(Pages : 4)

U - 2378

Reg. No. :	
------------	--

Name:

Fifth Semester B.Sc. Degree Examination, December 2024 First Degree Programme under CBCSS

Mathematics

Core Course

MM 1543 : ABSTRACT ALGEBRA – GROUP THEORY (2018 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Check whether the set {0,1, 2, 3} is a group under multiplication modulo 4.
- 2. In a group G. show that there is only one identity element.
- 3. Find the subgroup of Z_{30} of order 10.
- 4. Express (1 2 3 4 5) as product of 2-cycles.
- 5. Check whether the mapping $\varphi:(R,+)\to(R,+)$ defined by $\varphi(x)=x^3$ is an isomorphism.
- 6. Find an automorphism of the group of complex numbers under addition.
- 7. Let $H = \{0, \pm 3, \pm 6, \pm 9, \dots \}$. Find all left cosets of H in Z.

P.T.O.

Scanned with CamScanner

- 8. Show that all groups of order 25 is Abelian.
- 9. Let $\varphi: R^* \to R^*$ be defined by $\varphi(x) = |x|$. Find $Ker\varphi$.
- 10. How many Abelian groups (upto isomorphism) are there of order 15.(10 × 1 = 10 Marks)

SECTION - II

Answer any eight questions. These questions carry 2 marks each .

- 11. Let G be an Abelian group. Show that $H = \{x \in G : |x| \text{ is finite}\}\$ is a subgroup of G.
- 12. For group elements a, b, show that $(ab)^{-1} = b^{-1}a^{-1}$.
- 13. Find all generators of the subgroup of order 9 in Z_{36} .
- 14. Show that S_3 is a non-Abelian group.
- 15. What is the order of the permutation $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{bmatrix}$.
- 16. Show that there is no isomorphism from Q, the group of rational numbers under addition to Q* the group of non zero rational numbers under multiplication.
- 17. Show that every group of prime order is cyclic.
- 18. Show that a group of order 75 can have atmost one subgroup of order 25.
- 19. Show that the group SL(2, R) is a normal subgroup of GL(2, R).
- 20. Let φ be a homomorphism from a group G to a group G'. Show that $\varphi(a) = \varphi(b)$ if and only if $a \ Ker \varphi = b \ Ker \varphi$.
- 21. Show that $Z/\langle n \rangle \approx Z_n$.
- 22. Show that center of a group G is a subgroup of G.

 $(8 \times 2 = 16 \text{ Marks})$

U - 2378

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. Let a be an element of order n in a group and let k be positive integer. Show that $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$.
- 24. Explain the dihedral group D_n of order 2n.
- 25. Determine the number of elements in S_7 of order 12.
- 26. Compute $Aut(Z_{10})$.
- 27. Let φ be a homomorphism from a group G onto a group G'. Prove that $G = \langle a \rangle$ if and only if $G' = \langle \varphi(a) \rangle$.
- 28. For any two finite subgroup H and K, show that $|HK| = |H||K|/|H \cap K|$.
- 29. Let G be a group and let H be a normal subgroup of G. Show that the set $G/H = \{aH : a \in G\}$ is a group under the operation (aH)(bH) = abH.
- 30. Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, show that G is Abelian.
- 31. Show that a group of order 35 is cyclic.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Prove that if a is the only element of order 2 in a group, then a lies in the center of the group.
 - (b) Let G be a group and let $a \in G$. If a has infinite order, then show that $a^i = a^j$ if and only if i = j. If a has finite order n, then show that $\langle a \rangle = \{e, a, a^2, ...a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i j.

- 33. (a) If $\varepsilon = \beta_1 \beta_2 \dots \beta_r$, where β 's are 2-cycles, then show that r is even.
 - (b) Show that the group of rotations of a cube is isomorphic to S_4 .
- 34. If a group G is the internal direct product of a finite number of subgroups H_1, H_2, \dots, H_n , then show that G is isomorphic to the external direct product of H_1, H_2, \dots, H_n .
- 35. (a). Let G be a finite Abelian group of order $p^n m$, where p is a prime that does not divide m. Show that $G = H \times K$, where $H = \{X \in G : x^{p^n} = e\}$ and $K = \{x \in G : x^m = e\}$.
 - (b) State and prove first isomorphism theorem.

 $(2 \times 15 = 30 \text{ Marks})$