

Reg. No.:	••	•	•	•	•	•	•	•	•	•	٠.	
Name:												

University of Kerala

First Semester Degree Examination,November 2024
Four Year Under Graduate Programme
Discipline Specific Core Course

BIOTECHNOLOGY

UK1DSCBIT100 - Essentials of Biotechnology Academic Level: 100-199

Time: 11/2 Hours

Max.Marks:42

Part A. Answer All Questions Objective Type.1 Mark Each. (Cognitive Level: Remember/Understand) 6 Marks. Time: 6 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome(CO)
1.			Outcome(CO)
	Name any two biofuels derived from lignocellulosic waste	Remember	CO3
2.		Remember	CO2
	Recognize what is molecular scissors		
3.		Understand	CO3
	Compare FlavrSavr tomato with ordinary tomato		
4.		Understand	CO3
	ldentify the application of spidergoat		
5.		Understand	CO5
	Explain the process of malting in beer production		
6.	Describe the primary microorganism used for Vitamin B12	Understand	CO5
	production		

Part B. Answer All Questions Short Answer. 2 Marks Each. (Cognitive Level: Understand/Apply) 8 Marks. Time: 24 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome(CO)
7.		Understand	CO5
	Identify any two advantages of solid state fermetation		
8.	Describe the role of Lactobacillus acidophilus in yogurt	Understand	CO5
	fermentation		
9.	Figure out any two differences between ancient and modern	Apply	CO1
	biotechnology		
10		Apply	CO3
10.	Identify two specific examples for applications of biomimetics		

Part C.

Answer all 4 Questions, choosing among options within each question. Long Answer. 7 marks each. (Cognitive Level: Apply/Analyse/Evaluate/Create) 28 Marks. Time: 60 Minutes

Qn. No.	Question	Cognitive Level	Course Outcome(CO)
11.	A. Illustrate how green biotechnology works for better food and	Apply	CO1
	better environment		
	Or		
	B. Illustarte how biotechnology has transformed different sectors		
- 16	of human healthcare		,
12.	A. A biotech company wants to develop a monoclonal antibody	Analyze	CO5
	against a breast cancer type for therapeutic purpose. Examine		
	how hybridoma technology works for disease diagnosis and		
=	treatment		
	Or		
	B. Analyse how fermentation technology enhanced commercial		
	production of different antibiotics and evaluate how microbial		
	growth parameters affects industrial bioprocess		
13.	A. Evaluate why plasmids are chosen as a convenient vector for	Evaluate	CO2
	genetic engineering experiments, cite with examples		
	Or		
-	B. Assess the utility of the enzymatic tools to conduct genetic		
	engineering		
14.	A. Create a sustainable bioprocess for producing biodegradable	Create	CO3
	plastics from renewable resources		
	Or		
	B. Articulate how could genetic engineering transform an animal		
1	into a drug factory		