


−
∞∑
n=1

2
nπ

sinh nπx
b sinh nπ

b (a − x
′)

sinh nπa
b

sin nπy
b sin nπy′

b

−
∞∑
n=1

2
nπ

sinh nπ
b (a − x) sinh

nπx′
b

sinh nπa
b

sin nπy
b sin nπy′

b

(12.2.22)

for
{

0 ≤ x < x′

x′ < x ≤ a
, respectively. This is equivalent to thedoubleFourier representation

(12.2.18) found by application of the bilinear formula but with the sum overm actually
performed.
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Had our starting point been substitution of

δ(x − x′) = 2
a

∞∑
m=1

sin mπxa sin mπx
′

a ,

and

G(x, y; x′, y′) =
√

2
a

∞∑
m=1

Gm(y; x′, y′) sin
mπx
a

into the PDE (12.2.13), we would have found Gm(y; x′, y′) = gm(y; y′) sin mπx′
a where

gm(y; y′) =


− a
mπ

sinh mπy
a sinh mπ

a (b − y′)
sinh mπb

a
, 0 ≤ y < y′

− a
mπ

sinh mπ
a (b − y) sinh mπy′

a
sinh mπb

a
, y′ < y ≤ b

(12.2.23)

This, of course, yields an expression for G(x, y; x′, y′) that is equivalent to summing
over n in the double Fourier series (12.2.18). It could have been obtained directly from
(12.2.22) by invoking the problem’s symmetry under x ↔ y, (x′ ↔ y′), and a ↔ b.

12.2.3 Potential Problems in Three Dimensions and the Method of Images

Coulomb’s Law is an implicit expression of the solution of the Green’s function PDE

∇2 G(r;r′) =δ(r − r′) (12.2.24)

plus the (Dirichlet) boundary condition lim
r→∞

G(r;r′) = 0. It tells us that the potential
due to unit charge located at the point r=r′ is

ψ(r) = − 1
4π ε0

1
|r − r′|

and, since the charge density associated with the charge is ρ(r) =δ(r − r′), this means
that

∇2 ψ(r) = − ρ(r)ε0
= − 1

ε0
δ(r − r′).

Comparing this with (12.2.24), we deduce that

G(r;r′) = − 1
4π

1
|r − r′| . (12.2.25)

This is con�rmed by direct integration of (12.2.24). Integrating over a spherical
volume centred at r=r′ and applying the divergence theorem, we �nd∫

S

∇G(r;r′) · dS= 1
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where S denotes the boundary surface of the sphere. But the normal gradient on a
spherical surface is just the partial derivative with respect to the radial coordinate.
Therefore, we can rewrite this last equation as∫

S

∂G
∂r dS =

2π∫
0

π∫
0

∂G
∂r r

2 sin θdθdφ = 1

where r = |r − r′|. With the origin of coordinates at r=r′, the delta function in the PDE
and the boundary condition to be imposed on its solution both depend only on the
radial variable and so the samemust be true of the solution itself. Thus, the integration
can be performed to give us

dG
dr = 1

4π r2 = 1
4π

1
|r − r′ |2

.

Integrating once more and using the boundary condition to dispose of the integration
constant, we obtain, as expected,

G(r;r′) = − 1
4π

1
|r − r′| .

This result can also be obtained by use of Fourier transforms as will be demonstrated
in Section 12.3.3.

If the Dirichlet condition is imposed on a �nite surface, we can still solve for the
Green’s function in closed form by using a trick that is called, in electrostatic theory,
the method of images. Any Green’s function can be set equal to a superposition of
solutions of the non-homogeneous and homogeneous PDE’s. In the present case, this
means that we can set

G(r;r′) =Gs (r;r′)+Go (r;r′) where Gs(r;r′) = −
1
4π

1
|r − r′| (12.2.26)

and

∇2 Go(r;r′) = 0 with [Gs(r;r′)+Go (r;r′)]
∣∣
r on surface = 0. (12.2.27)

For speci�city, let us take the boundary surface to be a sphere of radius R. If r is con-
strained to vary inside the spherical volume, r < R, and r′′ is a point outside, r′′ > R,
the delta function δ(r − r′′) is zero and 1

|r−r′′| is a solution of the homogeneous PDE
there. This means we can set

Go(r;r′) = −
1
4π

k
|r − r′′| , r ≤ R and r′′ > R,

where k is a constant and r′′ is chosen to lie along the same radius vector as r′. The
values of k and r′′ are to be determined by imposing the boundary condition (12.2.27).

Since r′′= r
′′

r′ r
′, our Green’s function is

G(r; r′) = Gs(r; r′) + G0(r; r′) = −
1
4π

[
1

|r − r′| +
k∣∣r − r′′
r′ r′
∣∣
]
.
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This vanishes at r = R if
r′′ = R

2

r′ and k = − r
′′

R
which gives us the unique solution

G(r; r′) = − 1
4π

 1
|r − r′| +

R
r′

1∣∣∣r − rR2
r′2 r′

∣∣∣
 , r and r′ ≤ R. (12.2.28)

Visual inspection of this result reveals why its construction is called the method
of images. We know that Gs(r;r′) has the physical signi�cance of the potential due to
an isolated point charge located at r=r′. Similarly, the Green’s function we are trying
to �nd is the potential due to that same chargewhen it is enclosedwithin a conducting
sphere of radius R. What we have found is that the e�ect of the sphere is the same as
that of adding an “image” point charge located at the inverse of r=r′ with respect to
the spherical surface.

This approach works well for any simple boundary surface, a plane and a cylin-
der of in�nite length being two other examples. However, �nding image points is a
challenge with more complicated surfaces and is generally not worth the e�ort. Even
(12.2.28) is di�cult to work with in the context of �nding the potential due to a contin-
uous charge distribution via (12.2.6). A more fruitful approach is to proceed as we did
in Section 12.2.2 and expand the Green’s function in series (or integrals).

12.2.4 Expansion of the Dirichlet Green’s Function for Poisson’s Equation When
There Is Spherical Symmetry

Suppose thatwe haveDirichlet conditions imposed on a surface consisting of two con-
centric spheres of radii r = a and r = b, b > a. This means that we wish to solve

∇2G(r; r′) = δ(r − r′) subject to G(r; r′)
∣∣∣
r=a

= G(r; r′)
∣∣∣
r=b

= 0. (12.2.29)

In spherical coordinates, the delta function in the PDE canbe expanded according
to

δ(r − r′) = 1
r2 δ(r − r

′)δ( cos θ − cos θ′)δ(φ − φ′)

= 1
r2 δ(r − r

′)
∞∑
l=0

l∑
m=−l

(Yml (θ′, φ) )* Yml (θ, φ) (12.2.30)

where we have used the closure relation for spherical harmonics. Similarly, we can
write

G(r;r′) =
∞∑
l=0

l∑
m=−l

Glm (r;r′) Yml (θ, φ) (12.2.31)
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and substitute both expansions into the PDE of (12.2.29) to obtain
∞∑
l=0

l∑
m=−l

{
1
r
d2
d r2 (r Glm(r; r

′) − l(l + 1)r2 Glm (r;r′)
}
Yml (θ, φ)

= 1
r2 δ(r − r

′)
∞∑
l=0

l∑
m=−l

( Yml (θ′, φ′) )* Yml (θ, φ). (12.2.32)

Invoking the orthogonality of the spherical harmonics to set up equations on a term
by term basis, we deduce that Glm(r; r′) must factor according to

Glm(r; r′) = gl (r; r′) Yml (θ′, φ′) (12.2.33)

where

r2 d2
d r2

gl(r; r′) + 2r
d
dr
gl(r; r′) − l(l + 1) gl(r; r′) = δ(r − r′). (12.2.34)

The homogeneous counterpart of (12.2.34) is Euler’s equation

r2 d
2 u
d r2 + 2r dudr − l(l + 1)u(r) = 0

which has the general solution
{

rl

r−l−1

}
. Therefore, a solution u<(r) that satis�es

the boundary condition u<(a) = 0 is

u<(r) =
(
rl −a

2l+1

rl+1

)
, a ≤ r

while one that satis�es u>(b) = 0 is

u>(r) =
(

1
rl+1

− rl

b2l+1

)
, r ≤ b.

The Wronskian of u<(r) and u>(r) is

W(r) = u<(r) u′>(r) − u>(r) u′<(r) =
2l + 1
r2

[(a
b

)2l+1
−1
]

and the Sturm-Liouville function p(r) is r2 . Thus, from the direct construction formula
(12.1.12) for one-dimensional Green’s functions, we have

gl(r; r′) =
(−1)

(2l + 1)
[
1 −
( a
b
)2l+1]


(
rl −a

2l+1

rl+1

)(
1
r′l+1

− r′l

b2l+1

)
, a ≤ r < r′(

1
rl+1

− rl

b2l+1

)(
r′l − a

2l+1

r′l+1

)
, r′ < r ≤ b

or,

gl(r; r′) =
(−1)

(2l + 1)
[
1 −
( a
b
)2l+1]

(
rl> −

a2l+1

rl+1<

)(
1
rl+1>

− rl>
b2l+1

)
(12.2.35)
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where r< ≡ the smaller of r and r′ and r> ≡ the larger of r and r′. Substituting this into
(12.2.33) and the latter into (12.2.31) gives us a �nal expression for the Poisson equation
Green’s function for a spherical shell bounded by r = a and r = b:

G(r;r′) = −
∞∑
l=0

l∑
m=−l

Yml (θ, φ)( Yml (θ′, φ′) )*

(2l + 1)
[
1 −

( a
b
)2l+1 ]

(
rl< −

a2l+1

rl+1<

) (
1
rl+1>

)
. (12.2.36)

There are three special cases:
1. if a = 0 and b →∞, we have

G(r;r′) =
∞∑
l=0

l∑
m=−l

( − 1)
2l + 1

rl<
rl+1>

Yml (θ, φ)( Yml (θ′, φ′) )* = − 1
4π

1
|r − r′| (12.2.37)

where the last equality was derived earlier as an application of the addition theo-
rem of spherical harmonics;

2. if a remains �nite and b → ∞, we have an exterior problem and the Green’s
function is

G(r;r′) =
∞∑
l=0

l∑
m=−l

( − 1)
2l + 1

1
r2l+1>

(
rl< −

a2l+1

rl+1<

)
Yml (θ, φ)( Yml (θ′, φ′) )* ; (12.2.38)

3. if a = 0 and b remains �nite, we have an interior problem and the Green’s func-
tion is

G(r;r′) =
∞∑
l=0

l∑
m=−l

( − 1)
2l + 1 r

l
<

(
1

r >l+1

)
Yml (θ, φ)( Yml (θ′, φ′) )* . (12.2.39)

12.2.5 Applications

Solution of Laplace’s Equation
Weknow already that the potential inside a sphere of radius bwith no charges present
but subject to ψ(b, θ, φ) = V(θ, φ) is

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

clm rl Yml (θ, φ)

with

clm = 1
bl

2π∫
0

1∫
−1

(Yml (θ′, φ′)*V(θ′, φ′)d(cos θ′)dφ′.

What we wish to verify now is that the Green’s function we have just derived yields
exactly the same solution. To do so, we require the normal gradient

n ·∇G(r; r′)
∣∣∣
r=b

= ∂
∂r G(r; r

′)
∣∣∣∣
r=b

.
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From (12.2.39) we have

∂
∂r G(r; r

′)
∣∣∣∣
r=b

= ∂
∂ r>

G(r; r′)
∣∣∣∣
r> =b

= 1
b2

∞∑
l=0

l∑
m=−l

( r
b

)l
( Yml (θ′, φ′) )* Yml (θ, φ).

Thus, since ρ(r) ≡ 0 and dS′ = b2 d(cos θ′)dφ′, we obtain from equation (12.2.9)

ψ(r) = − 1
ε0

∫
V

G(r;r′)ρ(r′)dV ′+
∫
S

ψ(r′)n·∇′G(r;r′)dS′

=
∞∑
l=0

l∑
m=−l

 2π∫
0

1∫
−1

V(θ′, φ′)( Yml (θ′, φ′) )* d( cos θ′)dφ′
 ( r

b

)l
Yml (θ, φ)

which is identical to our earlier result as required.
Note that if V(θ, φ) is independent of φ (that is, if we have azimuthal symmetry),

only the m = 0 terms are retained in G(r;r′). Thus, since

Yml (θ, φ)(Yml (θ′, φ′) )* →
2l + 1
4π Pl(cos θ) Pl(cos θ′) for m = 0,

the electrostatic potential becomes

ψ(r, θ) =
∞∑
l=0

2l + 1
2

1∫
−1

V(θ′) Pl(cos θ′)d(cos θ′)

( r
b

)l
Pl(cos θ).

Solution of Poisson’s Equation
Consider a hollow, grounded sphere of radius b with a concentric ring of charge, of
radius c < b and total charge Q, inside it. Taking the ring to lie in the xy-plane, we can
assert that the charge density inside the sphere will be independent of φ and have a
delta function dependence on r and θ. Thus, we can write

ρ(r) = Aδ(r − c)δ( cos θ) where A is a constant of proportionality.

The constant A can be determined from the normalizing condition

Q =
b∫

0

π∫
0

2π∫
0

ρ(r) r2 dr sin θdθdφ.

Thus, A = Q
2π c2 . This means that the electrostatic potential inside the sphere is the

solution of
∇2 ψ(r) = − Q

2π c2 ε0
δ(r − c)δ( cos θ)

that satis�es ψ(b, θ, φ) = 0.
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Using the interior problem Green’s function (12.2.39) modi�ed for azimuthal sym-
metry, we have

ψ(r) =
2π∫
0

1∫
−1

b∫
0

[
− Q
2π c2 ε0

δ(r′ − c)δ( cos θ′)
]
G(r;r′)r ′2 dr′d( cos θ′)dφ′

and so,

ψ(r) =
∞∑
l=0

Pl ( cos θ)
4π

2π∫
0

1∫
−1

b∫
0

Q
2π c2 ε0

δ(r′ − c)δ( cos θ′)× rl<
(

1
rl+1>

)
r ′2 dr′d( cos θ′)dφ′

or,

ψ(r) = Q
4π ε0

∞∑
l=0

Pl (0) rl<
(

1
rl+1>

)
Pl ( cos θ)

where r<(r>) is now the smaller (larger) of r and c. Making use of

P2l+1(0) = 0 and P2l(0) =
(−1 )l(2l)!
22l(l! )2

,

this becomes

ψ(r) = Q
4π ε0

∞∑
l=0

( − 1 )l (2l)!
22l (l! )2

r2l<
(

1
r2l+1>

)
P2l ( cos θ).

Notice that for b →∞ and r > c, this reduces to

ψ(r) = Q
4π ε0

∞∑
l=0

( − 1 )l (2l)!
22l (l! )2

c2l

r2l+1 P2l
( cos θ)

which for a point on the z-axis converges to thewell-known consequence of Coulomb’s
law,

ψ(z, 0) = Q
4π ε0

1√
z2 + c2

.

12.3 The Non-Homogeneous Wave and Di�usion Equations

12.3.1 The Non-Homogeneous Helmholtz Equation

The non-homogeneous wave equation is

∇2 ψ(r, t) − 1
c2
∂2 ψ(r, t)
∂ t2

=σ(r, t). (12.3.1)

As in the bowed string problem, if the source is monochromatic and harmonic,
that is if σ(r, t) =σ(r) e−iωt , we can assume the same time dependence for ψ(r, t),
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ψ(r, t) =ψ(r) e−iωt . This means that the problem is e�ectively time-independent
and so no initial conditions are needed. We proceed by substitution into the original
PDE which yields

(∇2 + k2)ψ(r) =σ(r), k =ω/c. (12.3.2)

From equation (12.2.4) we know that the solution of the non-homogeneous
Helmholtz equation is

ψ(r) =
∫
V

G(r′;r)σ(r′)dV ′ +
∫
S

[ψ(r′)n·∇′G(r′;r) − G(r′;r)n·∇′ψ(r′)]dS′ (12.3.3)

where

(∇2 + k2)G(r;r′) =δ(r − r′) (12.3.4)

and G(r;r′) is subject to the homogeneous counterparts of whatever boundary con-
ditions are imposed on ψ(r). One expression for G(r;r′) is provided by the bilinear
formula,

G(r;r′) =
∑
n

un (r)( un (r′) )*

k2 − k2n
(12.3.5)

where the functions un(r) are the normalized normal modes de�ned by
(∇2 + k2) un(r) = 0 with boundary conditions un(r) = 0 or n·∇ un (r) = 0 for r on S.
Another is provided by the same kind of partial expansion and direct construction
technique that we used for Poisson’s equation.

12.3.2 The Forced Drumhead

If the external force per unit area applied normal to a drumhead is F(r, t), its trans-
verse displacement will obey the equation

∇2 ψ(r, t) − 1
c2

∂2
∂ t2

ψ(r, t) = − 1
c2 µ F(r, t) ≡ f (r, t) (12.3.6)

where, as before, µ is the mass per unit area. We assume that f (r, t) = f (r) e−iωt and
set the forced displacement of the drumhead equal toψ(r, t) =ψ(r) e−iωt . Substituting
into (10.3.5), we get the two dimensional non-homogeneous Helmholtz equation

(∇2 + k2)ψ(r) = f (r), k =ωc .

This is to be solved subject to the (Dirichlet) boundary condition ψ(r) = 0 for r on the
perimeter of the drumhead. Thus, if the drumhead is circular with radius a, we have
the condition ψ(a, θ) = 0.
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With both ψ(r) and G(r;r′) satisfying homogeneous Dirichlet conditions, the so-
lution is provided by the integral

ψ(r) =
2π∫
0

a∫
0

G(r; r′)f (r′)r′dr′dθ′.

Thus, all we need to do is construct the Green’s function.
Trying the direct construction method �rst, we expand G(r;r′) in a Fourier series

in θ:

G(r;r′) =
∞∑

m=−∞
Gm (r; r′,θ′) eimθ . (12.3.7)

Next, we use closure to expand the delta function in θ:

δ(r − r′) =1r δ(r − r
′)δ(θ − θ′) =1r δ(r − r

′) 12π

∞∑
m=−∞

eim(θ−θ
′) . (12.3.8)

Substituting these expansions into (12.3.4) expressed in terms of two dimensional po-
lar coordinates and using the orthogonality of the Fourier functions, we �nd that the
coe�cients Gm(r; r′, θ′) factor according to

Gm(r; r′, θ′) =
1
2π e

−imθ′ gm(r; r′) (12.3.9)

where

d2
d r2

gm(r; r′) +
1
r
d
dr
gm(r; r′) +

(
k2 −

m2

r2

)
gm(r; r′) =

1
r δ(r − r

′). (12.3.10)

The homogeneous version of this is Bessel’s equation with general solution u(r) ={
J|m|(kr)
N|m|(kr)

}
. A solution that satis�es the boundary condition | u<(0)| < ∞ is

u<(r) = J|m|(kr), 0 ≤ r, while one that satis�es u>(a) = 0 is u>(r) = N|m|(ka) J|m|(kr) −
J|m|(ka)N|m|(kr), r ≤ a. Their Wronskian is

W(r) = −k J|m|(ka)[J|m|(kr)N′|m|(kr) − N|m|(kr) J
′
|m|(kr)].

We can show from their small x behaviour that the Wronskian of the Bessel and
Neumann functions is

Jm(x)N′m(x) − J′m(x)Nm(x) =
2
πx .

Therefore,W(r) = − 2
πr J|m|(ka) which with p(r) = r and equation (12.1.12) gives us

gm(r; r′) = −
π
2

1
J|m|(ka)

 J|m|(kr)[N|m|(ka)J|m|(kr′) − J|m|(ka)N|m|(kr′)], 0 ≤ r < r′

[N|m|(ka)J|m|(kr) − J|m|(ka)N|m|(kr)]J|m|(kr′), r′ < r ≤ a



410 | Non-Homogeneous Boundary Value Problems: Green’s Functions

Substituting back into (12.3.7), this yields the Green’s function

G(r;r′) =14
J0 (k r< )
J0 (ka)

[ J0 (ka)N0 (k r> ) − N0 (ka) J0 (k r> )]

+12

∞∑
m=1

Jm (k r< )
Jm (ka)

[ Jm (ka)Nm (k r> ) − Nm (ka) Jm (k r> )] cosm(θ − θ′)

(12.3.11)

where, as usual, r<(r>) is the smaller (larger) of r and r′.
To �nd the equivalent bilinear formula expression for the Green’s function is quite

straight forward since we already know what are the circular drumhead eigenfunc-
tions or normal modes. Speci�cally, from Section 11.3.2 we have

umn(r, θ) =
{
Jm(kmn r) cosmθ
Jm(kmn r) sinmθ

m = 0, 1, 2, . . . , n = 1, 2, . . . .

To normalize these functions over the area of the drumhead, we multiply them by the
normalization constants for the Bessel and Fourier functions which means multiply-
ing them by

N0n =
1√

πa J′0(k0n a)
for m = 0 and Nmn =

√
2
π

1
a J′m(kmn a)

for m = 1, 2, . . . .

Substituting into (12.3.5), we obtain the bilinear formula

G(r;r′) = 1
π a2

∞∑
n=1

1
[ J0 ′( k0n a) ]

2
J0 ( k0n r) J0n ( k0n r′)

k2 − k20n

+ 2
π a2

∞∑
m=1

∞∑
n=1

1
[ Jm ′( kmn a) ]

2
Jm ( kmn r) Jm ( kmn r′) cosm(θ − θ′)

k2 − k2mn
(12.3.12)

where we have used the identity cosmθ cosmθ′ + sinmθ sinmθ′ = cosm(θ − θ′).

12.3.3 The Non-Homogeneous Helmholtz Equation With Boundaries at In�nity

When there are no �nite boundaries (the source is isolated), the boundary condition
that accompanies the Green’s function PDE

(∇2 + k2)G(r;r′) =δ(r − r′)

is simply that the solution be bounded and, in particular, that lim
|r−r′|→∞

|G(r;r′)| <∞.

This can be solved by using Fourier transforms in much the same way that we did in
Section 12.1.5.
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We start by putting a subscript on the wave number in the Green’s function PDE
to distinguish it from the transform variable:

(∇2 + k20)G(r;r′) =δ(r − r′) (12.3.13)

and so the time dependence associated with G(r;r′) is now e−i ω0 t , ω0 = c k0 . Taking
the three-dimensional transform of (12.3.13), we obtain

g(k;r′) = 1
(2π )3/2

eik·r
′

k20 − k2

where k2 = k·k and

g(k;r′) ≡ F{G(r;r′)} = 1
(2π )3/2

2π∫
0

π∫
0

∞∫
0

eik·r G(r;r′) r2 dr sin θdθdφ.

Thus,

G(r;r′) = 1
(2π )3

2π∫
0

π∫
0

∞∫
0

eik·(r
′−r)

k20 − k2
k2 dk sin θk d θk d φk (12.3.14)

which we recognize as the bilinear formula for the Green’s function.
To evaluate this integral, we take the k3 axis in the direction of r − r′ so that

k·(r − r′) = kR cos θk , R = |r − r′|.

Then,

G(r;r′) = − 1
(2π )3

2π∫
0

π∫
0

∞∫
0

e−ikR cos θk

k2 − k20
k2 dk sin θk d θk d φk

= − 1
(2π )2

2
R

∞∫
0

sin kR
k2 − k20

kdk

= − 1
(2π )2

1
iR

∞∫
0

eikR − e−ikR

k2 − k20
kdk

= − 1
(2π )2

1
iR

∞∫
−∞

eikR

k2 − k20
kdk.

The �nal integral can be evaluated by contour integration. When combined with time
dependence e−i ω0 t , inclusion of the pole at k = − k0 within the contour results in an
incomingwave. On the other hand, the residue of the pole at k = k0 yields an outgoing
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wave. Therefore, we use the same contours that were used in Section 12.1.5 and obtain
the solutions

Gout(r;r′) = −
1
4π

ei k0 |r−r
′|

|r − r′| , (12.3.15)

and

Gin(r;r′) = −
1
4π

e−i k0 |r−r
′|

|r − r′| . (12.3.16)

These are used to generate purely outgoing or incoming wave solutions, respectively.
Thus, for example, if the source σ(r, t) =σ(r) e−i ω0 t is an isolated loudspeaker or
acoustic antenna, the waves that it emits will be described by

ψ(r, t) = − e
−i ω0 t

4π

∫
all space

ei k0 |r−r
′|

|r − r′| σ(r)dV
′.

Far from the source, r � r′, we have |r − r′| ∼ r − n·r′ where n= rr and so
ei k0 |r−r′|

|r−r′| ∼
ei k0 r
r e−ik

′·r′ where k′= k0 n. In that case,

ψ(r) ∼ f (k′) e
ikr

r where f (k′) =
∫

all space

e−ik
′·r′ σ(r′)dV ′. (12.3.17)

This is analogous to the formalism we introduced in Section 11.4.2 in our discussion
of spherical waves.

As one would expect, (12.3.15) and (12.3.16) both become the Green’s function
(12.2.25) for Poisson’s equation in the limit as k0 → 0.

12.3.4 General Time Dependence

If the source term σ(r, t) has a general time dependence, we cannot separate the
space and time dependence so easily andwe do have toworry about initial conditions.
Let us start by re-stating the problem. It consists of solving

∇2 ψ(r, t) − 1
c2
∂2 ψ(r, t)
∂ t2

=σ(r, t) (12.3.18)

where the source term σ(r, t) has a general time dependence and the solution ψ(r, t)
is subject to

ψ(r, t) or n·∇ψ(r, t) given for r on S (12.3.19)

plus initial conditions

ψ(r, t) and ∂ψ(r, t)
∂t given at an initial time t = τ throughout V . (12.3.20)
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To tackle this we need the Green’s function G(r, t;r′, t′) which is the solution of

∇2 G(r, t;r′, t′) − 1
c2

∂2
∂ t2

G(r, t;r′, t′) =δ(r − r′)δ(t − t′) (12.3.21)

that satis�es the boundary condition G = 0 or n·∇G = 0 for r on S plus the initial
condition G(r, t;r′, t′) = 0 for t < t′. The latter condition follows from the prin-
ciple of causality: G is a response to a stimulus at t = t′ and so should be zero
prior to that time. With the usual Green’s theoremmanipulations, one can show that
G(r, t;r′, t′) = G(r′, − t′;r, − t) and that the solution to our original problem is

ψ(r, t) =
t∫

τ

∫
V

G(r, t; r′, t′)σ(r′, t′)dV ′dt′ −
t∫

τ

∫
S

[G(r, t; r′, t′)n ·∇′ψ(r′, t′)

− ψ(r′, t′)n ·∇′G(r, t; r′, t′)dS′dt′]

− 1
c2

∫
V

[G(r, t; r′, T) ∂∂t′ψ(r
′, t′)

∣∣∣
t′=τ
− ψ(r′, T) ∂∂t′ G(r, t; r

′, t′)
∣∣∣
t′=τ

]dV ′

(12.3.22)

An analogous approach applies to the di�usion equation. To solve

∇2 ψ(r, t) − 1
κ
∂ψ(r, t)
∂t =σ(r, t) (12.3.23)

with ψ(r, t) or n ·∇ψ(r, t) given for r on S plus the initial condition ψ(r, t) given at
t = τ, we �rst determine the Green’s function G(r, t;r′, t′) which is the solution of

∇2 G(r, t;r′, t′) − 1
κ
∂
∂t G(r, t;r

′, t′) =δ(r − r′)δ(t − t′) (12.3.24)

that satis�es the boundary condition

G(r, t;r′, t′) = 0 or n ·∇G = 0 for r on S

plus the initial condition G(r, t;r′, t′) = 0 for t < t′.
One can again show that G(r, t;r′, t′) = G(r′, − t′;r, − t) and

ψ(r, t) =
t∫

τ

∫
V

G(r, t;r′, t′)σ(r′, t′)dV ′dt′

−
t∫

τ

∫
S

[G(r, t;r′, t′)n ·∇′ψ(r′, t′) − ψ(r′, t′)n ·∇′G(r, t;r′, t′)]dS′dt′

− 1
κ

∫
V

G(r, t;r′,τ)ψ(r′,τ)dV ′. (12.3.25)
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12.3.5 The Wave and Di�usion Equation Green’s Functions for Boundaries at
In�nity

The Green’s function associated with the wave equation PDE and Dirichlet boundary
conditions at in�nity is a solution of(

∇2 − 1
c2

∂2
∂ t2

)
G(r, t;r′, t′) =δ(r − r′)δ(t − t′) (12.3.26)

that is everywhere bounded as a function of both r and t. The solution by means of
Fourier transforms proceeds exactly as in Section 12.3.3 and yields

G(r, t;r′, t′) = − c2

(2π )4

∞∫
−∞

∫
all space

e−ik·(r−r
′) e−iω(t−t

′)

c2 k2 − ω2 k
2 dk sin θk d θk d φk dω.

(12.3.27)

As we saw in Chapter 3, the integral

∆ ≡
∞∫

−∞

e−iω(t−t
′)

c2 k2 −ω2 dω (12.3.28)

has four di�erent values depending on how one avoids the poles atω = ±ck. However,
only one of these four satis�es our (causal) initial condition G(r, t;r′, t′) = 0 for t < t′.
This is the so-called retarded solution

∆ret =


2π sin ck(t − t′)

ck for t > t′

0 for t < t′
(12.3.29)

which arises from deforming the contour of integration to pass above both poles. The
name is a re�ection of the correspondence to a signal emitted at a time t′ that is earlier
or retarded compared to the time of arrival t.

Inserting (12.3.29) into (12.3.27) yields the (retarded) Green’s function

G(r, t;r′, t′) =

 − c2π
∫

all space
e−ik·(r−r

′) sin ck(t − t′)
k k2 dkd( cos θk )d φk

0
(12.3.30)

for t > t′ and t < t′, respectively. Choosing the k3 axis to be in the direction of r − r′,
the angular integration is easy to perform and gives us

∫
all space

e−ik·(r−r
′) sin ck(t − t′)

k k2 dkd( cos θk )d φk =
4π
R

∞∫
0

sin kR sin ckTdk
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where R = |r − r′| and T = t − t′. Converting the sines on the right hand side into
exponentials, we obtain

∞∫
0

sin kR sin ckTdk = −14

∞∫
0

[eik(R+cT) + e−ik(R+cT) − eik(R−cT) − e−ik(R−cT)]dk

= −14

∞∫
−∞

[eik(R+cT) − eik(R−cT)]dk

= 1
4[δ(R − cT) − δ(R + cT)].

Since the second delta function does not contribute for T > 0 and since

δ(R − cT) = 1
c δ
(
R
c − T

)
,

substitution back into (12.3.30) gives us

G(r, t;r′, t′) =

 − 1
4π δ

(
|r − r′|
c − (t − t′)

)
for t > t′

0 for t < t′
(12.3.31)

as our �nal result for the (retarded) Green’s function.
Given the unusual appearance of this Green’s function, it is helpful to keep in

mind its physical interpretation. It is a spherical wave produced by an instantaneous
disturbance at the single point r=r′ and time t = t′. Prior to t = t′, at times t < t′,
there is no wave. After t = t′, at times t > t′, the wave spreads out (propagates) to the
location |r − r′| = c(t − t′) and as it spreads, its amplitude decreases as 1

|r−r′| . A close
analogue is the wave produced by dropping a small but massive pebble into a quiet
pool of water.

Equation (12.3.22) is the prescription for superposing all of these elementary
waves, part originating from the continuous source described by the function σ(r, t)
and part from the boundary and initial conditions. Maximal simpli�cation is obtained
for the case of boundaries at in�nity, an initial time τ → −∞, and the requirement
that ψ(r, t)→ 0 as r →∞ and t → −∞. What results is a single integral of the form

ψ(r, t) = − 1
4π

∫
all space

σ
(
r′ − |t−t

′|
c

)
|r − r′| dV ′ (12.3.32)

which is referred to in electrodynamics as the “retardedpotential” solution of thewave
equation.

Let us now turn our attention to the di�usion equation. Using Fourier transforms
again to solve

∇2 G(r, t;r′, t′) − 1
κ
∂
∂t G(r, t;r

′, t′) =δ(r − r′)δ(t − t′),
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we �nd

G(r, t;r′, t′) = − iκ
(2π )4

∞∫
−∞

∫
all space

e−ik·(r−r
′)−iω(t−t′)

ω+iκ k2
k2 dkd( cos θk )d φk dω.

The integral over ω can be evaluated by a simple application of the residue calculus.
The integrand has a single simple pole located at ω = −iκ k2 in the lower half of the
complex ω plane. If t < t′, the contour will have to be closed in the upper half plane
excluding the pole and resulting in a null result. But, for t > t′, wemust close the con-
tour in the lower half plane and thus pick up a non-zero contribution from its residue.
Thus,

G(r, t;r′, t′) =

 − κ
(2π )3

∫
all space

e−ik·(r−r
′)−κ k2 (t−t′) k2 dkd( cos θk )d φk

0
(12.3.33)

for t > t′ and t < t′, respectively. This result inherently meets the initial condition that
we wanted to impose on this Green’s function.

The integral is a three-dimensional version of onewe evaluated in Chapter 3. If we
set R=r − r′ and T = t − t′ and complete the square in the exponent, it becomes∫
all space

e−ik·(r−r
′)−κ k2 (t−t′) k2 dkd( cos θk )d φk= e−

R2
4κT

∫
all space

e−κT (k−i
R

2κT )2 d k1 d k2 d k3

= e−
R2
4κT

 ∞∫
−∞

e−κT ( k1 −i
X

2κT )2 d k1

3

where we have switched from spherical to rectangular coordinates and set x − x′ =
X. The integral in the second line was evaluated in Chapter 3 and we found that it

equals
√

π
κT . Therefore, substituting all this informationback into (12.3.33),we obtain

as our �nal expression

G(r, t;r′, t′) =

 − κ
[4πκ(t − t′) ]3/2

exp [ − |r − r′ |2 /4κ(t − t′)] for t > t′

0 for t < t′
(12.3.34)

This is a sharply peaked (Gaussian) function of |r − r′| for small values of t − t′

and broad for large values of t − t′. In fact, in the limit as t → t′, the Green’s function
G(r, t;r′, t′) → − κδ(r − r′). Thus, it describes how a delta function impulse at t = t′

di�uses through the medium at later times.
We can now use (12.3.25) to write down the solution to a di�usion problem involv-

ing a source σ(r, t), boundary condition ψ → 0 (and G → 0) as |r − r′| → ∞, and
initial condition ψ(r, t) given at t = τ: it is
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ψ(r, t) = 1√
4πκ

t∫
τ

∫
all space

1
(t − t′ )3/2

exp [ − |r − r′ |2 /4κ(t − t′)]σ(r′, t′)dt′dV ′

+ 1
[4πκ(t − τ) ]3/2

∫
all space

exp [ − |r − r′ |2 /4κ(t − τ)]ψ(r′,τ)dV ′. (12.3.35)

In particular, if the source σ(r, t) ≡ 0 and ψ(r, 0) =δ(x − a), the solution is

ψ(r, t) =ψ(x, t) = 1√
4πκt

e−
(x−a )2
4κt

which describes the di�usion in both x-directions of a substance initially con�ned in
the yz-plane at x = a.
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13 Integral Equations
13.1 Introduction

TheGreen’s functionmethod can transformadi�erential equation into an integral
equation if the source term actually contains the solution being sought. For example,
in the quantum theory of scattering the Schrödinger equation can be cast in the form

(∇2 + k2)ψ(r) = U(r)ψ(r) (13.1.1)

where U(r) = 2m
~2 V(r) and V(r) is the potential describing the interaction responsi-

ble for the scattering. If we describe the incident particle by means of a plane wave
ei k0 ·r where | k0 | = k, the solution of (13.1.1) that we seek must satisfy the boundary
condition

ψ(r)→ ei k0 ·r +f (θ, φ) e
ikr

r as r →∞. (13.1.2)

As we learned in an earlier discussion of scattering, the second term of this ex-
pression is the outgoing spherical scattered wave produced by the interaction. The
Green’s function appropriate to such a problem is the outgoing Green’s function for
the Helmhotz equation given by (12.3.15):

G(r;r′) = − 1
4π

eik|r−r
′|

|r − r′| .

Using it with a source function σ(r) = U(r)ψ(r) and imposing the boundary condition
(13.1.2), we see that the desired solution of the PDE can be expressed as

ψ(r) = ei k0 ·r −
∫

all space

eik|r−r
′|

|r − r′| U(r
′)ψ(r′)dV ′. (13.1.3)

Notice that this integral equation incorporates both the PDE and the boundary con-
dition that we wish to impose. This is a standard feature of integral equations and
one that often renders them amore convenient or more powerful tool than di�erential
equations. Add to this the fact that some problems, notably those involving transport
phenomena, admit solution only bymeans of integral equations andwe conclude that
they warrant some attention. Since any multi-dimensional integral equation can be
reduced to an equivalent set of one-dimensional equations by making use of eigen-
function expansions, we shall focus that attention on the one-dimensional case.

13.2 Types of Integral Equations

Integral equations are classi�ed in terms of their integration limits and in terms of
whether the unknown function appears inside and outside the integral or only out-
side.We call equationswith �xed integration limits Fredholmequations. Thosewith
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one limit that is variable are called Volterra equations. If the unknown function ap-
pears only under the integral sign, the equation is said to be an integral equation of
the �rst kind; otherwise it is an equation of the second kind.
Thus,
1.

f (x) =
b∫
a

K(x, y)ψ(y)dy (13.2.1)

is a Fredholm equation of the �rst kind;
2.

ψ(x) = f (x) + λ
b∫
a

K(x, y)ψ(y)dy, λ = a constant (13.2.2)

is a Fredholm equation of the second kind;
3.

f (x) =
x∫
a

K(x, y)ψ(y)dy (13.2.3)

is a Volterra equation of the �rst kind; and
4.

ψ(x) = f (x) +
x∫
a

K(x, y)ψ(y)dy (13.2.4)

is a Volterra equation of the second kind.
We say that (13.2.2) and (13.2.4) are homogeneous if f (x) ≡ 0. In all four cases

f (x) and K(x, y) are presumed to be known and ψ(y) is the function whose identity is
sought. As with integral representations, K(x, y) is called the kernel.

Evidently, equation (13.1.3) is a (three-dimensional) Fredholm equation of the sec-
ond kind. Volterra equations arise when the solution and its �rst derivative are speci-
�ed at a single point as is the case with initial conditions. For example, if we start with
the second-order non-homogeneous DE

d2 ψ
d x2 + a(x)dψdx + b(x)ψ(x) = g(x) (13.2.5)

complimentedby (initial) conditionsψ(x0) = u0 andψ′(x0) = v0, we canuse inde�nite
integration to write

dψ
dx = −

x∫
x0

a(x)dψdx dx −
x∫

x0

b(x)ψ(x)dx +
x∫

x0

g(x)dx + v0 .
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Integrating the �rst integral on the right by parts gives us

dψ
dx = −a(x)ψ(x) −

x∫
x0

[b(x) − a′(x)]ψ(x)dx +
x∫

x0

g(x)dx + a(x0) u0 + v0

which incorporates both of our initial conditions. Integrating the complete equation
a second time, we obtain

ψ(x) = −
x∫

x0

a(x)ψ(x)dx −
x∫

x0

x∫
x0

[b(y) − a′(y)]ψ(y)dydx

+
x∫

x0

x∫
x0

g(y)dydx + [a(x0) u0 + v0](x − x0) + u0 . (13.2.6)

This can be simpli�ed by using the identity ( the two sides have the same �rst deriva-
tive and the same value at x0)

x∫
x0

x∫
x0

f (y)dydx =
x∫

x0

(x − y)f (y)dy.

Applying it to (13.2.6) we �nd

ψ(x) = −
x∫

x0

{a(y) + (x − y)[b(y) − a′(y)]}ψ(y)dy

+
x∫

x0

(x − y)g(y)dy + [a(x0) u0 + v0](x − x0) + v0 . (13.2.7)

Evidently, this is a Volterra integral equation of the second kind and comparing it with
(13.2.4) we can identify

K(x, y) ≡ (y − x)[b(y) − a′(y)] − a(y)

as the kernel and

f (x) ≡
x∫

x0

(x − y)g(y)dy + [a(x0) u0 + v0](x − x0) + u0

as the non-homogeneous term.

13.3 Convolution Integral Equations

If the kernel and integration limits of a Fredholm equation are those of a known in-
tegral transform then it can be solved simply by invoking the corresponding inverse
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transform. Beyond this almost trivial application, an integral transform can also be
useful in the solution of an integral equation when the kernel has the symmetry prop-
erties needed to exploit the transform’s convolution theorem. For example, suppose
that we have a Fredholm equation of the form

ψ(x) = f (x) +
∞∫

−∞

K(x − y)ψ(y)dy (13.3.1)

where the kernel depends only on the di�erence between the variables x and y. The
integral is a convolution integral of the type that arises for Fourier transforms. There-
fore, when we transform the equation we �nd

Ψ(k) = F(k) + 2πκ(k)Ψ(k) (13.3.2)

where

Ψ(k) ≡ F{ψ(x)} = 1√
2π

∞∫
−∞

f (x) eikx dx,

F(k) ≡ F{f (x)} = 1√
2π

∞∫
−∞

f (x) eikx dx

and

κ(k) ≡ F{K(x)} = 1√
2π

∞∫
−∞

K(x) eikx dx.

Solving (13.3.2), we have

Ψ(k) = F(k)
1 − 2πκ(k) (13.3.3)

and so,

ψ(x) = 1√
2π

∞∫
−∞

F(k)
1 − 2πκ(k) e

−ikx dk. (13.3.4)

Laplace transforms are equally useful in the solution of Volterra equations of the
form

ψ(x) = f (x) +
x∫

0

K(x − y)ψ(y)dy. (13.3.5)

For example, Abel’s integral equation is

f (x) =
x∫

0

ψ(y)
(x − y )α

dy, 0 < α < 1 (13.3.6)
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where f (x) is knownbutψ(x) is not. The left hand side of this equation is a convolution
integral of the type that arises with Laplace transforms and taking the transform of
both sides of the equation, we obtain

L{f (x)} = L{x−α}L{ψ(x)}.

Since L{x−α} = Γ(1−α)
s1−α , this means that

L{ψ(x)} = s
1−α L{f (x)}
Γ(1 − α) . (13.3.7)

The inverseL−1{s1−α}does not exist butL−1{s−α} = xα−1
Γ(α) . Therefore,we divide through

by s to obtain

1
sL{ψ(x)} =

L{xα−1}L{f (x)}
Γ(α)Γ(1 − α) = sin πα

π L{xα−1}L{f (x)}

where we have invoked the gamma function identity (5.2.10). This can be inverted by
means of a further application of the convolution theorem which yields

x∫
0

ψ(y)dy = sin πα
π

x∫
0

f (y)
(x − y )1−α

dy,

or

ψ(x) = sin πα
π

d
dx

x∫
0

f (y)
(x − y )1−α

dy. (13.3.8)

13.4 Integral Equations With Separable Kernels

Fredholm equations of the second kind can be solved in closed form if their kernels
are separable, that is if they have the form

K(x, y) = u(x)v(y). (13.4.1)

To demonstrate this we substitute (13.4.1) into (13.2.2) to obtain

ψ(x) = f (x) + λ
b∫
a

K(x, y)ψ(y)dy = f (x) + λ
b∫
a

u(x)v(y)ψ(y)dy = f (x) + λCu(x)

(13.4.2)

where

C =
b∫
a

v(y)ψ(y)dy. (13.4.3)
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Next,we substitute the�nal line of (13.4.2) into (13.4.3) to create a linear equation for C:

C =
b∫
a

v(y)[f (y) + λCu(y)]dy.

Solving for C, we �nd

C =

b∫
a
v(y)f (y)dy

1 − λ
b∫
a
u(y)v(y)dy

(13.4.4)

which, when substituted into (13.4.2), yields the solution

ψ(x) = f (x) + λu(x)


b∫
a
v(y)f (y)dy

1 − λ
b∫
a
u(y)v(y)dy

 . (13.4.5)

The homogeneous version of (13.2.2) is the eigenvalue equation

ψ(x) = λ
b∫
a

K(x, y)ψ(y)dy. (13.4.6)

This too is readily solvedwhen the kernel is separable. Substituting (13.4.1) into it gives
us

ψ(x) = λu(x)
b∫
a

v(y)ψ(y)dy = λCu(x) = (constant) × u(x). (13.4.7)

In this case, substitution of (13.4.7) into the de�nition of C in (13.4.3) does not deter-
mine C (because it cancels out of the resulting equation) but it does determine the
eigenvalue λ:

λ =

 b∫
a

u(y)v(y)dy

−1 . (13.4.8)

Thus, the eigenvalue is uniquely determined and the corresponding eigenfunction is
determined to within a multiplicative constant that can be �xed through a normaliza-
tion condition placed on ψ(x) over the interval a ≤ x ≤ b.

Notice that if λ in (13.4.5) is equal to the eigenvalue de�ned by (13.4.8), C is in�nite
and the non-homogeneous equation has no solution unless

b∫
a

v(y)f (y)dy = 0
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in which case the solution is

ψ(x) = f (x) + (constant) × u(x).

We have seen the same phenomenon arise with the solution of non-homogeneousdif-
ferential equations.

Kernels that are sums of separable pieces, such as

K(x, y) =
N∑
j=1

uj(x) uj(y), (13.4.9)

also give rise to integral equations that can be solved explicitly. To con�rm this, we
substitute (13.4.9) into (13.2.2) to obtain

ψ(x) = f (x) + λ
b∫
a

K(x, y)ψ(y)dy = f (x) + λ
N∑
j=1

uj(x)
b∫
a

vj(y)ψ(y)dy

= f (x) + λ
N∑
j=1

cj uj(x) (13.4.10)

where the constants cj are given by

cj =
b∫
a

vj(y)ψ(y)dy. (13.4.11)

Substitution of the third line of (13.4.10) in place of ψ(y) under the integral in (13.4.11)
generates a set of linear algebraic equations to determine the cj :

ci =
b∫
a

vi(y)f (y)dy + λ
N∑
j=1

 b∫
a

vi(y) uj(y)dy

 cj . (13.4.12)

This can be re-written in matrix notation by introducing the n × n matrix M with ele-
ments

Mij =
b∫
a

vi(y) uj(y)dy

and the vectors C and F with elements Ci and

Fi =
b∫
a

vi(y)f (y)dy,

respectively. Speci�cally, (13.4.12) becomes
N∑
j=1

δij cj = Fi +λ
N∑
j=1

Mij cj ,
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or
N∑
j=1

(δij −λ Mij) cj = Fi ,

or

(I − λM)C = F. (13.4.13)

Thus, the values of the constants ci are given by

C = (I − λM )−1 F (13.4.14)

and these, in turn, completely determine the solution of the non-homogeneous in-
tegral equation via equation (13.4.10). In the case of the (homogeneous) eigenvalue
problem (13.4.6), equation (13.4.10) still obtains but with f (x) ≡ 0. Therefore, we set
F ≡ 0 in (13.4.13) and so obtain the matrix eigenvalue problem

(I − λM)C = 0. (13.4.15)

This has a non-trivial solution if and only if

det(I − λM) = 0 (13.4.16)

which determines at least one and at most N eigenvalues λn . Substituting these back
into (13.4.15), one can �nd the corresponding eigenvectors C(n) whose components c(n)i
determine the eigenfunction solutions of the integral equation via

ψn(x) = (constant) ×
N∑
j=1

c(n)j uj(x). (13.4.17)

By way of illustration, consider the simple example presented by the equation

ψ(x) = λ
1∫

−1

(y + x)ψ(y)dy

from which we can read o� u1(x) = 1, v1(y) = y, u2(x) = x, v2(y) = 1. Thus,

M11 = M22 =
1∫

−1

ydy = 0, M12 =
1∫

−1

y2 dy = 2
3 , M21 =

1∫
−1

dy = 2

and equation (13.4.16) reads ∣∣∣∣∣ 1 − 2λ
3

−2λ 1

∣∣∣∣∣ = 0.
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Expanding, we obtain

1 − 4 λ2
3 = 0

and hence, λ = ±
√
3
2 . As we shall see in Section 13.6, the reality of the eigenvalues is

a consequence of the symmetry of the kernel under x ↔ y. If the kernel were to be
replaced by the skew-symmetric function K(x, y) = (y − x), the eigenvalues would be
the pure imaginary λ = ±i

√
3
2 . Substitution of λ = ±

√
3
2 into (13.4.15) gives us

c(1)2 =
√
3 c(1)1 and c(2)2 = −

√
3 c(2)1 .

Thus, the normalized eigenfunctions are

ψ1(x) = ±
1
2(1 +

√
3x) and ψ2(x) = ±

1
2(1 −

√
3x)

corresponding to eigenvalues λ1 =
√
3
2 and λ2 = −

√
3
2 . Notice that the sign (or phase)

of the eigenfunctions remains arbitrary.
Explicit solutions are not so readily obtained when the kernel is not separable.

Therefore, one approach to dealing with a non-separable kernel is to approximate it
with one that is separable. An obvious choice is to expand K(x, y) in terms of an ap-
propriate complete set {uj(x)},

K(x, y) =
∞∑
j=1

uj(x) vj(y),

and then retain only the �rst N terms.

13.5 Solution by Iteration: Neumann Series

A second approach to solving equationswith non-separable kernels is to use amethod
of successive approximations. The method applies equally well to Fredholm and
Volterra equations but, for the sake of speci�city, we shall demonstrate it using the
Fredholm equation

ψ(x) = f (x) + λ
b∫
a

K(x, y)ψ(y)dy. (13.5.1)

We start by approximating the unknown function ψ(x) by

ψ0(x) = f (x)

which, when substituted under the integral in (13.5.1), gives us the improved approx-
imation

ψ1(x) = f (x) + λ
b∫
a

K(x, y)f (y)dy. (13.5.2)
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A still better approximation ψ2(x) is obtained by replacing the ψ(x) under the inte-
gral in (13.5.1) by ψ1(x) :

ψ2(x) = f (x) + λ
b∫
a

K(x, y1)f (y1)d y1 + λ2
b∫
a

b∫
a

K(x, y1)K(y1, y2)d y1 d y2 . (13.5.3)

Repeating this process of substituting the new ψn(x) under the integral in (13.5.1), we
develop the sequence

ψm(x) = f (x) +
m∑
j=1

λj uj(x) (13.5.4)

where

uj(x) =
b∫
a

b∫
a

· · ·
b∫
a

K(x, y1)K(y1, y2) · · · K(yj−1, yj)f (yj)d yj · · · d y1 . (13.5.5)

Thus, the solution to our integral equation should be the limit

ψ(x) = lim
m→∞

ψm(x) = f (x) + lim
m→∞

∞∑
j=1

λj uj(x) = f (x) +
∞∑
j=1

λj uj(x)

provided that the in�nite series converges. This is called theNeumann series forψ(x)
and its convergence occurs only for su�ciently small λ, λ < λmin where λmin is themag-
nitude of the eigenvalue of smallest magnitude of the corresponding homogeneous
equation (i.e. when f (x) ≡ 0) .

As an application of the Neumannmethod of solution by iteration, let us consider
the integral equation

ψ(x) = x + 1
2

1∫
−1

(y − x)ψ(y)dy. (13.5.6)

In this case, λ = 1
2 and, as was noted in the example at the end of the preceding Sec-

tion, λmin =
√
3
2 . Therefore, we expect the Neumann series to converge. From (13.5.5),

we �nd that the series is

ψ0(x) = x

ψ1(x) = x +
1
3

ψ2(x) = x +
1
3 −

x
3

ψ3(x) = x +
1
3 −

x
3 −

1
32
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and, by induction,

ψ2m(x) = x +
m∑
j=1

(−1 )j−1 1
3j
− x

m∑
j=1

(−1 )j−1 1
3j

(13.5.7)

with a similar expression for ψ2m+1(x). The series in (13.5.7) does indeed converge in
the limit as m →∞ and results in the solution

ψ(x) = 3
4 x +

1
4 .

A more interesting application arises in connection with the scattering problem
that we used to introduce this Chapter. The integral equation to be solved in that con-
text is

ψ(r) = ei k0 ·r −
∫

all space

eik|r−r
′|

|r − r′| U(r
′)ψ(r′)dV ′.

The Neumann series solution of this equation is

ψ(r) = ei k0 ·r +
∫

all space

eik|r−r
′|

|r − r′| U(r
′) ei k0 ·r

′
dV ′

+
∫

all space

∫
eik|r−r

′|

|r − r′| U(r
′) e

ik|r′−r′′|

|r′ − r′′| U(r
′′) ei k0 ·r

′′
dV ′dV ′′ + . . . . (13.5.8)

In quantum mechanics, this series in powers of the potential U(r) is called a pertur-
bation series and its convergence depends on the strength of the interaction.

13.6 Hilbert Schmidt Theory

We shall now focus on the homogeneous Fredholm equation of the second kind

ψ(x) = λ
b∫
a

K(x, y)ψ(y)dy (13.6.1)

which, as we noted in Section 13.4, is also an eigenvalue equation. We shall assume
that the kernel is Hermitian,

K(x, y) = K*(y, x). (13.6.2)

Our �rst objective is to prove that the eigenvalues, λm , are real and that the corre-
sponding eigenfunctions, ψm(x), are orthogonal. Let ψm(x)and ψn(x) be two di�erent
eigenfunctions and λm and λn be the corresponding eigenvalues. Then, according to
(13.6.1), we have

ψm(x) = λm

b∫
a

K(x, y)ψm(y)dy, and
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ψn(x) = λn

b∫
a

K(x, y)ψn(y)dy. (13.6.3)

If we complex conjugate the �rst of these andmultiply it by λn ψn(x) whilemultiplying
the secondby λ*m ψ*m(x) and then integratewith respect to x, the twoequationsbecome

λn

b∫
a

ψ*m(x)ψn(x)dx = λ
*
m λn

b∫
a

b∫
a

K*(x, y)ψ*m(y)ψn(x)dydx, and (13.6.4)

λ*m

b∫
a

ψ*m(x)ψn(x)dx = λ
*
m λn

b∫
a

b∫
a

K(x, y)ψn(y)ψ
*
m(x)dydx. (13.6.5)

Invoking the symmetry property (13.6.2), we can rewrite (13.6.5) as

λ*m

b∫
a

ψ*m(x)ψn(x)dx = λ
*
m λn

b∫
a

b∫
a

K*(y, x)ψ*m(x)ψn(y)dydx. (13.6.6)

Subtracting (13.6.6) from (13.6.4), we have

(λn − λ*m)
b∫
a

ψ*m(x)ψn(x)dx = 0. (13.6.7)

When m = n, this becomes

(λm − λ*m)
b∫
a

|ψm(x) |
2 dx = 0.

The integral cannot vanish and so we conclude that

λ*m = λm; (13.6.8)

the eigenvalues are real. Notice that if the kernel were anti-Hermitian, K(x, y) =
− K*(x, y) , or even real skew-symmetric, we would have found λ*m = − λm which im-
plies eigenvalues that are pure imaginary.

For λm ≠ λn when m ≠ n, the integral has to vanish which means that the eigen-
functions are mutually orthogonal:

b∫
a

ψ*m(x)ψn(x)dx = 0 for m ≠ n. (13.6.9)
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For λm = λn when m ≠ n, the eigenvalue is degenerate. Equation (13.6.7) is then inde-
terminate but the eigenfunctions can be orthogonalized by the Schmidt orthogonal-
ization method.

Thus the outcome of a Hilbert-Schmidt eigenvalue problem involving an integral
equation with a Hermitian kernel is just like that of a Sturm-Liouville problem with a
self-adjoint di�erential operator. This similarity is of course no accident. The solution
of the latter can always be expressed as

ψ(x) = λ
b∫
a

G(x; y)ρ(y)ψ(y)dy (13.6.10)

where G(x; y) is the Green’s function associated with L ≡ d
dx
(
p(x) ddx

)
+ q(x) together

with appropriate homogeneous boundary conditions at x = a and b and ρ(x) is the
weight function in the Sturm-Liouville equation

Lψ(x) = −λρ(x)ψ(x).

As we know, this Green’s function satis�es the requirement G(x; y) = G*(y; x) and so
we obtain a properly symmetrized Hilbert-Schmidt equation by introducing the func-
tion φ(x) =

√
ρ(x)ψ(x) since it converts (13.6.10) to read

φ(x) = λ
b∫
a

G(x; y)
√
ρ(x)ρ(y)φ(y)dy. (13.6.11)

The kernel is K(x, y) =
√
ρ(x)ρ(y)G(x; y).

The eigenfunctions of a Hilbert-Schmidt integral equation form a complete set in
the sense that any function g(x) that can be expressed by the integral

g(x) =
b∫
a

K(x, y)h(y)dy (13.6.12)

in which h(y) is a piecewise continuous function, can be represented by the eigen-
function expansion

g(x) =
∞∑
m=1

cm ψm(x).

Suppose that we extend this result to apply to the kernel itself and set

K(x, y) =
∞∑
m=1

cm(x)ψm(y).

The coe�cients cm(x) are

cm(x) =
b∫
a

K(x, y)ψ*m(y)dy =
1
λm

ψ*m(x)
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which yields the bilinear formula

K(x, y) =
∞∑
m=1

ψ*m(x)ψm(y)
λm

. (13.6.13)

We shall use this completeness to solve the non-homogeneous Fredholm equation

ψ(x) = f (x) + λ
b∫
a

K(x, y)ψ(y)dy. (13.6.14)

The di�erence ψ(x) − f (x) has an integral representation of the form (13.6.12) and so
we can write

ψ(x) − f (x) =
∞∑
m=1

cm ψm(x)

where

cm =
b∫
a

ψ*m(x)(ψ(x) − f (x))dx

= λ
b∫
a

b∫
a

ψ*m(x)K(x, y)ψ(y)dydx

= λ
b∫
a

b∫
a

ψ*m(x)K(x, y)dxψ(y)dy

= λ
λm

b∫
a

ψ*m(y)ψ(y)dy.

Adding and subtracting f (y) to ψ(y) under the integral, this becomes

cm = λ
λm

b∫
a

ψ*m(y){[ψ(y) − f (y)] + f (y)}dy =
λ
λm

cm +
λ
λm

b∫
a

ψ*m(y)f (y)dy.

Thus,

cm = λ
λm −λ

b∫
a

ψ*m(y)f (y)dy

and the solution of the integral equation (13.6.14) is

ψ (x) = f (x) +
∞∑
m=1

ψm (x)
λ

λm − λ

b∫
a

ψ*m (y) f (y) dy. (13.6.15)
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This does not come as a surprise given our observation above regarding the similarity
of the Hilbert-Schmidt and Sturm-Liouville theories. Note once again that if λ = λm for
some m the non-homogeneous problem has no solution unless f (x) is orthogonal to
all of the (degenerate) eigenfunctions ψm(x) that correspond to λm .
Example: To illustrate the use of Hilbert-Schmidt theory, we shall consider the non-
homogeneous Fredholm equation

ψ (x) = f (x) + λ
1∫

−1

(y + x)ψ (y) dy.

The eigenvalues and eigenfunctions for this kernel and interval of integration were
found in Section 13.4. The normalized eigenfunctions are

ψ1 (x) = ±
1
2

(
1 +
√
3x
)

and ψ2 (x) = ±
1
2(1 −

√
3x)

corresponding to eigenvalues λ1 =
√
3
2 and λ2 = −

√
3
2 . Thus, substituting into (13.6.15)

we have

ψ (x) = f (x) +
2∑
m=1

ψm (x)
λ

λm − λ

1∫
−1

ψm (y) f (y) dy

= f (x) + 1
4
1 +
√
3x

√
3
2 − λ

λ
1∫

−1

(
1 +
√
3y
)
f (y) dy

+ 1
4
1 −
√
3x

−
√
3
2 − λ

λ
1∫

−1

(
1 −
√
3y
)
f (y) dy.

At this point, we need a speci�c functional form for f (x) . We choose f (x) = x2.
Clearly, this is not orthogonal to either eigenfunction and so there will be no so-

lution for λ = λ1 or λ = λ2. Substituting into the two integrals, we �nd

1∫
−1

(
1 ±
√
3y
)
y2dy = 2

3

and so
ψ (x) = x2 + 2λ

3
3x + 2λ
3 − 4λ2 , λ ≠ ±

√
3
2 .

Explicit substitution into the original Fredholm equation com�rms that this is indeed
the solution. For the speci�c value of λ = 1

2 it becomes

ψ (x) = x2 + x2 + 1
6 .
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Notice that if we add ± x√
3
to x2we obtain an f (x) that is orthogonal to one of the eigen-

functions. In particular, f (x) = x2 − x√
3
is orthogonal to ψ1 (x) while x2 + x√

3
is orthog-

onal to ψ2(x). Choosing the former, we �nd

1∫
−1

(1 −
√
3y)
(
y2 − y√

3

)
dy = 4

3

and so
ψ (x) = x2 − x√

3
− 2λ

3
1 −
√
3x√

3 + 2λ
, λ ≠ −

√
3
2 .

In particular, if λ = λ1 =
√
3
2 ,

ψ (x) = f (x)∓ 1
3ψ2 (x) = x2 −

√
3x
6 − 1

6 .

Again, explicit substitution into the non-homogeneous Fredholm equation con�rms
that this is the solution.
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