Reg.	No.	:	 •

Name :

Second Semester B.Sc. Degree Examination, August 2024 First Degree Programme under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1231.2 : MATHEMATICS II -

INTEGRAL CALCULUS AND VECTOR DIFFERENTIATION

(2021 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all questions. They carry 1 mark each.

- 1. The iterated integral $\int_0^1 \int_1^2 f(x, y) \, dy dx$ integrates f over the rectangle defined by -- < x < --, -- < y < ---.
- 2. The integral $\int e^{3x} dx = f - du$, if u = 3x.
- 3. Evaluate $\int x \sin 3x \, dx$.
- 4. Find the points of intersection of the circle $x^2 + y^2 = 4$ and y = x + 2.
- 5. The surface area of the surface of revolution that is generated by revolving the portion of the curve y = f(x) between x = a and x = b about x axis is
- 6. Find the rectangular coordinate of the point whose polar coordinate $\left(4, \frac{\pi}{3}\right)$.

P.T.O.

- 7. The double integral formula for finding the area of the region R is ————.
- 8. Find r(t), if $r(t) = 4i \cos t j$.
- 9. The parametric equation $x = \cos t$, $y = \sin t$ represent a ————.
- 10. Fine the distance between the points (0, 1) and (1, 2).

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These question carry 2 marks each.

- 11. Evaluate $\int_{1}^{9} \sqrt{x} dx$.
- 12. Evaluate $\int_0^1 (2x+1)^3 dx$.
- 13. Evaluate $\int_0^1 xe^x dx$.
- 14. Find the area between the curves $y = x^2$ and $y = \sqrt{x}$ over the interval $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$.
- 15. Fine the arc length of the curve $y = x^2$ over the interval [0 1].
- 16. Fine the Maclaurin series of $f(x) = \tan^{-1} x$.
- 17. Evaluate $\int_{2}^{4} \int_{0}^{1} x^{2} y \, dx \, dy$.
- 18. Evaluate $\int_0^1 \int_{-x}^{x^2} y^2 x dy dx$.
- 19. Evaluate triple integral $\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1} dx dy dz$.
- 20. Find the parametric equation corresponding to the vector equation $r(t) = ti + t^3 j + k$.
- 21. Show that $\vec{r}(t) = 3\cos t i + 4\sin t j + k$ is continuous at t = 0.
- 22. Write the vector equation of the line segment joining the points (1, 2) and (4,6).

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. Find the surface area of that portion of the surface $z = \sqrt{4 x^2}$ that lies above the rectangle R in the xy plane whose coordinates satisfy $0 \le x \le 1$ and $0 \le y \le 4$.
- 24. Find the directional derivative of $f(x, y) = e^{xy}$ at (-2, 0) in the direction of the unit vector that makes an angle $\frac{\pi}{3}$ with a positive x -axis.
- 25. Evaluate $\iint_R xy \ dA$ over the region R Enclosed between $y = \frac{x}{2}, \ y = \sqrt{x}, \ x = 2, \ x = 4.$
- 26. Find the parametric equations of the line tangent to the graph $r(t) = e^{2t}i + (2 \ln t)j$ at t = 1.
- 27. Evaluate $\int \cos^4 x \, dx$.
- 28. Evaluate ∫2tan x dx.
- 29. Evaluate $\int \frac{dx}{\sqrt{2-x^2}}$.
- 30. Find the area of the surface that is generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1 about the x axis.
- 31. Find the maximum value of the directional derivative of $f(x, y) = ln(x^2 + y^2)$ at (1,1) and find the unit vector where the maximum value occurs.

 $(6 \times 4 = 24 \text{ Marks})$

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Use polar coordinates to evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{\frac{3}{2}} dy dx.$
 - (b) Use triple integration in cylindrical coordinates to find the volume of the solid G is bounded above by the hemisphere $z = \sqrt{25 x^2 y^2}$ below by the xy plane and laterally by the cylinder $x^2 + y^2 = 9$.
- 33. (a) Show that the graphs of $r_1(t) = t^2i + tj + t^3k$ and $r_2(t) = (t-1)i + \frac{t^2}{4}j + (5-t)K$ intersect at point (1,1,3). Find the degree measure of acute angle between the tangent lines to the graph of $r_1(t)$ and $r_2(t)$ at the point (1,1,3).
 - (b) A heat-seeking particle is located at the point P(1,4) on a flat metal plate whose the temperature at a point (x,y) is $T(x,y) = 5 4x^2 y^2$. Find the parametric equations for the trajectory of the particle if it moves continuously in the direction of maximum temperature increase.
- 34. (a) Evaluate the integral $\int \frac{2x+4}{x^3-2x^2} dx$.
 - (b) Find the area of the region enclosed by the graphs $y = \frac{1}{\sqrt{1-9x^2}}$ above x -axis on the Interval $\left[0, \frac{1}{6}\right]$.
- 35. (a) Derive the formula for the volume of a right pyramid whose altitude is *h* and whose base is a square with sides of length a.
 - (b) Use cylindrical shells to find the volume of the solid generated when the region R in the first quadrant enclosed between y = x and $y = x^2$ is revolved about the y axis.

 $(2 \times 15 = 30 \text{ Marks})$