(Pages: 4)



P-1243

| Reg. No. | : |  |
|----------|---|--|
| Namo :   |   |  |

# Second Semester B.Sc. Degree Examination, September 2022 First Degree Programme under CBCSS

### **Physics**

## Complementary Course for Mathematics PY 1231.1 — THERMAL PHYSICS AND STATISTICAL MECHANICS

(2020 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

#### PART - A

Answer all questions in one word or maximum two sentences. Each question carries 1 mark.

- 1. State Wiedmann-Franz law.
- Mention a practical application of conduction of heat.
- 3. What does statistical mechanics deal with?
- Define a macrostate.
- 5. What is an adiabatic process?
- Write down the equation of state of an isothermal process.
- Define entropy.
- 8. Give an expression for the efficiency of heat engine.

- 9. State Plank's statement of second law of thermodynamics.
- 10. Draw a T-S diagram for a Carnot cycle.

 $(10 \times 1 = 10 \text{ Marks})$ 

#### PART - B

Answer any eight questions in about one paragraph. Each question carries 2 marks.

- 11. Define solar constant. Name the instrument used to measure the solar constant.
- 12. What are postulates of statistical mechanics?
- Derive an expression for entropy.
- Discuss the change in entropy during a reversible process.
- Prove that entropy is a state function.
- 16. What are the characteristics of a black body?
- 17. Explain the concept of phase space.
- 18. State principle of increase of entropy.
- State and explain Rayleigh-Jeans law.
- 20. Define probability. When will be the probability be zero?
- 21. A heat engine cannot attain 100% efficiency. Explain why?
- 22. Explain the work done by an ideal gas in an isothermal process.
- 23. Define temperature gradient and thermal conductivity.
- 24. Define an ensemble.
- 25. What is meant by reversible and irreversible process?
- 26. Write a note on microcanonical ensemble.

 $(8 \times 2 = 16 \text{ Marks})$ 

#### PART - C

Answer any six questions. Each carry 4 marks.

- 27. Find the change in entropy when a perfect gas expands isothermally and adiabatically.
- 28. Give the concept of ensemble. Calculate the number of states per unit volume of phase space.
- Show that the adiabatic curve has a steeper negative slope than does an isothermal curve at the same point.
- 30. A Carnot's engine has an efficiency of 30% when the temperature of the sink is 27°C. What must be the change in temperature of the source to make its efficiency 50%.
- 31. Obtain the expression for change in entropy when ice changes to steam.
- 32. A Carnot engine takes 200 calories of heat from a source at temperature 400K and rejects 150 calories of heat to the sink. What is the temperature of the sink? Also calculate the efficiency of the engine.
- 33. The efficiency of an ideal engine is 0.2. If the temperature of the sink is lowered by 20°C, the efficiency becomes 0.25. Find the temperature of the source and sink.
- 34. If a black body at a temperature 6174 K emits 4700 A° with maximum energy; calculate the temperature at which it will emit a wavelength of  $1.4 \times 10^{-5}$  m with maximum energy.
- 35. Four molecules are to be distributed in 2 cells. Find the number of macrostates and microstates.
- 36. Derive maxwell's law of distribution of velocities of the molecules of an ideal gas.
- 37. Ten particles are distributed in two equal sized cells. Find the number of macrostates and microstates.

3

38. A thermal conductor in the form of a long bar is heated at one end at constant temperature. Discuss the distribution of temperature along the bar before and after the steady state is reached.

 $(6 \times 4 = 24 \text{ Marks})$ 

PART - D

Answer any two questions. Each carry 15 marks.

- 39. Derive Maxwell-Boltzmann distribution Law.
- 40. Describe the distribution of energy of a black body at different temperatures by drawing the graphs. Discuss briefly the different laws which explain the above energy spectrum.
- 41. Describe with necessary theory, the construction and working of petrol engine.
- 42. Describe Carnot's cycle and obtain an expression for the efficiency of an ideal heat engine.
- 43. Explain the Lee's disc experiment to measure thermal conductivity.
- 44. What are Kelvin-plank and Clausius statement of second law of thermodynamics? Prove that they are correct in terms of principle of increase of entropy.

 $(2 \times 15 = 30 \text{ Marks})$