(Pages : 4)

U - 2376

Reg. No.:....

Name :

Fifth Semester B.Sc. Degree Examination, December 2024 First Degree Programme under CBCSS

Mathematics

Core Course

MM 1541 — REAL ANALYSIS — I

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Let $f(x)=x^2$. If A=[0,2], B=[1,4], find f(A) and f(B).
- 2. Show that |ab| = |a| |b| for all $a, b \in R$.
- 3. Give an example for a one-one function from (-1,1) onto R.
- 4. Find infimum of the set $\left\{2 + \frac{3}{n}; n \in \mathbb{N}\right\}$.
- 5. Write the first five terms of the sequence defined inductively by $x_1=2, x_{n+1}=\frac{x_n+1}{2}$.

P.T.O.

- 6. Find $\lim \left(\frac{2}{5}\right)^n$.
- 7. Give an example for a monotone sequence that is not Cauchy.
- 8. Check whether (1,5) is compact.
- 9. State true or false: Union of two connected sets is connected. Justify your answer.
- Define nowhere dense set and give example.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. Show that the set $E = \{2n; n \in N\}$ is countable.
- 12. Show that $\sqrt[3]{2}$ is algebraic.
- 13. Show that the sequence $\left(1,\frac{1}{2},3,\frac{1}{4},...\right)$ is divergent.
- 14. Give an example of a series which is convergent but not absolutely convergent.
- 15. Show that the sequence $\left(\frac{1}{n}\right)$ is Cauchy.
- 16. Show that every convergent sequence is bounded.
- 17. Show that $\lim (a_n + b_n) = \lim a_n + \lim b_n$.
- Give an example for an unbounded sequence which contain a subsequence that is Cauchy.

- 19. If $\sum_{k=1}^{\infty} a_k = A$, show that $\sum_{k=1}^{\infty} ca_k = cA$.
- 20. Show that $A = \left\{ \frac{1}{n}; n \in \mathbb{N} \right\}$ is not closed.
- 21. For any $A \subseteq R$, show that the closure A is the smallest closed set containing A.
- 22. Give an example of a disconnected set whose closure is connected.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions. These questions carry 4 marks each.

- 23. State and prove Nested Interval property.
- 24. Given any number $x \in R$, show that there exist $n \in N$ satisfying n > x.
- 25. Test for convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
- 26. Construct a sequence that converges to $\sqrt{2}$.
- 27. Show that two real numbers a, b are equal if and only if for every real number $\varepsilon > 0$, $|a-b| < \varepsilon$.
- 28. Define geometric series. Discuss its convergence.
- 29. Show that if a set $K \subseteq R$ is compact, then it is closed and bounded.
- 30. Show that a point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in N$.
- 31. Construct an open cover for (0,1) in such a way that it has no finite sub cover.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. (a) Show that the set Q is countable.
 - (b) State and prove Canto's theorem.
- 33. (a) State and prove Cauchy condensation test.
 - (b) Let $Y = (y_n)$ be defined inductively by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$ for $n \ge 1$. Find $\lim Y$.
- 34. (a) Show that a sequence converges if and only if it is a Cauchy sequence.
 - (b) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$.
- 35. Show that a non empty perfect set is uncountable.

 $(2 \times 15 = 30 \text{ Marks})$