	(Pages: 6)	O MAVELIKARA C
Reg. No. :		MAVELIKARA C D PIN: 690110 M KERALA
Name :		15 ×

Second Semester B.Sc. Degree Examination, September 2022

SE COLLE

First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1231.1 : MATHEMATICS-II-INTEGRATION AND VECTORS (2014-2017 Admissions)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. For the function f = 8, find the area A(x) between the graph of f and the interval [a, x] = [-1, x], and find the derivative A'(x) of this area function.
- 2. Find $\int \frac{t^2 2t^4}{t^4} dt$.
- True or False: "If the particle has constant acceleration, the velocity versus time graph will be a straight line."
- 4. Suppose that a particle moves along a coordinate line so that its velocity at time t is $v(t) = 2 + \cos t$. Find the average velocity of the particle during the time interval $0 \le t \le \pi$.

- 5. Evaluate $\int_{12}^{34} (40-2xy) \, dy dx$.
- 6. Determine whether $r(t) = r(t) = \cos t^2 i + \sin t^2 j + e^t k$ is a smooth function of the parameter t.
- 7. Define a conservative field and potential function.
- 8. Evaluate $\int_C F dr$ along the line segment C from P to Q; where F(x, y) = 8i + 8j; P(-4, 4), Q(-4, 5).
- 9. Find the directional derivative of $f(x, y) = 4x^3y^2$ at P = (2, 1) in the direction of a = 4i 3j.
- 10. Find the value of curl f, if $f = x^2i + 4xy^3j + y^2xk$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. Find the total area between the curve $y = 1 x^2$ and the x axis over the interval [0, 2].
- 12. A particle moves along an s-axis. Use the information $v(t) = 3t^2 2t$; s(0) = 1 to find the position function of the particle.

- 13. Derive the formula for the volume of a sphere of radius r.
- 14. Find the area of the surface generated by revolving the curve y = 7x; $0 \le x \le 1$ about the x-axis.
- 15. Evaluate $\int_{1}^{2} \int_{0}^{y^2} e^{x/y^2} dx dy$.
- 16. Evaluate the triple integral $\int_{-1}^{1} \int_{0}^{21} (x^2 + y^2 + z^2) dx dy dz$.
- 17. Find the gradient of $f(x, y) = 5x^2 + y^4$ at the indicated point (4, 2).
- 18. Find an equation for the tangent plane and parametric equations for the normal line to the surface $x^2y^4z^2 = -7$ at the point P(-3, 1, -2).
- 19. If $F(x, y, z) = x^2i 2j + yzk$, then find div F and curl F.
- 20. Evaluate the line integral $\int_C (1+xy^2) ds$, if C: r(t) = ti + 2tj where $0 \le t \le 1$.
- 21. Let $F(x, y) = 2xy^3i + (1+3x^2y^2)j$. Show that F is conservative vector field on the entire xy-plane.
- 22. Use Greens Theorem to evaluate the integral $\int 3xydx + 2xydy$, where C is the rectangle bounded by x = -2, x = 4, y = 1 and y = 2.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. The temperature of a 10 m long metal bar is 15°C at one end and 30°C at the other end. Assuming that the temperature increases linearly from the cooler end to the hotter end, what is the average temperature of the bar?
- 24. Derive the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of length a.
- 25. Let V be the volume of the solid that results when the region enclosed by y = 1/x, y = 0, x = 2, and x = b(0 < b < 2) is revolved about the x-axis. Find the value of b for which V = 3.
- 26. Find the area of the surface that is generated by revolving the portion of the curve $y = x^3$ between x = 0 and x = 1 about the x-axis.
- 27. A circular lens of radius 2 inches has thickness $(1-(r^2/4))$ inches at all points r inches from the center of the lens. Find the average thickness of the lens.
- 28. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $x^2 + 4y^2 + z^2 = 9$, at the point (1, -1, 2).
- 29. Show that the divergence of the inverse-square field

$$F(x, y, z) = \frac{c}{(x^2 + y^2 + z^2)^{3/2}} (x_i + y_j + z_k)$$
 is zero.

30. Evaluate the line integral $\int_C (xy+z^3)ds$ from (1, 0, 0) to (-1, 0, π) along the helix C that is represented by the parametric equation.

$$x = \cos t \ y = \sin t \ z = t \ (0 \le t \le \pi)$$

31. Confirm that the force field $F(x, y) = xy^2i + x^2yj$ is conservative in some open connected region containing the points P(1, 1) and Q(0, 0), and then find the work done by the force field on a particle moving along an arbitrary smooth curve in the region from P to Q.

$$(6 \times 4 = 24 \text{ Marks})$$

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Find the area of the region enclosed by $x = y^2$ and y = x 2, integrating with respect to y.
 - (b) Use a double integral to find the volume of the solid that is bounded above by the plane z = 4 x y and below by the rectangle $R = [0, 1] \times [0, 2]$.
- 33. (a) A rock is thrown downward from the top of building, 168 ft high, at an angle of 60° with the horizontal. How far from the basic of the building will the rock land if its initial speed is 80 ft / s?
 - (b) Find the directional derivative of $f(x, y) = e^{xy}$ at (-2, 0) in the direction of the unit vector that makes an angle of $\pi/3$ with the positive x-axis.
- 34. (a) Use a line integral to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (b) Use the Divergence Theorem to find the outward flux of the vector field

$$F(x, y, z) = 2xi + 3yi + z^2k$$

across the unit cube.

- 35. (a) Use Greens theorem to evaluate the integral $\int (x^2 y^2) dx + x dy$, where C is the circle $x^2 + y^2 = 9$.
 - (b) Find the work performed by the force field $F(x, y, z) = x^2i + 4xy^3j + y^2xkz$ on a particle that traverses the rectangle C in the plane z = y.

 $(2 \times 15 = 30 \text{ Marks})$