(Pages : 4)

P - 1271

Reg. No. :

Name :

Second Semester B.Sc. Degree Examination, September 2022
First Degree Programme Under CBCSS

Mathematics

Complementary Course for Chemistry/Polymer Chemistry

MM 1231.2 : Mathematics II

CALCULUS WITH APPLICATIONS IN CHEMISTRY - II

(2020 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all questions. Each carries 1 mark.

- 1. Find $\frac{\delta z}{\delta y}$ if $z = x^4 \sin(xy^3)$
- 2. Describe a saddle point.
- 4. $\lim_{n\to\infty} n\sqrt{n} =$
- 5. Define conditional convergence of an infinite series.
- 6. The unit tangent vector at $t = \frac{\pi}{2}$ on the curve $x = 3\cos t$, $y = 3\sin t$ for $0 \le t \le 2\pi$ is ————

- 7. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then $\nabla \cdot \vec{r} =$
- 8. Curl \overline{F} , if the vector field \overline{F} is irrotational is ————
- 9. If $x = r \cos \theta$, $y = r \sin \theta$ then $\frac{\delta(x, y)}{\delta(r, \theta)} = \frac{1}{2}$
- 10. $\int_{0}^{2} \int_{0}^{3} dx dy = -$

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each carries 2 marks.

- 11. Let $f(x,y) = x^2y + 5y^3$ Find the slope of the surface z = f(x,y) in the y-direction at the point (1,-2)
- 12. Show that (y + z)dx + xdy + xdz is an exact differential.
- 13. Let $f(x,y) = \begin{cases} \frac{-xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ Show that $\frac{\partial f}{\partial x}$ exist at all points (x,y)
- 14. Find the total derivative of $f(x,y) = x^2 + 3xy$ with respect to x given that $y = \sin^{-1} x$
- 15. Evaluate the Sum $\sum_{n=1}^{50} \frac{1}{n(n+2)}$
- 16. Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$
- 17. Determine the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$
- 18. Show that the series $\sum_{n=1}^{\infty} \frac{1}{(n!)^2}$ converges.
- 19. Find $\frac{d\overline{r}}{du}$ of $\overline{r}(u) = (\tan^{-1} u)\hat{i} + u\cos u\hat{j} + \sqrt{u}\hat{k}$

- 20. Find r(u) given that $r^{-1}(u) = 3\hat{i} + 2u\hat{j}$ and $r(1) = 2\hat{i} + 5\hat{j}$
- 21. Find the laplacian of the scalar field $\phi = xy^2z^3$
- 22. If ϕ is a scalar field, show that $\operatorname{curl}(\operatorname{grad} \phi) = \overline{0}$
- 23. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} dx dy$
- 24. State pappu's theorems.
- 25. Find the centre of mass of the solid hemisphere bounded by the surfaces $x^2 + y^2 + z^2 = a^2$ and the xy plane, assuming that it has a uniform density ρ
- 26. Evaluate the integral $\iint_R (1 + \sqrt{x^2 + y^2}) dxdy$ where R is the region bounded by the circle $x^2 + y^2 = 1$

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each carries 4 marks.

- 27. Find the Taylor expansion, upto quadratic terms in (x-2) and (y-3) of $f(x,y) = ye^{xy}$ about the point (2,3)
- 28. Locate the stationary point of $x^3 + y^3 3axy$ and determine their nature.
- 29. Expand $e^x \sin y$ in power of x and y as far as terms of the third degree.
- 30. Sum the series $\sum_{n=0}^{\infty} \frac{\cos(n\theta)}{n!}$
- 31. Find the real value of x for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n+1}$ in convergent
- 32. Determine the absolute convergence of the series $\sum_{n=1}^{\infty} \frac{(-n)^n}{n^{5/2}}$
- 33. Find the divergence and curl of the vector field $F(x,y,z) = x^2y\hat{i} + 2y^3z\hat{j} + 3z\hat{k}$
- 34. Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1,2,-1)
- 35. If $\vec{r} = x\hat{i} + y\hat{j} + 2\hat{k}$ and $r = |\vec{r}|$, show that $\nabla \left(\frac{1}{r}\right) = \frac{-\vec{r}}{r^2}$

- 36. Find the volume of the tetrahedron bounded by the three co-ordinate surfaces x = 0, y = 0 and z = 0 and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- 37. Evaluate $\iiint_{R} (x + y + z) dx dy dz$ where R is $0 \le x \le 1$, $1 \le y \le 2$, $2 \le z \le 3$
- 38. Evaluate $\int_{-\infty}^{\infty} e^{-x^2} dx$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. A rectangular box, which is open at the top, has a capacity of 256 cubic feet. Determine the dimensions of the box such that the least material is required for the construction of the box.
 - Use Lagrange's method of multiplies to obtain the solution.
- 40. Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- 41. Find the machaurin's series for $\cos x$ and hence show that $(\cos x)^{-2} = 1 + x^2 + \frac{2x^4}{3} + \dots$ Deduce the first three terms is the maclaurin's series for $\tan x$.
- 42. Express the vector field $\vec{a} = yz\hat{i} y\hat{j} + xz^2\hat{k}$ in cylindrical polar coordinates, and hence calculate its divergence. Show that the same result is obtained by evaluating the divergence in Cartesian coordinates.
- 43. Find an expression for a volume element in spherical polar co-ordinates, and hence calculate the moment of inertia about a diameter of a uniform sphere of radius a and mass M.
- 44. Find the volume integral of x^2y over the tetrahedral volume bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1

 $(2 \times 15 = 30 \text{ Marks})$