(Pages : 4)

Reg. No. :	
Name :	

Fifth Semester B.Sc. Degree Examination, December 2024 First Degree Programme under CBCSS

Physics

Core Course — V

PY 1541: QUANTUM MECHANICS

(2018 Admission Onwards)

Time: 3 Hours Max. Marks: 80

PART - A

Answer all the questions. Each carries 1 mark.

- 1. What is uncertainty principle?
- 2. Write 1D time independent Schrödinger equation.
- 3. What is photoelectric effect?
- 4. Give the specific heat of solids.
- 5. What is the basis of Einstein's theory of photoelectric effect?
- 6. Write the characteristics of a wave function.
- 7. Write the probability current density of wavefunction.

P.T.O.

- Define correspondence principle.
- 9. What is de Broglie hypothesis?
- 10. What is wave packet?

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. Each carries 2 marks.

- Sketch black body radiation curve.
- 12. What is Compton effect?
- 13. Give the important conclusion of photoelectric effect.
- Write a note on inadequacy of quantum theory.
- Define expectation value.
- Explain Plank's quantum hypothesis.
- Explain eigen value and eigen functions.
- 18. What is linear operator? Explain commuting and anti-commuting operators.
- 19. What are Hermitian operators?
- 20. Write the postulates of quantum mechanics.
- 21. Define continuous and discrete spectra in terms of eigen values.
- 22. What happens to the wave function associated with a particle in an infinitely deep potential well?

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. Each carries 4 marks.

- 23. Show that:
 - (a) Operators having common set of eigenfunctions commute;
 - (b) Commuting operators have common set of eigenfunctions.
- 24. If the position of a 5 keV electron is located within 2 Å, what is the percentage uncertainty in its momentum? (Given: Plank constant = 6.626×10^{-34} Js; mass of electron = 9.11×10^{-31} kg).
- 25. If a photon has wavelength equal to the Compton wavelength of the particle, show that the photon energy is equal to the rest energy of the particle.
- 26. A metallic surface when illuminated with light of wavelength 3333 Å emits electrons with energies up to 0.6 eV. Calculate the work function of the metal. (Given: Plank constant = 6.626×10^{-34} Js).
- 27. A harmonic oscillator moves in a potential $V(x) = \frac{1}{2}kx^2 + cx$, where c is a constant. Find the energy eigenvalues.
- 28. What is the difference between Schrodinger representation and momentum representation of equation of motion?
- 29. Normalize the wave function $\Psi(x) = A \exp(-ax^2)$, A and a are constants over the domain $-\infty \le x \le \infty$.
- 30. For an electron in a one-dimensional infinite potential well of width 1Å, calculate:
 - (a) The separation between the two lowest energy levels
 - (b) The frequency and wavelength of the photon corresponding to a transition between these two levels. (Given: Plank constant $h = 6.626 \times 10^{-34}$ Js)
- 31. An electron in a 1D infinite potential well, defined by V(x) = 0 for $-a \le x \le a$ and $V(x) = \alpha$ otherwise, goes from the n = 4 to n = 2 level. The frequency of the emitted photon is 3.43×10^{14} Hz. Find the width of the box.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions. Each carries 15 marks.

- 32. Obtain energy eigen value and eigen function of a linear harmonic oscillator.
- 33. Briefly discuss the spectral distribution of energy density in a black body.
- 34. Derive the expression for square well potential with infinite walls.
- 35. Derive time dependent and independent Schrödinger equations.

 $(2 \times 15 = 30 \text{ Marks})$

4