Name :

University of Kerala

First Semester Degree Examination, November 2024
Four Year Undergraduate Programme
Discipline Specific Course

Mathematics

UK1DSCMAT100, Foundations of Mathematics

Academic Level: 100-199

Time: 2 hours

Max. Marks: 56

Part A. 6 Marks. Time:5 Minutes Objective Type. 1 Mark Each. Answer all Questions (Cognitive Level: Remember/Understand)

Qn.	Question	Cognitive	Course
No.		Level	Outcome
110.			(CO)
1.	Define an anti-symmetric relation.	Remember	CO4
2.	A matrix A is said to be non singular if	Remember	CO1
3.	The determinant of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is	Understand	CO1
4.	A homogeneous linear system of n equations with n unknowns has a unique solution if	Understand	CO2
5.	The linear congruence $ax \equiv b \pmod{m}$ has a unique solution if and only if	Remember	CO3
6.	The sum, $\sum_{i=1}^{n} (2i-1)$ is	Remember	CO3

Part B. 10 Marks. Time:20 Minutes

Two-Three sentences. 2 Marks Each. Answer all Questions (Cognitive Level: Remember/Understand/Apply)

Qn. No.	Question	Cognitive	Course
10.		Level	Outcome
7.	D.C.		(CO)
8.	Define one-to-one function. Give an example.	Remember	CO4
8.	Show that for any square matrix A , $\frac{1}{2}(A+A^t)$ is always symmetric, where A^t is the transpose of A .	Remember	CO1
9. 10.	Express (28, 12) as a linear combination of 28 and 12	Remember	CO3
11.	Find gcd of 120 and 28.	Understand	CO3
11.	State Rouche's theorem. Give an example of a system of equations which is inconsistent.	Apply	CO2

Part C. 16 Marks. Time:35 Minutes

Short-Answer. 4 Marks Each. Answer all Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/Apply)

Qn.	Question	Cognitive	Course
No.		Level	Course Outcome
		Level	(CO)
12.	A.)Show that the relation \equiv is an equivalence relation in the set of all integers.		(00)
	OR	Understand	CO4
	B.) Define congruence relation. The equivalence relation \equiv on the set of integers defined by rPv if $r = v(-r)$ and r . Find all		
	the set of integers defined by xRy if $x \equiv y \pmod{4}$. Find all equivalence classes under this relation.		
13.	A.) If $\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0$, in which a, b, c are different, show that $abc = 1$.		
	OR		
	B.) Express $\begin{bmatrix} 3 & 5 & -7 \\ -8 & 11 & 4 \\ 13 & -14 & 6 \end{bmatrix}$ as the sum of a lower triangular matrix with zero leading diagonal and an upper triangular matrix.	Apply	CO1

Scanned with CamScanner

,			
= Įn.	Question	Cognitive	Course
No.		Level	Outcome
			(CO)
14.	A.) For what value of λ , the system of equation		
	$2x + 3y + 5z = 9,7x + 3y - 2z = 8,2x + 3y + \lambda z = 1$		
	has unique solution?		
	OR		900
	B.) Find the values of k for which the system of equations	Analyse	CO2
	(3k - 8)x + 3y + 3z = 0		
	3x + (3k - 8)y + 3z = 0		
	3x + 3y + (3k - 8)z = 0.		
	has a non-trivial solution.		
15.	A.)Find the remainder when 3 ¹⁸¹ is divided by 17.		
	OR	Understand	CO3
	B.) Using canonical decomposition of 1050 and 2574, find their lcm .	Onderstand	
	tem.		

Part D. 24 Marks. Time:60 Minutes

Long-Answer. 6 Marks Each. Answer all 4 Questions, choosing among options within each question. (Cognitive Level: Understand/Analyse/ Apply)

Qn. No.	Question	Cognitive Level	Course Outcome (CO)
16.	A) Find the number of positive integers in the range 1976 through 3776 that are; (i.) Divisible by 13 or 15. (ii.) Not divisible by 15 or 17.	Understand	CO3
-	B) Using Euclidean algorithm find (4076, 1024) and express (4076, 1024) as a linear combination of 4076 and 1024.		