(Pages : 4)

U - 2379

Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2024

First Degree Programme under CBCSS

Mathematics

Core. Course

MM 1544: DIFFERENTIAL EQUATIONS

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all the questions.

- 1. Find the degree of the differential equation : $\frac{d^2y}{dx^2} \left(\frac{dy}{dx}\right)^2 + 6y + 10 = 0$.
- 2. Solve $y' = \frac{y}{x}$.
- 3. Define exact equations.
- 4. Find an integrating factor of the differential equation : $x \frac{dy}{dx} + 2y = 3$.
- 5. Find the Wronskian of y'' + 4y = 0.
- 6. Show that $y = 1 + \sin x$ is a solution of y'' + y = 1.

- 7. Define standard form of Bernoulli's equation.
- 8. Solve y'' + 2y' + 3y = 0.
- 9. Form the differential equation of family of circles with center at origin and radius a.
- 10. Define singular solution of a differential equation.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions.

- 11. Show the linear independence of x^2 , $x^2 \ln x$ by using the Wronskian.
- 12. Find a particular solution of $y'' + 3y' + 2y = 5x^2$.
- 13. Write the auxiliary equation of the Euler-Cauchy equation $x^2y'' 5xy' + 9y = 0$.
- 14. Form the differential equation whose general solution is $y = cx + c c^3$.
- 15. Solve $\frac{dy}{dx} y = e^x y^2$.
- 16. If exact, then solve the differential equation (2x-1)dx + (3y+7)dy = 0.
- 17. Find the orthogonal trajectories of y = mx.
- 18. Solve the initial value problem y'' + y' 2y = 0, y(0) = 4, y'(0) = -5.
- 19. Find an integrating factor of $xy dx + (2x^2 + 3x^2 20)dy = 0$.
- 20. Solve $\frac{dy}{dx} + y \tan x = \cos^3 x$.

21. Determine the constant A such that the equation

$$(Ax^2y + 2y^2) dx + (x^3 + 4xy) dy = 0$$
 is exact.

22. Solve $y \cos x dx + 3 \sin x dy = 0$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions.

- 23. Given that y = x is a solution of $(x^2 + 1)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$, find a linearly independent solution by reducing the order.
- 24. Solve $(y^2 + yx)dx + x^2dy = 0$.
- 25. Solve the differential equation y'' 10y' + 25y = 30x + 3 by undertermined coefficients.
- 26. Solve $x^2y'' + xy' + y = 0$ subject to y(1) = 1, y'(1) = 2.
- 27. Make the following equation exact and hence solve

$$(xy^3 + y)dx + (x^2y^2 + x + y^4)dy = 0$$

- 28. Solve $(D^2 + 4)y = 3\sin 2x$.
- 29. Solve $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0$.
- 30. Solve $x \frac{dy}{dx} + (3x+1)y = e^{-3x}$.
- 31. Show that for a second order homogeneous linear differential equation, any linear combination of 2 solutions on an open interval I is again a solution of the differential equation on I.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions.

32. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x.$$

- 33. Solve $\frac{d^2y}{dx^2} + y = \tan x$ using the method of variation of parameters.
- 34. (a) Find the orthogonal trajectories of confocal parabolas $y^2 = 4(x + a)$.
 - (b) Solve $(D^2 10D + 25)y = 0$.
- 35. (a) Solve $\frac{dy}{dx} + \frac{x 2y}{2x y} = 0$.
 - (b) Solve the Bemoulli's equation : $\frac{dy}{dx} + y = xy^3$.

 $(2 \times 15 = 30 \text{ Marks})$