(Pages : 4)

MAVELIFARA COLOR KERALA

P - 1234

Reg.	No.	 	
Name		 	

Second Semester B.Sc. Degree Examination, September 2022 First Degree Programme under CBCSS

Mathematics

Foundation Course II

MM 1221: FOUNDATIONS OF MATHEMATICS

(2018 & 2019 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all questions. Each question carries 1 mark. Answer in one word to a maximum of two sentences.

- 1. Find the range of the function $f(x)=1+\sin x$.
- 2. Prove that $p \rightarrow (p \lor q)$ is a tautology.
- 3. Give an example of a relation which is reflexive, transitive but not symmetric.
- 4. Symbolize the statement: Every degree student needs a course in Mathematics.
- 5. Write the negation of the statement: If he studies, he will pass the examination.
- 6. Find the rectangular co-ordinates of the point whose polar co-ordinates are given by $(r,\theta)=(4,\pi/6)$.
- 7. Identify the curve $r = \cos \theta$ by transforming to rectangular coordinates.

- 8. State the reflection property of hyperbolas.
- 9. Identify the quadric surface $z = \frac{y^2}{h^2} \frac{x^2}{a^2}$.
- 10. Find the direction cosine of the vector v = 2i 3j k.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

- 11. Determine whether the following sentence is a statement: x+3 is a positive integer
- 12. Write the negation of the statement: 9 is greater than 8 and 6 is less than 10
- 13. Find the truth value of the implication, if 0 + 0 = 0 then 1 + 1 = 1
- 14. Show that the statement $p \land (\neg p \land q)$ is a contradiction where p and q are primitive statements
- 15. If R is a relation on the set Z of integers defined by x R y if and only if $x^2 = y^2$ Prove that R is an equivalence relation
- 16. Check whether the function defined by $f(x) = e^{x^2}$ is injective.
- 17. Find all values of t for the parametric curve $x = 2\sin t$, $y = 4\cos t (0 \le t \le 2\pi)$ where the slope of the tangent line in zero.
- 18. Find the equation of the hyperbola with vertices (± 2,0) and foci
- 19. Find the new coordinates of the point (- 4,2) if the coordinate axes are rotated through an angle of 60°.
- 20. Find the unit vector that has the same direction as v = 2i + 2j k.
- 21. Sketch the graph of $x^2 + z^2 = 1$ in 3-space.
- 22. Find the direction cosine of the vector v = 2i 4j + 2k.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 23. Construct the truth table for $[p \land (p \Rightarrow q) \Rightarrow q]$
- 24. Let A = $\{1, 2.3, 4.5\}$. Consider the relation R on A defined as R = $\{(1,1), (2,2), (3,3), (4.4), (5,5), (1,5), (5,1), (5,3), (3,5)\}$. Is R an equivalence relation?
- 25. Let $f: A \rightarrow B$ and $B \rightarrow C$ are surjective, show that $g \circ f$ is surjective
- 26. Find the total arc length of the cardioid $r = 1 + \cos \theta$
- 27. Find the entire area of the region that is inside of the cardioid $r = 4 + 4\cos\theta$ and outside of the circle r = 6
- 28. Describe the graph of the equation $x^2 y^2 4x + 8y 21 = 0$
- 29. (a) Find the vector of length 2 that has an angle of $\pi/4$ with the positive x-axis (b) Find the angle that the vector makes with the positive x-axis
- 30. Suppose that the axes of an xy- coordinate system are rotated through an angle of 45° to obtain an x'y'- coordinate system. Find the equation of the curve $x^2 xy + y^2 6 = 0$ in x'y'-coordinates
- 31. Find the parametric equation of the line
 - (a) Passing through (1,2, -3) and parallel to v = 4i + 5j 7k
 - (b) Passing through the origin in 3-space and parallel to $v = \langle 1, 1, 1 \rangle$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 32. The relation R on the set of integers Z is defined by x R y if and only if x-y=2k for some integer k.
 - (a) Verify that R is an equivalence relation on Z
 - (b) Determine the equivalent classes and a partition of Z induced by R

- (a) Determine the truth value of the following statements if the universe comprises all non zero integers
 - (i) $\exists x \exists y \text{ such that } xy = 2$
 - (ii) $\forall \times \exists y \text{ such that } xy = 2$
- (b) Let $f:A \to B$ and $g:B \to C$ be invertible functions. Show that the composition $g \circ f:A \to C$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- (a) Identify and sketch the curve xy=1.
- (b) Sketch the graph of the following equations in polar coordinates
 - (i) r = 1
 - (ii) $\theta = \pi/3$
 - (iii) $r = \theta(\theta \ge 0)$
- (a) Find the equation of the plane through the points $P_1(-2,1,1)$, $P_2(0,2,3)$ and $P_3(1,0,-1)$.
- (b) Let L_1 and L_2 given by

$$L_1: x = 1+4t, y = 5-4t, z = -1+5t$$
 and

$$L_2: x = 2 + 8t, y = 4 - 3t, z = 5 + t$$
 be two lines.

- (i) Are the lines parallel?
- (ii) Do the lines intersect?

 $(2 \times 15 = 30 \text{ Marks})$