(Pages	:	4)
--------	---	----

Reg. No. :		
Name :		

Second Semester B.Sc. Degree Examination, August 2024

First Degree Programme under CBCSS

Chemistry

Complementary Course for Zoology

CH 1231.4: INORGANIC CHEMISTRY

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Answer in one word to maximum two sentences. Each question carries 1 mark.

- 1. What type of nuclear process is responsible for the energy production in sun and stars?
- 2. What is meant by an organometallic compound?
- 3. Give any one example for organometallic compound used in medicine.
- 4. How many haeme units does the myoglobin molecule contain?
- 5. Who discovered natural radioactivity?
- 6. What is the common name of the complex $(\eta^5-C_5H_5)_2$ Fe?
- 7. What is the denticity of EDTA ligand?

P.T.O.

- Name the most abundant transition metal in human body.
- Give any two examples for chelating ligands.
- 10. What is the IUPAC name of potassium ferricyanide?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. What is artificial radioactivity?
- 12. Among the metal carbonates and metal carbonyls, which is an organometallic compound and why?
- 13. Explain the term binding energy.
- 14. What is meant by half-life period of a radio isotope?
- 15. Give a method for the preparation of organoarsenic compounds.
- 16. Define the critical mass of a fissile material.
- 17. Explain why zinc complexes are generally colourless?
- 18. What are cytochromes? How they are classified?
- 19. What are the factors which determine nuclear stability?
- 20. What are chelates? Explain.
- 21. What do you mean by nuclear chain reaction? Explain.
- 22. Explain nitrogen fixation.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. A freshly cut piece of wood gives 16100 counts of β -ray emission per minute per kg and an old wooden bowl gives 13200 counts per minute per kg. Calculate the age of the old wooden bowl. [The half-life period of 14 C is 5568 years.]
- 24. Write a note on biochemistry of iron toxicity and nutrition.
- 25. Write a note on the application of radioisotopes as tracers?
- 26. Explain the classification of organometallic compounds.
- 27. Discuss about the methods of preparation and synthetic applications of organosilicon reagents.
- 28. Explain the bonding in tetrahedral complexes using valence bond theory.
- 29. Explain the mechanism of O₂ transportation by haemoglobin.
- 30. Discuss the magnetic properties of tetrahedral and octahedral complexes.
- 31. Discuss the colour of transition metal complexes.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15.marks.

- 32. Describe briefly
 - (a) Nuclear fusion.
 - (b) Nuclear stability and N/P ratio.
 - (c) Neutron activation analysis.
- Discus about the preparation and applications of organometallic compounds of Li, Hg and Fe.

34. Discuss

- (a) Applications of coordination compounds in qualitative and quantitative analysis.
- (b) Drawbacks of valence bond theory of complexes.

35. Write a note on

- (a) Essential and trace elements in biological systems.
- (b) Metalloporphyrins

 $(2 \times 15 = 30 \text{ Marks})$

T - 3236