(Pages	:	3	١
--------	---	---	---

Reg. N	lo. :	•••••	•••••	
Name	:			

Second Semester B.Sc. Degree Examination, August 2024 First Degree Programme under CBCSS

Physics

Complementary Course for Mathematics

PY 1231.1 : THERMAL PHYSICS AND STATISTICAL MECHANICS (2023 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences.

- 1. State Planck's hypothesis.
- 2. What is thermometric conductivity?
- 3. What is available energy?
- 4. What is the efficiency of a heat engine?
- 5. An inflated car type gets heated up during running. Why?
- 6. What is adiabatic process?
- 7. State wien's displacement law.
- 8. Define macrostates.
- 9. Ice when heated melts. Does this correspond to an increase or decrease in disorder.
- 10. What is ensemble?

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION - B

Answer any eight questions.

- 11. What is coefficient of thermal conductivity?
- 12. Differentiate good and bad conductors with examples.
- 13. State Widemann and Franz law.
- 14. Derive the relation between isothermal elasticity and adiabatic elasticity.
- Explain microstates with examples.
- 16. How is entropy and disorder related?
- 17. Explain distribution of energy in black body spectrum.
- State the second law of thermodynamics.
- 19. Show that adiabatics are steeper than isothermals.
- 20. Draw the T-S diagram for Carnot's cycle.
- 21. Obtain Rayleigh Jeans from Planck's law of radiation.
- 22. Explain phase space.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions.

- 23. A carnot's engine 2000 J of heat from a reservoir at 500 K does some work and discards some heat to a reservoir at 350 K. How much work does it perform and how much heat is discarded? What is its efficiency?
- 24. Define solar constant. Determine the solar temperature.
- 25. A perfect gas is compressed to 1/4th of its original volume. The initial pressure of the gas is 1 atm. Calculate the final pressure if the compression is
 - (a) isothermal
 - (b) adiabatic. Given $\gamma = 1.5$.

T - 3189

- Calculate the change in entropy when 5 kg of water at 100°C is converted into steam at the same temperature.
- Show that the entropy of a system is proportional to the logarithm of probability of that system.
- 28. An ice box is built of wood 1.75 cm thick, lined inside with cork 3 cm thick. If the temperature of inner surface of the cork is 0°C and that of the outer surface of wood is 12°C, what is the temperature of the interface? The thermal conductivity of wood and cork are 0.0006 and 0.00012 CGS units respectively.
- 29. Calculate the surface temperature of the sun and moon. Given that wavelength of Maximum intensity emission is 4753 Å and 14 μ respectively. Given b = 2898 cm- deg.
- 30. Two particles are to be accommodated in three available quantum states. Find the number of ways in which this can be done according to Maxwell Boltzmann statistics.
- 31. A Petrol engine consumes 25 kg of petrol per hour. The calorific value of petrol is 11.4×10^6 cal/kg. The power of the engine is 99.75 k watts. Calculate the efficiency of the engine.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions.

- 32. Describe with necessary theory, the construction and working of a Diesel engine. Obtain its efficiency. Enumerate its merits over petrol engine.
- 33. Explain with necessary theory how thermal conductivity of a poor conductor is determined by Lee's Disc method.
- 34. Explain the concept of entropy. Discuss the change of entropy in reversible and irreversible process.
- 35. (a) Enumerate the postulates of Equal Probability.
 - (b) Derive the Maxwell Boltzmann Distribution.

 $(2 \times 15 = 30 \text{ Marks})$