(Pages : 4)

Reg. N	10.	:	 	•••	 •••••	
Name	:		 		 	

Third Semester B.Sc. Degree Examination, March 2022
First Degree Programme Under CBCSS

Chemistry

Complementary Course for Physics

CH 1331.1 : PHYSICAL CHEMISTRY II

(2019 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark:

- 1. What is meant by compressibility factor?
- 2. In single X-ray diffraction measurement, the crystal is mounted on ————.
- 3. In the reaction $2A + B \rightarrow A2B$, if the concentration of A is doubled and that of B is halved, then the rate of the reaction will ————.
- 4. The process of decomposition of an electrolyte by passing electric current through its solution is called as ————.
- 5. What are redox electrodes? Give an example.
- 6. H₂O belongs to which point group?
- 7. The rate constant of zero-order reactions has the unit ———.

- 12. What is Boyle's temperature?
- 13. Give the Maxwells's distribution of molecular velocities.
- 14. Give a sketch of the (222) planes of a bcc lattice.
- 15. What is the relation between the distance between (hkl) planes and the unit cell edge-length for a cubic lattice?
- 16. How are sodium and chloride ions arranged in sodium chloride crystal?
- 17. Define half-life period of a reaction.
- The rate constant of a first order disintegration of a substance is 0.5 × 10–2s-1.
 Calculate the time required for 10 g of the substance to disintegrate to 5 g.
- 19. Define temperature coefficient of a reaction.
- 20. If the molar conductance at infinite dilution for an electrolyte is 400 S cm² mol⁻¹ and the molar conductance of a 0.01 M solution of it at the same temperature is 102 S cm² mol⁻¹, calculate its degree of dissociation in 0.01 M solution.
- 21. What do you mean by Reference electrodes? What are the two types of reference electrodes?

- 22. Explain the term transport numbers. Discuss the moving boundary method of determining transport numbers.
- 23. Define single electrode potential. Can its absolute value be determined?
- 24. Define a plane of symmetry.
- 25. How we can differentiate horizontal and dihedral mirror planes?
- 26. State Grothus-Drapper law.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 27. Discuss Joule-Thomson effect.
- 28. Using Van der Waal's equation, calculate the pressure exerted by one mole of a gas enclosed in a 1.5 dm³ flask at 400 K. Given, a = 3.0 atm dm⁶ mol⁻², and b = 0.05 dm³ mol⁻¹.
- 29. What are Miller indices If a crystal plane makes intercepts ½ a, ½ b and c, what are the Miller indices of the plane?
- 30. X-rays of wavelength 1.5374 Å are reflected from two parallel planes 2.82 Å apart in a crystal. What is the angle of reflection for n = 1?
- 31. Derive the integrated rate equation for a first order reaction.
- 32. Give Arrhenius equation and account for the influence of temperature on the reaction rate on the basis of this equation.
- 33. Illustrate the principle of conductometric titrations with reference to any two types of acid-base titrations.
- 34. Discuss the Hittorff's method for the determination of transport numbers of ions.
- 35. Give the group multiplication table of C_{2v} point group.

N - 2557

- 36. Explain the terms proper rotation and improper rotation axis with suitable examples.
- 37. Explain the theory of intermediate compound formation for homogeneous catalysis.
- 38. An aqueous solution of an organic substance absorbs 25% of the incident radiation in a path length of 3 cm. The molar absorption coefficient of the substance is 1.2 L mol⁻¹ cm⁻¹. Calculate the concentration of the solution.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 39. Derive the relationship between van der Waals constants and critical constants.
- 40. How can the crystal structure of NaCl be deduced from X-ray diffractions studies?
- 41. What are the main postulates of the collision theory of bimolecular gaseous reactions? How does collision theory explain the effect of temperature on the rate of a reaction?
- 42. Derive an expression connecting the emf of a galvanic cell to the equilibrium constant of the cell reaction.
- 43. (a) Assign the point groups of the molecules: BF3 and NH3.
 - (b) What is the potential at 298 K of the electrode consisting of a silverrod dipping in 0.05 M AgNO₃ solution? Given: E⁰_{Ag+;Ag} = 0.80 V.
- 44. (a) Distinguish between phosphorescence and fluorescence by giving importance to their mechanisms.
 - (b) Write a note on photosensitization.

 $(2 \times 15 = 30 \text{ Marks})$