(Pages : 6)

P - 1257

Reg. No. :

Name :

Second Semester B.Sc. Degree Examination, September 2022

First Degree Programme under CBCSS

Mathematics

Complementary Course for Physics

MM 1231.1 : MATHEMATICS II – CALCULUS WITH APPLICATIONS IN PHYSICS — II

(2020 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All ten questions are compulsory. Each question carries 1 mark.

- State De-Moivre's theorem.
- 2. Find (3-2i)(-4+3i).
- Define cosh x.
- 4. What is the condition for A(x, y)dx + B(x, y)dy = 0 to be exact?
- 5. What is the necessary condition to have a stationary point for functions of 2 variables?
- 6. Write down the Taylor series expansion for functions of 2 variables.
- 7. Evaluate the integral $\int_{10}^{24} 2xy \, dy \, dx$.

- 8. Define Jacobian of x and y with respect to u.
- 9. Find the velocity of a particle whose motion in space is given by the position vector $r(t) = 2\cos t \,\bar{i} + 2\sin t \,\bar{j} + 5\cos^2 t \,\bar{k}$.
- 10. Define gradient of a scalar field.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. Each question carries 2 marks.

- 11. Find the modulus and argument of the complex number z = 1 + i.
- 12. Find the complex conjugate of the complex number $z = w^{2y+2ix}$, where w = x + 5i.
- 13. Prove that $\sin 4\theta = 4\cos^3 \theta \sin \theta 4\cos \theta \sin^3 \theta$.
- 14. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 15. Show that xdy + 3ydx is inexact.
- 16. Define partial derivative of f(x, y) with respect to x.
- 17. Find the total differential of the function $f(x, y) = x^3 \frac{3y^2}{x}$.
- 18. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y) = x^2 + y^2$.
- 19. Reverse the order of integration $\int_{0}^{11-x} \int_{0}^{x^2} x^2 y \ dy \ dx$.

- A tetrahedron is bounded by the three co-ordinate surfaces and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and has density $\rho(x, y, z) = \rho_0 \left(1 + \frac{x}{a} \right)$. Find the average value of the density.
- Evaluate $\iiint_{0.00}^{2.2.2} xyz \ dx \ dy \ dz$.
- The position vector of a particle in plane polar co-ordinates is $r(t) = \rho(t)\hat{e}_{\rho}$. Find an expression for the velocity and acceleration of the particle in these co-ordinates.
- Find the gradient of $\phi = xy^2z^3$. 23.
- Find the curl of the vector field $a = x^2y^2z^2\overline{i} + y^2z^2\overline{j} + x^2z^2\overline{k}$. 24.
- Find the divergence of the vector field $a = x^2y\overline{i} + 2y\overline{j} + 3z\overline{k}$. 25.
- For the function $\phi = x^2y + yz$ at the point (1, 2, -1), find its rate of change with distance in the direction $a = \overline{i} + 2\overline{j} + 3\overline{k}$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. Each question carries 4 marks.

- 27. Prove that $\cos 6\theta = 32\cos^6 \theta 48\cos^4 \theta + 18\cos^2 \theta 1$.
- Prove that $sinh^{-1}x = log x + \sqrt{x^2 + 1}$.
- Evaluate $I = \int e^{ax} \cos bx \, dx$.
- Find the total derivative of $f(x, y) = x^3 + 3xy$ with respect to x, given that $y = \sin^{-1} x$.

- 31. The temperature of a point (x, y) on a unit circle is given by T(x, y) = 1 + xy. Find the temperature of the 2 hottest points on the circle.
- 32. Find all the second order partial derivatives of the function $f(x, y) = \log(x + y)$.
- 33. Evaluate $\iint_R (3-x-y) dy dx$, where R is the triangular region bounded by x-axis and the lines y = x and x = 1.
- 34. Find the area of the region bounded by y = x and $y = x^2$ in the first quadrant.
- 35. Find the volume of the tetrahedron bounded by 3 co-ordinate surfaces x = 0, y = 0, z = 0 and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
- 36. Show that $\nabla \cdot (\nabla \phi \times \nabla \psi) = 0$, where ϕ and ψ are scalar fields.
- 37. Express the vector field $a = yz\overline{i} y\overline{j} + xz^2k$ in cylindrical polar co-ordinates and hence calculate its divergence.
- 38. Evaluate $I = \iint_R \left(a + \sqrt{x^2 + y^2} \right) dx \, dy$ where R is the region bounded by the circle $x^2 + y^2 = a^2$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 39. (a) Prove that $\sin^7 \theta = \frac{-1}{2^6} [\sin 7\theta 7\sin 5\theta + 21\sin 3\theta 35\sin \theta]$.
 - (b) Simplify $z = i^{-2i}$.

- 40. (a) Prove that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$.
 - (b) Show that the function $f(x, y) = x^3 e^{-x^2 y^2}$ has a maximum at the point $\left(\frac{\sqrt{3}}{2}, 0\right)$ and a minimum at $\left(\frac{-\sqrt{3}}{2}, 0\right)$ and a stationary point at the origin.
- 41. A system contains a very large number N of particles, each of which can be in any of R energy levels with a corresponding energy E_i , i=1,2,...R. Find the number of particles in the particles amongst the energy levels that maximise the expression $P = \frac{N!}{n_1! \, n_2! \, \, n_R!}$ subject to the constraints that both the number of particles and total energy remains constant ie, $g = N \sum_{i=1}^R n_i = 0$ and $h = E \sum_{i=1}^R n_i E_i = 0$.
- 42. Find an expression for a volume element in spherical polar co-ordinates and hence calculate the moment of inertia about a diameter of a uniform sphere of radius 'a' and mass 'M'.
- 43. (a) Show that the acceleration of a particle travelling along a trajectory r(t) is given by $a(t) = \frac{dv}{dt}\hat{t} + \frac{v^2}{\rho}\hat{n}$, where v is the speed of the particle, \hat{t} is the unit tangent to the trajectory, \hat{n} is the its principal normal and ρ is its radius of curvature.
 - (b) Find the moment of inertia of a uniform rectangular lamina of mass M with sides a and b, about one of the sides of length 'b'.

- 44. (a) Find the element of area on the surface of a sphere of radius 'a' and hence calculate the total surface area of the sphere.
 - (b) At time t=0, the vectors E and B are given by $E=E_0$ and $B=B_0$, where the fixed unit vectors E_0 and B_0 are orthogonal The equations of motion are $\frac{dE}{dt}=E_0+B\times E_0, \ \frac{dB}{dt}=B_0+E\times B_0.$ Find E and B at a general time t, showing that after a long time, the directions of E and B have almost interchanged.

 $(2 \times 15 = 30 \text{ Marks})$