able .

(Pages: 3)

N - 2549

Reg.	No.	 ***************************************	
			1
Name			

Third Semester B.Sc. Degree Examination, March 2022
First Degree Programme under CBCSS
Chemistry

Complementary Course for Physics

CH 1331.1 : PHYSICAL CHEMISTRY II

(2017 and 2018 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions, each carries 1 mark.

- 1. What is meant by average velocity?
- 2. What is the unit of k in zero order reaction?
- 3. Find out the number of Bravais lattice pertaining to cubic lattice.
- 4. What is the distance between adjacent (111) planes of a cubic lattice?
- 5. If the standard reduction potentials of Zn/Zn²⁺ and Ag/Ag⁺ are -0.76 V and +0.80 V respectively, for the cell obtained by coupling these electrodes, calculate the standard EMF of the cell.
- 6. A reaction A + B → C has zero order. Write its rate equation.
- 7. Which gas has lowest critical temperature?
- 8. Represent a galvanic cell.

- 9. Explain quantum yield.
- 10. What is the point group NH3 molecule?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Calculate the average velocity for N₂ molecule at 273 K?
- 12. What is liquid junction potential and how it can be eliminated?
- 13. Distinguish between amorphous and crystalline solids.
- 14. Draw (111) and (110) planes in a primitive cubic lattice.
- 15. Define single electrode potential.
- 16. Sketch the unit cell of NaCl.
- 17. Write down the Nernst equation for the EMF of a cell.
- 18. Explain alternate axis of symmetry with example.
- 19. Derive first order integrated rate expression.
- 20. Why phosphorescence are called delayed fluorescence?
- 21. Explain intermediate compound formation theory in catalysis.
- 22. Explain the role of salt bridge in Galvanic cell.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. How is pH of a solution determined using hydrogen electrode?
- 24. Explain Joule-Thomson effect.

- Derive the rate expression for the H₂-Cl₂ photochemical reaction.
- 26. Explain how Avogadro number can be calculated from crystal density measurements and diffraction data?
- 27. What are the significances of Bragg's equation?
- 28. What are fuel cells? Explain the cooking of H2-O2 fuel cells.
- 29. Write a brief note on photosensitization in photochemistry,
- 30. One microgram of ²⁴Na was injected into the blood of a patient. How long will it take for radioactivity to fall to 10% of the initial value? The half life of ²⁴Na is 14.8 hours.
- 31. What are the symmetry elements present in BF3 molecule? Deduce its point group.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Define critical constants. Derive the relation expressing the critical constant of a gas in terms of van der Waals equation.
 - (b) Using van der Waal's equation, calculate pressure exerted by one mole of a gas enclosed in a 1.5 dm³ flask at 400 K a = 3.0 atmdm6mol-2 b = 0.05 dm³ mol-1.
- 33. Write an essay on conductometric titrations.
- 34. (a) Derive integrated Arrhenius equation. 7
 - (b) Discuss the X-ray studies of crystal by powder method. 8
- 35. Discuss the mechanism and kinetics of enzyme catalysis.

 $(2 \times 15 = 30 \text{ Marks})$