Reg. No. :	*******************
Name :	

Third Semester B.Sc. Degree Examination, March 2022

First Degree Programme under CBCSS

Physics

Core Course

PY 1341 — ELECTRODYNAMICS

(2018 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries 1 mark.

- 1. What are the applicable Conditions of Gauss' law?
- 2. A point charge is moved in an electrostatics field. What path must be followed for a maximum rate of expenditure of energy?
- Write down the boundary conditions at a surface separating two dielectric media.
- 4. How does a crystal get polarized?
- 5. What will happen to a diamagnetic substance when placed in a non-uniform magnetic field?
- State Faraday's law.
- 7. What is Poynting vector?
- 8. If a coil has an inductance of 500mH and a resistance of 50Ω , find the time constant.
- Draw the Curves showing the growth of charge of a capacitor through inductance and resistance in series with dc Source.
- 10. What is the importance of form factor?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions, not exceeding a paragraph. Each question carries 2 marks.

- 11. State and explain Coulomb's law.
- 12. List the properties of electric field lines.
- Explain dielectric breakdown.
- 14. Does a static magnetic field can change the kinetic energy of a moving charge? Explain.
- 15. Write down the Maxwell's equations in electrostatics and name them.
- 16. Explain the concept of displacement current.
- 17. Why are Maxwell's equations important?
- 18. Find the expression for the time at which the growing current and decay current are equal.
- 19. Why does the parallel LCR circuit be known as rejector circuit?
- 20. What is wattless Current? How is it obtained?
- 21. In a stationary medium, what are the constituent currents responsible for the total current? Explain.
- 22. If an electric field of an electromagnetic wave in free space is represented by $E = E_0 \sin(\omega t kx)j$, find B and H.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

23. Two charges of magnitude 24nC and -18nC are placed 24 cm apart as shown. Find the potential difference $V_{\rm ab}$ between the two points.

- 24. Prove Gauss' law using Coulomb's law.
- 25. Show that $D = \varepsilon_0 E + P$.
- 26. A square coil of side 2cm carries a current 0.5A. Calculate the magnetic induction at the center of the coil.
- 27. Derive the wave equations for E and B from Maxwell's equations.
- 28. A solenoid of resistance 10Ω and self-inductance 500mH is connected to a battery of 100V and negligible resistance. After how long will the current in it rise to 1A.
- 29. A coil of 10Ω resistance and 10mH inductance is connected in series with a condenser of $1\mu F$ and an ac supply of 100V at 50Hz. Calculate the impedance of the circuit. What should be the operating frequency to obtain resonance?
- 30. A series LCR circuit with the following components L = 50mH C = $10 \,\mu$ F, and R = 50Ω is connected to ac source with Voltage 20V and frequency 50Hz. Calculate the average power dissipated and power factor.
- 31. A battery of emf 50V is connected in series with an inductance of 50mH, a resistance of 50Ω and a capacitor of $5\,\mu F$. Find the frequency of the oscillatory current, logarithmic decrement and the final capacitor charge.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 12 marks.

- 32. (a) Derive the expression for energy of a point charge distribution.
 - (b) Obtain Poisson's equation in electrostatics from Gauss' law.
- 33. (a) State and prove Ampere's circuit law. Obtain its differential form.
 - (b) Derive the expression for magnetic vector potential due to a current loop.
- 34. Discuss the growth and decay of charge through a circuit containing a resistance and capacitor. Explain how this theory can be applied to the measurement of high resistance.
- 35. Analyse the discharge of a capacitor through a circuit containing inductance with some resistance.

 $(2 \times 15 = 30 \text{ Marks})$