Reg. No.	,	 *****
Name:		

Third Semester B.Sc. Degree Examination, March 2022

First Degree Programme under CBCSS

Statistics

Complementary Course for Mathematics
ST 1331.1 – STATISTICAL DISTRIBUTIONS
(2018 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. Define binomial distribution.
- 2. Obtain the mean of Poisson distribution.
- 3. Give a discrete distribution whose mean greater than variance.
- 4. Give a discrete distribution which posses lack of memory property.
- 5. Describe continuous uniform distribution.
- 6. Give the probability density function of exponential distribution with mean θ .
- 7. Define t-statistic.
- 8. Write down the probability density function of standard normal distribution.

- 9. Define parameter.
- 10. Write down the moment generating function of binomial distribution.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Find the moment generating function of Poisson distribution.
- 12. Find the characteristics function of geometric distribution.
- 13. Find the mean and variance of Bernoulli distribution.
- 14. If X follows Poisson distribution such that P(X=2)=3 P(X=4). Find the value of the parameter.
- 15. Find the mean deviation about mean of uniform (a, b) distribution.
- 16. A binomial distribution has a double mode at X = 1 and at X = 2. Find the mean of X (Given number of trials is 5.)
- 17. Let $X \sim u(0,1)$. Find the distribution of $Y = -2 \log X$.
- 18. Describe Chebychev's inequality.
- 19. State Lindberg-Levy central limit theorem.
- 20. Describe chi-square distribution and mention one of its applications.
- 21. Obtain the characteristics function of exponential distribution and hence find its mean and variance.
- 22. Obtain the mean and variance of geometric distribution.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. Show that Poisson distribution is a limiting form of binomial distribution.
- 24. Obtain the third central moment of binomial distribution.
- 25. Describe lack of memory property of exponential distribution.
- 26. Obtain the mode of normal distribution.
- 27. If X is the number secured in a throw of a fair die, show that Chebychev's inequality gives

 $P\{|X-\mu|>2.5\}\leq 0.47, (\mu \text{ is the mean of } X), \text{ while the actual probability is zero.}$

- Let X_i assume that values i and -i with equal probabilities. Show that the law of large numbers cannot be applied to the independent variable $X_1, X_2, ...$
- 29. Discuss the additive property of chi-square distribution.
- 30. Establish the relation between F and chi-square distributions.
- 31. If X and Y are independent gamma variates with parameters λ and μ respectively, obtain the distribution of $\frac{X}{Y}$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Obtain the recurrence relation of probabilities of binomial distribution.
 - (b) Fit a binomial distribution for the following data:

v: 0 1 2 3 4 5 6 7

p(x): 7 6 19 35 40 23 7 1

- 33. (a) Explain under what conditions and how the binomial distribution can be approximated to normal distribution.
 - (b) For a normal distribution with mean μ and variance σ^2 . Show that the mean deviation about mean is $\sigma \cdot \sqrt{2/\pi}$.

What will be the mean deviation about median?

- 34. (a) If $F(n_1, n_2)$ represents an F variate with n_1 of n_2 degrees of freedom. Prove that $F(n_2, n_1)$ is distributed as $\frac{1}{F(n_1, n_2)}$. Deduce that $P\{F(n_1, n_2) \ge c\} = P\{f(n_2, n_1) \le \frac{1}{c}\}$.
 - (b) If χ_1^2 and χ_2^2 are two independent χ^2 variates with n_1 and n_2 degrees of freedom respectively, P.T χ_1^2 / χ_2^2 follows beta distribution of second kind with $\left(\frac{n_1}{2}, \frac{n_2}{2}\right)$.
- 35. (a) State and prove weak law of large numbers.
 - (b) Two unbiased dice are thrown. If X denote the sum of numbers showing up, prove that $P\{X-7|\geq 3\} < \frac{35}{34}$. Also compare this with actual probability.

 $(2 \times 15 = 30 \text{ Marks})$